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Background: Hyperuricemia (HUA) is a major public health issue with a high prevalence worldwide. Wuling San (WLS) is an 
effective treatment for HUA. However, the active compounds and the related mechanism are unclear. In this study, we aimed to 
explore the active compounds and the underlying pharmacological mechanisms of WLS against HUA.
Methods: First, a network pharmacology approach was used to detect active compounds of WLS, and potential targets and signaling 
pathways involved in the treatment of HUA were predicted. Then, a molecular docking strategy was used to predict the affinity 
between active compounds and key targets. Finally, to verify the prediction, the HUA rat model was established.
Results: 49 active compounds with 108 common targets were obtained. Besides, cerevisterol, luteolin, ergosterol peroxide, beta- 
sitosterol, and sitosterol were identified as key active compounds. In PPI analysis, TNF, IL6, CASP3, PPARG, STAT3, and other 12 
core targets were obtained. GO enrichment analysis indicated that WLS was likely to interfere with oxidative stress in the treatment of 
HUA, and KEGG enrichment analysis indicated multiple inflammation-related signaling pathways possibly involved in the treatment 
of HUA by WLS, including TNF, and NOD-like receptor, HIF-1, PI3K-Akt, and IL-17 signaling pathways. The results of molecular 
docking indicated that the active compounds had good binding properties to their key targets. In the validation experiments, WLS 
significantly reduced the levels of serum uric acid (SUA) and serum malondialdehyde (MDA). Moreover, WLS not only significantly 
increased the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD), but also inhibited the expression of tumor 
necrosis factor-α (TNF-α) and interleukin-6 (IL-6).
Conclusion: In the present study, we demonstrate that WLS has multicomponent, multitarget, and multi-pathway properties in the 
treatment of HUA. Its potential capability to reduce SUA could be ascribed to oxidative stress improvement and inflammation inhibition.
Keywords: hyperuricemia, Wuling San, oxidative stress, inflammation

Introduction
Hyperuricemia (HUA) is a common metabolic disorder characterized by an abnormally high level of SUA. It results from 
a reduction in UA excretion or an increase in UA production, or both. In mainland China, the prevalence of HUA in the 
general population was 17.4% (22.7% in males and 11.0% in females),1 which became a major public health concern.

In addition to the well-known association with gout, increased SUA has been reported to play a critical role in 
cardiometabolic diseases, including hypertension,2 atrial fibrillation,3 chronic kidney disease,4 type 2 diabetes,5 obesity,6 

hypertriglyceridemia,7 metabolic syndrome8 and non-alcoholic fatty liver disease.9

Increased UA levels reflect an increase in xanthine oxidase (XO) enzymatic activity, which also results in an 
increased production of reactive oxygen species (ROS), leading to oxidative stress.10 Oxidative stress can activate 
several transcription factors, resulting in differential expression of certain genes involved in inflammation. 
Furthermore, inflammation caused by oxidative stress is the cause of many chronic diseases.11 Inflammation and 
oxidative stress are implicated in the mechanisms underlying HUA-mediated chronic kidney injury,12 and cardiovas
cular diseases.13–15
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Uric acid-lowering therapy (ULT) is widely used to treat HUA and prevent gout. The 2020 American College of 
Rheumatology (ACR) guidelines recommended that the target level of SUA in patients with ULT should be less than 
6 mg/dl.16 At present, the anti-HUA drugs in clinical practice include allopurinol, febuxostat, probenecid, and benz
bromarone. However, anti-HUA reagents often cause adverse effects such as allopurinol hypersensitivity reactions,17 

toxic epidermal necrolysis,18 abnormal liver and kidney function tests,19 blood dyscrasias, and urolithiasis.20 There is 
growing evidence that natural medicines play a significant role in lowering UA.21–24 Therefore, exploring natural and 
nontoxic anti-HUA drugs from traditional Chinese medicine or natural compounds has become a research hotspot.

WLS (also called Oryeongsan in Korea and Gore-san or TJ-17 in Japan), recognized as a safe medicine since ancient 
times, originally recorded in the ancient traditional Chinese medicine book “Treatise on Febrile Diseases” (Shanghan Lun 
or Shanghan Zabing Lun in Chinese), written by Zhang Zhongjing in the third century.25 WLS is a well-known and 
widely prescribed blend of traditional Chinese herbal medicine that consists of Polyporus, Poria, Alismatis Rhizoma, 
Atractylodis Macrocephalae Rhizoma, Cinnamomi Ramulus. In the Pharmacopoeia of the People’s Republic of China 
(2010 edition), it is recorded as effective for warming the Yang, promoting Qi transformation, and relieving dampness, 
diuresis and detumescence. It has been shown that WLS protects against kidney dysfunction in high fructose-induced 
HUA mice by enhancing urate excretion and improving kidney function.26,27 Meanwhile, WLS exerts extremely potent 
anti-inflammatory effects in LPS-stimulated macrophages.28

WLS has been used as a therapeutic agent to treat a wide variety of diseases for thousands of years. Although studies 
have explored the role of WLS in HUA, its underlying molecular mechanisms and active substances were not specifically 
sought. Network pharmacology is a growing discipline that involves the study of constructing multi-layered networks of 
disease phenotypes, genes, and drugs. In contrast to the traditional “one disease-one target-one drug” paradigm, network 
pharmacology explores the interaction between the body and drug by mapping drug-target-disease networks at 
a biological level.29 It emphasizes the paradigm shift from “one target, one drug” to “network target, multicomponent 
therapeutics”, highlighting a holistic view similar to that of traditional Chinese medicine.30 The network pharmacology 
method, along with molecular docking, was used in this study to identify the active components, active targets, and 
potential mechanism of action of WLS to treat HUA. In addition, animal experiments were also conducted to validate the 
pharmacological effects of WLS.

Materials and Methods
Network Pharmacology Assay
Database and Software
The database and software for the assay of network pharmacology and molecular docking are listed in Table 1.

Screening Active Compounds of WLS
The keywords “Fuling”, “Zhuling”, “Zexie”, “Baizhu”, and “Guizhi” were used to retrieve the compounds of WLS from 
the SymMap database and TCMSP database. The -cut-off values were oral bioavailability (OB) ≥ 30% and drug-likeness  
(DL) ≥ 0.18.42 A detailed description of the five herbs of WLS can be found in Table 2 and Figure 1A.

Compounds-Related Targets Prediction of WLS and Network Construction
The PubChem database and SwissTargetPrediction server were employed to obtain the canonical SMILES and predict 
the targets of the active compounds in WLS. The probability value of potential target proteins is ≥0.1.43 Cytoscape 3.9.0 
was used to build a herb-active compound-target network.

Collection of HUA-Related Targets and Herb-Compound-Target-Disease Network Construction
The keywords “hyperuricemia” and “hyperuricaemia” were used to collect HUA-related targets through the OMIM 
database, GeneCards database, TTD database, DisGeNET database, and DrugBank database. We received an ethics 
committee waiver for using these five databases from the Medical and Animal Experiment Ethics Committee of Beijing 
University of Chinese Medicine. After deduplication/integration of data, crossover genes were obtained and considered 
as therapeutic targets relevant to HUA. The common targets of WLS for the treatment of HUA were generated by the 
Venn diagram. Moreover, a herb-compound-target-disease network was constructed by Cytoscape 3.9.0.

https://doi.org/10.2147/DDDT.S398625                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2023:17 676

Huang et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Construction of PPI Network
The intersection targets were imported into the STRING database. Then, the tabular text of the PPI network was imported 
into Cytoscape 3.9.0, and CytoNCA was used to filter the target genes.

The first filtration conditions consisted of Betweenness ≥ 47.69986603, Closeness ≥ 0.475336323, Degree ≥ 13, 
Eigenvector ≥0.054424535, LAC ≥ 6.444444444, and Network ≥ 8.444444444. The duplicate filtration conditions 
consisted of Betweenness ≥ 7.507037407, Closeness ≥ 0.731707317, Degree ≥ 19, Eigenvector ≥ 0.177778021, LAC 
≥ 14.88888889, and Network ≥ 16.39197012. Finally, the filtered genes were used to construct the subnetwork, and the 
final network was subjected to duplicate filtering.

GO and KEGG Pathway Enrichment Analysis
First, R package “org.Hs.eg.db” was applied to eliminate errors caused by capitalization or abbreviations of the target 
name. Following that, GO biological functions and the KEGG pathway enrichment analysis were visualized using the 
R packages “DOSE” “clusterProfiler” and “pathview” for which the p-value was <0.05, q-value< 0.05 for further 
analysis. R software 4.1.2 was used to accomplish all preceding stages.

Molecular Docking Verification
In order to verify the binding ability of active compounds with key targets and explore their accurate binding modes, molecular 
docking simulation is done with the PDB database, PubChem database OpenBabel, AutoDockTools, and PyMOL software. 
Representative targets were chosen as receptors in the PPI network and representative therapeutic compounds were used as 
ligands. The 3D structures of IL6 (PDB ID =5FUC), TNF (PDB ID = 5UUI), CASP3 (PDB ID = 5IBP), PPARG (PDB ID = 
7E0A), and STAT3 (PDB ID = 6NJS) were downloaded from the PDB database. The SDF files with the 3D structure of ligand 

Table 1 Information on the Database and Software

Name Website

Traditional Chinese Medicine Systems Pharmacology (TCMSP) database31 https://old.tcmsp-e.com/index.php
SymMap database32 http://www.symmap.org/

PubChem database33 https://pubchem.ncbi.nlm.nih.gov/

SwissTargetPrediction server34 http://www.swisstargetprediction.ch/
Online Mendelian Inheritance in Man (OMIM) database35 https://omim.org/

Therapeutic Target Database (TTD)36 http://db.idrblab.net/ttd/

DisGeNET database37 https://www.disgenet.org/
GeneCards database38 https://www.genecards.org/

DrugBank database39 https://go.drugbank.com/
Venny 2.1 https://bioinfogp.cnb.csic.es/tools/venny/index.html

STRING database40 https://cn.string-db.org/

Cytoscape 3.9.0 software -
R 4.1.2 -

PDB database41 http://www.rcsb.org/

AutoDockTools (1.5.7) software -
OpenBabel (2.4.1) software -

PyMOL (2.5.2) software -

Table 2 Basic Information of Five Medicinal Materials of WLS

Chinese Name English Name Latin Name Class in English

Zexie Rhizome of Oriental Waterplantain Alismatis Rhizoma Diuretic Dampness Excreting Drugs

Fuling Indian Bread Poria Diuretic Dampness Excreting Drugs

Zhuling Polyporus Grifolia Polyporus Diuretic Dampness Excreting Drugs
Baizhu Rhizome of Largehead Atractylodes Atractylodis Macrocephalae Rhizoma Qi Reinforcing Drugs

Guizhi Cassia Twig Cinnamomi Ramulus Pungent-Warm Exterior-Releasing Medicinal
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molecules were downloaded from the PubChem database. Using Open Babel 2.4.1, the structure files were translated to mol2 
format. Molecular docking was carried out using AutoDocktools 4.0 after removing water molecules, adding nonpolar hydrogen, 
isolating proteins and calculating Gasteiger charges. PyMOL was then used to visualize the confirmation with the best affinity.

Experiment Validation
Experimental Drugs and Reagents
The Wuling San (capsule) and allopurinol were purchased from Jiangxi Pinxin Pharmaceutical Co., Ltd. (Xinyu, China) and 
Shanghai Xinyi Wanxiang Pharmaceutical Co., Ltd. (Shanghai, China), respectively. Potassium oxonate (PO) and sodium 
carboxymethyl cellulose (CMC-Na) were purchased from Yuanye Biological Co., Ltd. (Shanghai, China). Yeast extract was 
bought from OXOID Ltd. (Basingstoke, UK). UA content detection kit was purchased from BioSino Bio-Technology & 
Science Inc. (Beijing, China). Catalase (CAT) assay kit, total antioxidant capacity (T-AOC) assay kit, malondialdehyde 
(MDA) assay kit, superoxide dismutase (SOD) assay kit, creatinine (Cr) assay kit, and blood urea nitrogen (BUN) assay kit 
were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The kits for the detection of interleukin-6 
(IL-6) and tumor necrosis factor-α (TNF-α) were bought from Neobioscience Technology Co., Ltd. (Shenzhen, China).

Animals and Treatment
Forty Specific Pathogen-Free (SPF) Sprague-Dawley (SD) male rats were purchased from SPF (Beijing) Biotechnology Co., Ltd 
(laboratory animal license number: SCXK (Jing) 2020–0033). Before the experiments, the rats were acclimated for one week to 

Figure 1 The network pharmacology of WLS in the treatment of HUA. (A) The five herbs of WLS. (B) The Venn diagram of WLS-HUA. (C) The herb-compound-target- 
disease network.
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the experimental conditions (temperature: 22 ± 2°C; 12h dark-light cycle; humidity 50 ±10%) and were fed a standard diet with 
free access to water. The Ethics Committee of Beijing University of Chinese Medicine approved all proposals involving animals 
(BUCM-4-2022022802-1026) and the experimental procedures were carried out in accordance with the Guidelines on the Care 
and Use of Laboratory Animal issued by the Chinese Council on Animal Research and the Guidelines of Animal Care.

The rats were randomly divided into five groups (each group of 8): blank control (BC) group; model control (MC) group; 
Allopurinol (ALL) group (10mg/kg/d); Wuling San high-dose group (WLS-HD, 630mg/kg/d); Wuling San low-dose group 
(WLS-LD, 315mg/kg/d). Potassium oxonate, Allopurinol, and Wuling San (capsule) were suspended in the 0.5% CMC-Na 
solution, respectively. The yeast extract was dissolved in pure water. In order to induce HUA, all groups except the BC group 
were intragastrically given PO (750 mg/kg /d) for 14 days. The model group was given 0.5% CMC-Na, the ALL group was 
given allopurinol treatment, and the WLS groups were given different WLS treatments via gavage, respectively. In contrast, 
the BC group received 0.5% CMC-Na in comparable volumes. In order to simulate the purine metabolism disorder caused by 
human consumption of high-purine food and increase UA levels, all groups except the BC group were intragastrically given 
yeast extract (10g/kg/d) on the same day; meanwhile, the BC group received pure water in comparable volumes.

Sample Collection
All rats were sacrificed under anesthesia at 2 h after the last treatment administration, and whole blood samples were 
quickly taken via the abdominal aorta. Then the blood samples were centrifuged (3500 rpm for 10min at 4 °C), and the 
serum was stored at −80 °C until further analysis.

Determination of Biochemical Indexes in HUA Rats
The serum levels of UA (SUA), Cr (SCr), and BUN levels were measured using commercial kits, following the 
manufacturer’s instructions.

Determination of Oxidative Stress in HUA Rats
The levels of T-AOC, SOD, CAT, and MDA in serum were evaluated using commercial kits, as directed by the manufacturer.

Determination of Inflammatory Factors in HUA Rats
In accordance with the instructions, the contents of IL-6 and TNF-α in serum were measured by using an ELISA kit.

Statistical Analysis
All data were expressed as mean ± standard deviation (mean ± SD). One-way ANOVA followed by LSD post hoc test 
was performed for comparisons of data. For all statistical tests, P < 0.05 was considered statistically significant. The 
analysis was performed using IBM SPSS 25.0 (Armonk, NY, USA) and GraphPad Prism 8 (San Diego, California, USA).

Results
Network Pharmacology Assay
Active Compounds and Targets Prediction and Herb-Compound-Target Network Construction
A total of 55 active compounds of WLS were screened, among which 10 were from Baizhu, 20 were from Fuling, 6 were 
from Guizhi, 9 were from Zexie, and 10 were from Zhuling. Next, according to the active compounds, 3622 related 
targets of WLS were identified by SwissTargetPrediction, containing 718 types in Baizhu, 1336 types in Fuling, 324 
types in Guizhi, 696 types in Zexie, and 548 types in Zhuling. After the elimination of redundancy, 49 compounds and 
724 targets were identified and used to build the herb-active compound-target network, which contained 778 nodes and 
3677 edges, five of which were Chinese herbal medicine nodes. Forty-nine active compound nodes and 724 target genes 
were unique to the herbs as shown in Table 3 and Supplementary Figure 1.

Putative Targets of WLS for Treating HUA
HUA-related targets were searched in OMIM, DrugBank, DisGeNET, TTD, and GeneCards databases. 5, 69, 196, 5 and 
763 targets were identified in OMIM, DrugBank, DisGeNET, TTD, and GeneCards databases, respectively. After 
removing the redundancies, a total of 859 HUA-related targets were obtained. Subsequently, 108 overlapping targets 
of WLS and HUA were screened via Venny 2.1 as depicted in Figure 1B.
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Table 3 Information on Active Compounds of WLS

No. Herb Mol ID Molecule Name OB (%) DL

1 Guizhi MOL000006 Luteolin 36.16 0.25

2 Baizhu MOL000028 Α-Amyrin 39.51 0.76

3 Baizhu MOL000033 (3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-[(2R,5S)-5-Propan-2-Yloctan-2-Yl]- 

2,3,4,7,8,9,11,12,14,15,16,17-Dodecahydro-1H-Cyclopenta[A]Phenanthren-3-Ol

36.23 0.78

4 Baizhu MOL000072 8Β-Ethoxy Atractylenolide III 35.95 0.21

5 Fuling MOL000273 (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-Dihydroxy-4,4,10,13,14-Pentamethyl-2,3,5,6,12,15,16,17- 

Octahydro-1H-Cyclopenta[A]Phenanthren-17-Yl]-6-Methylhept-5-Enoic Acid

30.93 0.81

6 Fuling MOL000275 Trametenolic Acid 38.71 0.8

7 Fuling MOL000276 7,9(11)-Dehydropachymic Acid 35.11 0.81

8 Fuling, 

Zhuling

MOL000279 Cerevisterol 37.96 0.77

9 Fuling MOL000280 (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-Dihydroxy-4,4,10,13,14-Pentamethyl-2,3,5,6,12,15,16,17- 

Octahydro-1H-Cyclopenta[A]Phenanthren-17-Yl]-5-Isopropyl-Hex-5-Enoic Acid

31.07 0.82

10 Fuling, 

Zhuling

MOL000282 Ergosta-7,22E-Dien-3Beta-Ol 43.51 0.72

11 Fuling, 

Zhuling

MOL000283 Ergosterol Peroxide 40.36 0.81

12 Fuling MOL000285 (2R)-2-[(5R,10S,13R,14R,16R,17R)-16-Hydroxy-3-Keto-4,4,10,13,14-Pentamethyl-1,2,5,6,12,15,16,17- 

Octahydrocyclopenta[A]Phenanthren-17-Yl]-5-Isopropyl-Hex-5-Enoic Acid

38.26 0.82

13 Fuling MOL000287 3Beta-Hydroxy-24-Methylene-8-Lanostene-21-Oic Acid 38.70 0.81

14 Fuling MOL000289 Pachymic Acid 33.63 0.81

15 Fuling MOL000290 Poricoic Acid A 30.61 0.76

16 Fuling MOL000291 Poricoic Acid B 30.52 0.75

17 Fuling MOL000292 Poricoic Acid C 38.15 0.75

18 Fuling MOL000296 Hederagenin 36.91 0.75

19 Fuling MOL000300 Dehydroeburicoic Acid 44.17 0.83

20 Baizhu, 

Guizhi

MOL000358 Beta-Sitosterol 36.91 0.75

21 Zexie, 

Guizhi

MOL000359 Sitosterol 36.91 0.75

22 Baizhu MOL000392 Formononetin 69.67 0.21

23 Zhuling MOL000796 (22E,24R)-Ergosta-6-En-3Beta,5Alpha,6Beta-Triol 30.20 0.76

24 Zhuling MOL000798 Ergosta-7,22-Diene-3Β-Ol 43.51 0.72

25 Zhuling MOL000816 Ergosta-7,22-Dien-3-One 44.88 0.72

26 Zhuling MOL000817 Ergosta-5,7,22-Trien-3-Ol 46.18 0.72

27 Zhuling MOL000820 Polyporusterone E 45.71 0.85

28 Zhuling MOL000822 Polyporusterone G 33.43 0.81

29 Zexie MOL000830 Alisol B 34.47 0.82

30 Zexie MOL000831 Alisol B monoacetate 35.58 0.81

31 Zexie MOL000832 Alisol,b,23-acetate 32.52 0.82

32 Zexie MOL000853 Alisol B 36.76 0.82

33 Zexie MOL000854 Alisol C 32.70 0.82

34 Zexie MOL000856 Alisol C monoacetate 33.06 0.83

35 Zexie MOL000862 [(1S,3R)-1-[(2R)-3,3-dimethyloxiran-2-yl]-3-[(5R,8S,9S,10S,11S,14R)-11-hydroxy-4,4,8,10,14-pentamethyl 

-3-oxo-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta[a]phenanthren-17-yl]butyl] acetate

35.58 0.81

36 Fuling MOL001002 Ellagic Acid 43.06 0.43

37 Zexie MOL002464 1-Monolinolein 37.18 0.3

38 Guizhi MOL002966 Dalbergin 78.18 0.2

39 Guizhi MOL004053 Isodalbergin 35.45 0.2

40 Baizhu MOL005384 Suchilactone 57.52 0.56

41 Fuling MOL005890 Pachypodol 75.06 0.4

42 Fuling MOL009135 Ellipticine 30.82 0.28

43 Fuling MOL009136 Peraksine 82.58 0.78

44 Fuling MOL009149 Cheilanthifoline 46.51 0.72

(Continued)
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Construction of the Herb-Compound-Target-Disease Network
The herb-compound-target-disease network contained 163 nodes and 820 edges, among which 5 were Chinese herbal 
medicine nodes, 49 were active compound nodes, 108 were target genes and one was a disease as presented in Figure 1C.

PPI Network Construction and Analysis
The 108 common target genes were input into the STRING 11.0 platform to construct the PPI network. A confidence 
score ≥ 0.4 was selected, and the nodes that disconnected from the network were hidden. The PPI network was exported 
as a tab-separated values (TSV) file and visualized using Cytoscape software (version 3.9.0). By setting the DC, BC, NC, 
EC, and LAC values to be greater than the median, two screenings were performed and 12 core network genes were 
finally screened out. As shown in Figure 2A, there were 107 nodes and 913 edges in the interaction network. The core 
network genes screened out included TNF, IL6, CASP3, MTOR, PPARG, HSP90AA1, STAT3, PTGS2, MAPK3, ESR1, 
SIRT1, NOS3, and these genes made up the core nodes in the PPI network (Figure 2B).

Table 3 (Continued). 

No. Herb Mol ID Molecule Name OB (%) DL

45 Baizhu MOL009361 13,15-Dideoxyaconitine 34.67 0.25

46 Baizhu MOL009387 Didehydrotuberostemonine 51.91 0.74

47 Baizhu MOL009431 Stemonine 81.75 0.72

48 Baizhu MOL009436 Stemotinine 38.69 0.46

49 Zhuling, 

Guizhi

MOL011169 Peroxyergosterol 44.39 0.82

Figure 2 The protein-protein interaction network of WLS in the treatment of HUA targets and analysis of CytoNCA core network. (A) Protein–protein interaction 
network. (B) Subnetwork topology analysis diagram. Yellow nodes are the core genes obtained after screening.
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GO and KEGG Pathway Enrichment Analysis
As a part of GO analysis, biological process (BP), cellular components (CC), and molecular function (MF) were 
included, and 1981 terms were derived via BP enrichment analysis (including cellular response to chemical stress, 
steroid metabolic process, response to lipopolysaccharide, response to oxidative stress); 55 terms via CC enrichment 
analysis (including membrane raft, membrane microdomain, caveola, plasma membrane raft, nuclear envelope); 147 
terms via MF enrichment analysis (including oxidoreductase activity, nuclear receptor activity, ligand-activated tran
scription factor activity, steroid hydroxylase activity, and heme-binding). The top 10 BP, CC, and MF were selected to 
draw the GO function histogram of WLS in HUA treatment. Results showed that WLS was involved in the treatment of 
HUA through a variety of gene biological functions (Figure 3). To further clarify the pathways regulated by the 
therapeutic target genes, we performed a KEGG pathway analysis. Results showed that these target genes were 
distributed in 155 pathways. In order to build a histogram, the pathways containing the top 30 enriched genes were 
selected. HUA-related pathways were largely involved in HIF-1, PI3K-Akt, IL-17, TNF, and NOD-like receptor 
signaling pathways as depicted in Figure 4, Supplementary Figures 2 and 3.

Molecular Docking Verification
After checking related published literature, the five core proteins, IL6, TNF, CASP3, PPARG, and STAT3 and the best effective 
ingredients, cerevisterol, luteolin, ergosterol peroxide, beta-sitosterol, and sitosterol, were selected for molecular docking. The 
molecular docking confirmed that the active ingredients of WLS had significant regulatory effects on IL-6, TNF, CASP3, 

Figure 3 GO function enrichment analysis in HUA treated with WLS.
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PPARG, and STAT3 as depicted in Figure 5, Supplementary Figures 4-6. As presented in Table 4, the absolute values of the 
binding energies between active ingredients and core proteins were all greater than five, indicating that the key active ingredients 
of WLS had a strong affinity with the core proteins IL6, TNF, CASP3, PPARG, and STAT3, and all of which may play a key role 
in the treatment of HUA.

Validation of Animal Experiment
Effects of WLS on Biochemical Indexes in HUA Rats
Throughout the entire experimental period, the rats were in good health. There was no significant difference in body 
weight among the five groups as presented in Figure 6A. The SUA level of the MC group was significantly higher than 
that of the BC group (P < 0.01) as shown in Figure 6B, indicating that the HUA rat model was successfully constructed. 
As shown in Figure 6C and D, the levels of SCr and BUN in the MC group were slightly higher than those in the BC 
group, but there was no statistical significance. SUA level significantly decreased in ALL and different doses of WLS 
group compared to the level in MC group (P < 0.01). In comparison with MC group, levels of SCr and BUN decreased in 
all treatment groups, but this difference was not statistically significant.

Effect of WLS on Antioxidative Stress Ability in HUA Rats
As shown in Figure 7A, the level of MDA was significantly increased in the serum of MC group compared with the BC 
group (p<0.01). The levels of SOD (Figure 7B) and T-AOC (Figure 7C) were significantly decreased in the serum of MC 
group compared with the BC group (p<0.01) Although the level of CAT was decreased in the MC group compared with 

Figure 4 KEGG pathway enrichment analysis in HUA treated with WLS.
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the BC group, it was not statistically significant (Figure 7D). Compared with the MC group, the level of MDA in the 
serum of WLS-HD was significantly decreased (p<0.01), and the levels of SOD and T-AOC in the serum of ALL, WLS- 
LD, and WLS-HD groups were significantly increased (p<0.01), which indicated that WLS could improve oxidative 
stress in HUA rat model.

Determination of Inflammatory Factors in Rats Model of HUA
As shown in Figure 8A and B, the contents of IL-6 and TNF-α in the serum of MC group were significantly increased 
compared with the BC group (p<0.01). Compared with the MC group, the TNF-α and IL-6 contents in the serum of ALL, 

Figure 5 Part of molecular docking results. (A) IL6 and Cerevisterol. (B) IL6 and Beta-Sitosterol. (C) TNF and Ergosterol Peroxide. (D) CASP3 and Beta-Sitosterol. (E) 
PPARG and Sitosterol. (F) STAT3 and Luteolin.

Table 4 Binding Energy of Active Compounds in WLS with Potential HUA Targets

Active Compounds Binding Energy (kcal/mol)

IL6 (5FUC) TNF (5UUI) CASP3 (5IBP) PPARG (7E0A) STAT3 (6NJS)

Beta-Sitosterol −7.24 −7.00 −8.41 −9.10 −6.60

Cerevisterol −7.65 −7.59 −7.49 −10.03 −6.97

Ergosterol Peroxide −6.49 −7.91 −8.85 −10.35 −6.94
Luteolin −5.23 −6.86 −6.04 −7.82 −5.12

Sitosterol −6.60 −7.43 −7.91 −8.97 −6.79

https://doi.org/10.2147/DDDT.S398625                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2023:17 684

Huang et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


WLS-LD, and WLS-HD groups were significantly reduced (p<0.01), which indicated that WLS could improve inflam
mation levels and exert anti-inflammatory effects in the HUA rat model.

Discussion
There has been a dramatic upward trend in the prevalence of HUA and gout in recent years.44–46 The most common 
drugs used for treating HUA are uricostatic agents (allopurinol and febuxostat), which decrease the production of UA by 
competing with XO, and uricosuric agents (probenecid and benzbromarone) which modulate the renal tubular reabsorp
tion of UA by increasing the renal clearance of UA in the kidney.47 However, these medications can cause some 
undesired side effects such as hypersensitivity reactions, gastrointestinal discomfort, and drug-drug interactions.48 WLS, 
a traditional Chinese medicine preparation, has been used for thousands of years to treat diseases related to humoral 
balance. It has been previously reported that WLS has the function of preventing calcium oxalate nephrolithiasis and has 
a positive effect on diuresis.49,50 As to the treatment of HUA, studies also have shown that WLS can effectively inhibit 
TLR4/MyD88 signaling and NLRP3 inflammasome activity, which reduces IL-1β production and modulates renal 
organic ion transporters in hyperuricemic mice fed with high fructose.26 However, there is little understanding of the 
active compounds of this traditional herbal formula against HUA. In this study, we explored the active compounds of 
WLS and the HUA treatment-related molecular targets, as well as the molecular mechanism of WLS in the treatment of 
HUA based on network pharmacology.

In this study, 49 compounds and 108 core targets of WLS for the treatment of HUA were screened out. According to 
the compound-target regulatory network, cerevisterol, luteolin, ergosterol peroxide, beta-sitosterol, sitosterol, and other 
active compounds could act on multiple targets. Cerevisterol and ergosterol peroxide are both the active compound of 

Figure 6 The effect of WLS on body weight (A), SUA (B), SCr (C), and BUN (D) in HUA rats. Compared with the BC group, ## p<0.01; Compared with the MC group, 
**p<0.01.
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Figure 7 The effect of WLS on the levels of MDA (A), SOD (B), T-AOC (C), and CAT (D) in HUA rats. Compared with the BC group, ## p<0.01; Compared with the MC 
group, **p<0.01.

Figure 8 The effect of WLS on the contents of IL-6 (A) and TNF-α (B) in HUA rats. Compared with the BC group, ## p<0.01; Compared with the MC group, **p<0.01.
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Poria (Fuling) and Polyporus (Zhuling), luteolin is the active compound of Cinnamomi Ramulus (Guizhi), beta-sitosterol 
is the active compound of Atractylodis Macrocephalae Rhizoma (Baizhu) and Cinnamomi Ramulus (Guizhi), sitosterol is 
the active compound of Alismatis Rhizoma (Zexie) and Cinnamomi Ramulus (Guizhi). All four compounds, except 
luteolin, are the active compounds of two traditional Chinese medicines, similar to how traditional Chinese medicines 
work together in synergy and compatibility. In previous studies, these potential active compounds in WLS were found to 
inhibit inflammation, improve oxidative stress, and lower SUA levels. Cerevisterol can decrease the expression of pro- 
inflammatory cytokines, such as TNF-α, IL-6, and IL-1β in LPS-induced macrophages via deactivating NF-κB and AP-1 
transcription factors through the down-regulation of MAPK signaling, and the up-regulation of Nrf2-mediated HO-1 
expression, suggesting the potential of cerevisterol as an anti-inflammatory agent.51 Luteolin is a natural flavonoid that 
possesses strong anti-oxidative and anti-inflammatory properties. Studies have shown that luteolin can contribute to 
reducing tissue UA levels in the liver, decreasing neutrophil infiltration and pro-inflammatory cytokines production, and 
it also is able to reduce oxidative stress in MSU crystal-induced inflammation and has the protective effects on 
kidneys.52,53 Ergosterol peroxide has antiviral and immunomodulatory abilities, evidenced by the finding that ergosterol 
peroxide can suppress LPS-induced TNF-α production by inhibiting the activation of the MAPKs and transcription factor 
NF-κB and C/EBP in RAW264.7 cells.54,55 Beta-sitosterol can suppress the paw swelling caused by MSU crystals 
injection, indicating its anti-inflammatory properties.56

In the current study, the PPI analysis showed that TNF, IL6, CASP3, PPARG, STAT3,MTOR, HSP90AA1, PTGS2, 
MAPK3, ESR1, SIRT1, and NOS3 are the core targets involved in the treatment of HUA by WLS. Moreover, GO 
enrichment analysis indicated that WLS might interfere with oxidative stress in the treatment of HUA, and KEGG 
enrichment analysis indicated multiple inflammation-related signaling pathways, including TNF, and NOD-like receptor, 
HIF-1, PI3K-Akt, and IL-17 signaling pathways. UA is the final oxidation product of purine metabolism in the circulatory 
system, which is thought to contribute to the development of gout. In addition, epidemiological and experimental studies 
have reported that HUA is strongly related to an increased risk for cardiovascular disease, metabolic syndrome (MS), stroke, 
and CKD. All these conditions are thought to be possibly mediated by oxidative stress and a pro-inflammatory milieu.57,58 In 
previous studies, researchers demonstrated that the serum levels of MDA, IL-6, TNF-α, and IL-8 in asymptomatic young 
patients with HUA were significantly higher than healthy counterparts,59–61 and patients with high levels of UA had higher 
inflammation and oxidative stress. UA can stimulate TNF-α production in a dose-dependent manner,62 and it has been proved 
that TNF-α exposure before MSU stimulation can result in the release of IL-1β from human neutrophils.63 Similarly, priming 
of human neutrophils with IL-6 stimulates UA-mediated IL-1β secretion, suggesting that IL-6 plays a role in MSU-mediated 
NLRP3 inflammasome activation.64 ROS induced by UA can activate the cleavage of caspase-3 and downregulate the 
expression of the Bcl-xl via the caspase-dependent apoptosis pathway in NRK-52E cells.65 In HUVECs, UA can upregulate 
JAK2/STAT3 in a concentration-dependent manner, as well as the pro-inflammatory cytokine IL-6.66 Additionally, previous 
studies showed that a relatively high concentration of UA can boost the expression of GLUT9 and URAT1 in renal tubular 
epithelial cells by activating the JNK, NF-κB, and PI3K/Akt signaling pathways.67 An upregulation of HIF-1α with UA 
stimulation in HAEC was reported by Oberbach.68 Correspondingly, there are many drugs targeting UA to exert their 
therapeutic effect. Arhalofenate, a partial agonist of PPARG (peroxisome proliferator-activated receptor-gamma), inhibits 
UA transport and has anti-inflammation properties,69 and rosiglitazone (a PPARG agonist) can attenuate the hyperuricemic 
nephropathy through suppressing inflammation and lowering SUA levels by preserving the expression of urate 
transporters.70 All of these findings related to UA-induced oxidative stress and inflammation prove to play a crucial role 
in the development of HUA, which gives us insight that in addition to urate-lowering therapies, anti-inflammatory, and anti- 
oxidative stress therapies may also be helpful in the treatment of HUA.

In the validation experiment, the HUA rat model was established by oral administration of PO and yeast extract to 
further ascertain whether WLS was able to lower the level of UA. The results showed that compared with the HUA 
group, the WLS groups had a significant reduction in the level of SUA. In the present study, PO and yeast extract by 
gavage for 14 days induced HUA, but the changes in renal function indicators were not significant. In the meantime, the 
intervention of WLS was able to lower the SUA without affecting renal function.

As already mentioned above, an increase in SUA could contribute to oxidative and inflammation. In this work, 
a significant increase in SOD and T-AOC levels, accompanied by a decrease in MDA level in serum was observed after 
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WLS treatment. Moreover, WLS was found to decrease the contents of TNF-α and IL-6 in the serum. Therefore, it was 
suggested that WLS had the effect of improving oxidative stress and anti-inflammatory function in the HUA rat model.

There are some limitations in the present study. First, the active compounds of WLS are predicted based on five single 
traditional Chinese medicines rather than the whole formula, which may contribute to deviation from the realistic 
compounds. Second, the basis that WLS can treat HUA is that it contains a variety of compounds. However, it is hard to 
clarify the concrete roles that those compounds play in the treatment of HUA. Therefore, we will focus more on 
experiments to explore the mechanisms of key compounds in WLS on HUA in the future.

Conclusions
In summary, WLS has the characteristics of multicomponent, multitarget, and multipathways when it comes to treating 
HUA. It is mainly involved in controlling the development of HUA via inflammation-related signaling pathways, 
including TNF, NOD-like receptor, HIF-1, PI3K-Akt, IL-17 signaling pathways, and other signaling pathways. The 
analysis demonstrated that WLS could improve oxidative stress. The inhibiting inflammatory factors, such as TNF-α and 
IL-6, may also be one of its mechanisms. This study suggests a possible mechanism and potential clinical application 
values of WLS in the treatment of HUA and its related complications.
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