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Abstract: Axenfeld-Rieger syndrome (ARS) is a rare congenital disease that is primarily characterized by ocular anterior segment 
anomalies but is also associated with craniofacial, dental, cardiac, and neurologic abnormalities. Over half of cases are linked with 
autosomal dominant mutations in either FOXC1 or PITX2, which reflects the molecular role of these genes in regulating neural crest 
cell contributions to the eye, face, and heart. Within the eye, ARS is classically defined as the combination of posterior embryotoxon 
with iris bridging strands (Axenfeld anomaly) and iris hypoplasia causing corectopia and pseudopolycoria (Rieger anomaly). 
Glaucoma due to iridogoniodysgenesis is the main source of morbidity and is typically diagnosed during infancy or childhood in 
over half of affected individuals. Angle bypass surgery, such as glaucoma drainage devices and trabeculectomies, is often needed to 
obtain intraocular pressure control. A multi-disciplinary approach including glaucoma specialists and pediatric ophthalmologists 
produces optimal outcomes as vision is dependent on many factors including glaucoma, refractive error, amblyopia and strabismus. 
Further, since ophthalmologists often make the diagnosis, it is important to refer patients with ARS to other specialists including 
dentistry, cardiology, and neurology. 
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Introduction
Axenfeld Rieger syndrome (ARS) is a clinically and genetically heterogenous group of conditions characterized by 
anterior segment dysgenesis of the eye and varying degrees of systemic congenital abnormalities.1–4 The disease was first 
recognized by Axenfeld in 1920 who reported a patient with anterior displacement of Schwalbe’s line (posterior 
embryotoxon) in combination with corectopia.5 In 1934, Rieger described two patients with “mesodermal dysgenesis” 
consisting of iris hypoplasia, pseudopolycoria, and posterior embryotoxon.6 Due to phenotypic similarities, the cases 
described by Axenfeld and Rieger were considered as part of the same group of disorders known today as ARS.

ARS occurs in 1 of 100,000–200,000 live births.4 Further, there is no gender or racial predilection and has been 
reported in ethnic groups in Europe, Africa, North and South America, Middle East, and Asia.4 Mutations in the PITX2 
and FOXC1 genes, which are crucial for normal embryologic development of the anterior segment and other organs 
affected in ARS, account for 40–60% of cases.7–9 Vision loss is most commonly due to glaucoma, which affects more 
than 50% of individuals with ARS.10 Thus, although rare, it is important for eye specialists to recognize ARS in order to 
monitor for glaucoma and potentially arrange care with other specialists.

ARS Genetics and Pathogenesis
ARS is inherited in an autosomal dominant pattern with eye and systemic findings showing complete and incomplete 
penetrance, respectively.3,7,8,11 Family-based studies and linkage analysis identified that mutations in two genes, Paired- 
like Homeodomain 2 (PITX2) and Forehead Box C1 (FOXC1), are causative in approximately half of ARS cases.9,12–16 

The PITX2 gene is located on 4q25, while the FOXC1 gene is localized to 6p25, and both genes encode for transcription 
factors predominantly expressed during embryogenesis.12,17 Disease causing mutations in PITX2 and FOXC1 are 
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classified as type I and type III ARS. Type II ARS has been localized to 13q14, and a separate isolated case was 
associated with 16q24 deletion; however, the specific genes involved have yet to be identified.3,7,18,19 Further, anterior 
segment dysgenesis, and in some cases specifically referenced as ARS, has also been associated with mutations in 
CYP1B1, COL4A1, PAX6, FOXE3, CPAMD8, and PXDN.20–23 In addition, genetic testing utilizing targeted gene panels 
for anterior segment dysgenesis fails to identify gene mutations in many ARS patients indicating that much knowledge is 
still to be gained regarding the genetics of this disease.

As PITX2 and FOXC1 mutations are most common, the phenotypes associated with these genes are best 
described.3,15,24–31 Reports in the literature have suggested that FOXC1 mutations are more likely to cause isolated 
ocular findings such that craniofacial and dental anomalies are rare.3,32 This is in contrast to PITX2 mutations, which in 
addition to anterior segment dysgenesis have been reported to be commonly associated with craniofacial 
abnormalities.3,32–34 Further, a more recent study showed that FOXC1 mutations had more corneal involvement and 
higher incidence of glaucoma in contrast to PITX2 mutations which showed more iris abnormalities.35 However, personal 
experience with numerous multi-generation families with ARS and either FOXC1 or PITX2 mutations challenges this 
division of gene function. Further, there is phenotypic variation in eye and systemic findings amongst affected family 
members that carry the same genetic mutation.25,33,36

Nevertheless, the association between ARS and mutations in PITX2 and FOXC1 yields important insight into disease 
pathogenesis. Mouse, chick and zebrafish animal models have demonstrated that Pitx2 and Foxc1 are expressed in neural 
crest cells during embryogenesis.32,37–45 The neural crest is a transient stem cell population that originates at the edge of 
the neural tube, migrates throughout the embryo, and gives rise to a diverse set of tissues.46–48 Pitx2 and Foxc1 are 
expressed in the cranial and cardiac neural crest subpopulations. The cranial neural crest arises from the edge of the 
mesencephalon and rhombencephalon and migrates into the craniofacial region to populate the 1st and 2nd pharyngeal 
arches, frontonasal process, and periocular mesenchyme.49–51 In the mid- and lower face region, the cranial neural crest 
cells from the 1st and 2nd pharyngeal arches give rise to the odontoblasts and cementoblasts required for tooth formation, 
connective tissue, and the maxillary and mandibular bones.51–57 The cranial neural crest cells within the periocular 
mesenchyme migrate into the anterior segment of the eye via the ocular fissure and between the surface ectoderm-derived 
corneal epithelium and neural epithelial-derived optic cup to contribute to the corneal stroma and endothelium, iris 
stroma and muscles, ciliary body stroma, trabecular meshwork and aqueous outflow tracts, and sclera.49,51,55 The cardiac 
neural crest cells originate at the level of the third somite and migrate through the 3rd, 4th, and 5th pharyngeal arches on 
their way to the cardiac outflow region where they regulate tract septation and aortic arch formation.58,59

Genetic manipulation of Pitx2 and Foxc1 expression in animal models shows that absence of these genes halts cranial 
neural crest cell migration from the edge of the neural tube, which induces cell apoptosis.42,60 Thus, few neural crest cells 
reach the pharyngeal arches and periocular mesenchyme resulting in absence of jaw and mid-face bone formation and 
disruption of cornea, iris, and iridocorneal angle development. Further, Pitx2 and Foxc1 expressed in the periocular 
mesenchyme regulate closure of the optic fissure on the inferonasal edge of the optic cup such that loss of these genes in 
neural crest cells also causes microphthalmia and colobomas.41,42,60 Complete knockout or knockdown of Pitx2 or Foxc1 
in mice and zebrafish results in embryonic lethality due to cardiac malformations; however, heterozygous Pitx2 mice 
show anterior segment anomalies similar to human ARS.43

As ARS is inherited in an autosomal dominant fashion, gene dosage likely plays a role in disease pathogenesis.61 In 
the heterozygous state, early craniofacial and cardiac neural crest development may proceed thereby preventing 
embryonic lethality; however, the phenotypes may reflect later roles of these genes. Pitx2 and Foxc1 continue to be 
expressed in neural crest-derived cells in the developing anterior segment. These neural crest cells form a continuous 
layer that separates the trabecular meshwork from the anterior chamber, preventing aqueous humor drainage.1,20 This cell 
layer eventually retracts to expose the trabecular meshwork and allow for aqueous outflow. Inhibition of this retraction 
along with contraction of the layer is hypothesized to result in iridogoniodysgenesis. While there is interaction between 
the Pitx2 and Foxc1 proteins within neural crest cells, specific downstream targets are not well defined.61 It is likely that 
additional genes associated with ARS that have yet to be identified interact within the PITX2 and FOXC1 pathways in 
neural crest cells and will yield further insight into disease pathogenesis.
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Ocular Manifestations
ARS presents with characteristic anterior segment findings that are typically bilateral but can be asymmetric or, rarely, 
unilateral (Supplemental Table 1).4,15,16,25–27,31,35,62 By convention, ARS is the combination of posterior embryotoxon 
with iris bridging strands (Axenfeld anomaly) and iris hypoplasia (Rieger anomaly) (Figure 1A–D).2–4,8,24 Posterior 
embryotoxon is classically described as premature termination of Descemet’s membrane (Schwalbe’s line); however, 
a more recent histological study has shown that the line itself is a peripheral corneal stroma nub that is present due to an 
attenuated Descemet’s membrane.63 Clinically, posterior embryotoxon varies in presentation from a discontinuous subtle 
line in the peripheral cornea that runs parallel to the limbus to a prominent continuous white line (Figure 1E, arrow-
heads). Findings are more evident on gonioscopy, especially if iris strands that traverse the angle structures are 
present.3,64 These bridging strands may be thin or thick, but unlike peripheral anterior synechiae do not typically 
cause angle closure or restrict aqueous outflow.3 Although posterior embryotoxon is found in the majority of patients 
with ARS, it is not necessary for the diagnosis. Additionally, 15% of the normal population may have some degree of 
posterior embryotoxon, but it is less pronounced and not associated with iris bridging strands.64 Rieger anomaly refers to 
iris hypoplasia and can be associated with corectopia and pseudopolycoria (Figure 1A–D).2–4,8,24 Absence or malforma-
tion of the iris stroma and muscles (sphincter and dilator) in conjunction with iris bridging strands leads to pupil 
distortion and iris tears. The corectopia and pseudopolycoria are rarely visually significant but may cause cosmetic 
concerns. However, not all patients with ARS have corectopia or pseudopolycoria, and the hypoplasia may manifest as 
a gray, featureless (lack of crypts, furrows, and rings) iris (Figure 1F).35

In addition to these classic findings, other ocular structures can show abnormalities. Congenital and early-onset 
cataracts are common; however, lensectomy can be challenging due to corneal abnormalities, poor pupil dilation and iris 
floppiness.65,66 In rare cases, congenital cataracts in ARS can be associated with persistent fetal vasculature and 
microphthalmia, which further complicates surgical removal.17,24 Corneal involvement can be more extensive as eyes 
can also show Peters anomaly and sclerocornea.16,24,31,35,62,67–69 These congenital corneal abnormalities especially when 
coupled with glaucoma (discussed in next section) can predispose for corneal edema and scarring due to 
decompensation.35,62 Although traditionally considered an anterior segment dysgenesis, optic nerve and retinal abnorm-
alities have also been reported in ARS.70 Optic nerve colobomas, hypoplasia, and dysplasia (Figure 2A), foveal 
hypoplasia (Figure 2B) and atrophy, and chorioretinal colobomas have all been reported in patients with 
ARS.16,25,71,72 The importance of recognizing these other abnormalities as part of the disease spectrum is emphasized 
by phenotypic variations causing delayed diagnosis in individuals belonging to families with genetically confirmed ARS.

Glaucoma in ARS
Glaucoma secondary to the anterior segment dysgenesis is the main source of morbidity in ARS and affects more than 
50% of patients.10,35 Although it is tempting to attribute elevated intraocular pressure (IOP) to the iris strands that bridge 
the iridocorneal angle, the pathogenesis of glaucoma is more likely due to congenital malformation of the iridocorneal 
angle structures as severing of the iris bridging strands is ineffective in obtaining pressure control.10

Elevated IOP may be present at birth or not manifest until adulthood; however, most individuals with glaucoma 
secondary to ARS will be diagnosed during childhood. Further, glaucoma is typically bilateral, but may asymmetrically 

Figure 1 Anterior segment findings in ARS. Six eyes of patients with ARS display characteristic anterior segment findings including pseudopolycoria (A), corectopia (B–D), 
and posterior embryotoxon with varying degrees of iris bridging strands (arrowheads, B–E). Iris hypoplasia can appear as loss of pigment (A), gray-brown appearance 
(C and D), and featureless with loss of crypts, furrows, and rings (F). Glaucoma affects over 50% of individuals with ARS and elevated IOP in infants and young children can 
cause Haab's striae (arrows, C and F). Glaucoma drainage devices (stars, A and D) have been implanted in two of the eyes.
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affect one eye greater than the other.10 Thus, individuals with ARS need to be routinely and carefully monitored for signs 
and symptoms of glaucoma. In addition to increased IOP and optic nerve cupping, children under 5–7 years of age may 
also show the classic signs and symptoms usually associated with primary congenital glaucoma (PCG). These include 
buphthalmos with increased corneal diameter and axial length, Haab's striae (breaks in Descemet’s membrane), and 
corneal edema, which results in photophobia, blepharospasm, and epiphora.73,74 Especially in toddlers where IOP 
readings obtained in clinic may not be accurate due to poor cooperation, attention should be paid to changes in visual 
function, ocular preference, strabismus measurements, corneal clarity, cycloplegic refraction, and optic nerve appearance.

Glaucoma management typically starts with standard topical ocular anti-hypertensive medications.10 The exception 
can be neonates presenting at birth with buphthalmos and corneal edema who, unless there is a known family history of 
ARS, are often initially misdiagnosed with PCG. Careful slit-lamp examination and gonioscopy, if not obscured by 
corneal edema, can help distinguish between classic ARS and PCG. It is important to note that iridogoniodysgenesis, 
which should be classified as a variant of ARS due to its genetic association with PITX2 and FOXC1 mutations, shares 
more clinical similarity with PCG as posterior embryotoxon, iris bridging strands, corectopia and pseudopolycoria are 
often absent.75–78 Examination for craniofacial abnormalities (discussed below) as well as careful assessment of past 
medical history, review of systems, and family history often helps to differentiate between these two entities. This is 
relevant as unlike PCG, angle surgery (goniotomy and trabeculotomy) does not usually yield long-term IOP control in 
iridogoniodysgenesis or ARS.10

Glaucoma in ARS is often refractory to medications such that two-thirds of affected patients require at least one IOP- 
lowering surgery. As mentioned above, goniotomy and trabeculotomy are less effective in obtaining and maintaining IOP 
control.10 This suggests that the restriction of aqueous humor outflow does not solely reside within the trabecular 
meshwork, but also involves downstream and alternative tracts. However, this has not been confirmed histologically or 
via aqueous humor outflow imaging. As a result, the majority of patients with glaucoma secondary to ARS require angle- 
bypass surgery, typically trabeculectomy with anti-fibrotics or placement of a glaucoma drainage device (GDD) to 
achieve long-term IOP control.10 Trabeculectomy surgery in children and young adults requires adjunctive anti-fibrotics, 
usually mitomycin C, to prevent bleb scarring. While trabeculectomies avoid the use of hardware, this surgery presents 
post-operative challenges such as over- or under-filtration and bleb leaks that can be difficult to manage in infants and 
children. In addition, trabeculectomies carry a life-long risk of bleb-related infections that if not diagnosed and managed 
appropriately can result in vision loss due to endophthalmitis.79–81 Careful patient selection based on the ability to 
monitor and manipulate the bleb in clinic as well as patient and parent understanding of the risks associated with 
trabeculectomies is critical. Thus, despite the fact that trabeculectomies are generally able to achieve lower eye pressures, 
GDDs have become the mainstay of angle-bypass surgery in children.82–90

Figure 2 Posterior segment findings in ARS. Two eyes of patients with ARS show optic nerve dysplasia with significant peripapillary chorioretinal atrophy (A) and foveal 
hypoplasia (B).
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GDDs are divided into two main categories, valved and non-valved. Valved GDDs, such as the Ahmed FP7 and FP8, 
afford immediate IOP lowering effect and less risk of hypotony. While the post-operative management is more 
straightforward, early outflow of aqueous humor, which is hypothesized to carry pro-inflammatory cytokines, can lead 
to bleb encapsulation and the hypertensive phase by 4 to 8 weeks after surgery.91–94 This hypertensive phase is a poor 
prognostic indicator for overall success and survival of the Ahmed GDD. Non-valved GDDs, such as Baerveldt and 
Molteno implants, require either a dissolvable ligature suture or implantation in two steps as the resistance to aqueous 
outflow is dependent on the formation of a capsule around the GDD plate.88 The pressure lowering effect should be 
delayed for at least 3 weeks, but hypotony can still be a challenge.88,95 However, the absence of early aqueous humor 
outflow in non-valved implants is thought to limit plate encapsulation and ultimately increase success and survival time 
compared to valved GDDs.

Implantation of GDDs in ARS presents unique challenges. The iris bridging strands, especially when thick, can bleed 
and prevent ideal placement of the tube. In addition, the intraocular portion of the tube should be placed as far from the 
cornea as possible to decrease the risk of exacerbating the endothelial layer. However, this needs to be balanced with iris 
floppiness that can lead to tube obstruction. In cases of severe anterior segment dysgenesis with shallow anterior 
chambers, the lens may need to be removed such that the tube can be placed in the pars plana.96–98

Ciliary body ablation, either transscleral or endoscopic, can help control IOP, but is most effective after aqueous 
outflow has been established with a GDD.10,88,99 In severe anterior segment dysgenesis, transscleral cycloablation can 
seem like an attractive option given the challenges and potential complications of intraocular surgery in these 
complex eyes. However, the window between glaucoma and hypotony is slim if there is no adequate outflow. 
Multiple sessions of ciliary body ablation often yield minimal effect on IOP, and ultimately angle-bypass surgery 
may be required.88 However, the outflow may then be greater than aqueous production resulting in hypotony and 
phthisis.

When managing glaucoma secondary to ARS, it is important to develop a well thought out strategy since most eyes 
will require more than one IOP-lowering surgery.10 GDDs tend to be favored in children but may need to be combined 
with cycloablation for optimal pressure control.82–90 Trabeculectomy with anti-fibrotics is also highly effective but is 
typically reserved for adolescents and adults. Further, in children, there is a great need for maximizing surgical options 
for the future given the life-long need for treatment.

Visual Outcomes in ARS
Few studies have assessed visual outcomes in ARS due to the rarity of the disease. In one of the largest case series of 
ARS patients, the average best corrected visual acuity was approximately 20/60 in thirty-two affected individuals, but 
vision ranged from 20/20 to light perception.10 Visual outcomes in ARS are dependent on numerous factors. While 
glaucomatous optic neuropathy first affects the visual field and at late stages central visual acuity, other consequences 
of elevated IOP in children with ARS can impact visual outcomes.73,74 Haab's striae directly impair vision if present in 
the central visual axis but also indirectly affect vision by inducing high amounts of irregular astigmatism. Further, 
increased axial length associated with buphthalmos can lead to significant myopia.100,101 However, in the previously 
referenced study, there was no significant difference in average best corrected visual acuity between eyes with ARS 
that did or did not have glaucoma.10 Although more rare, involvement of other ocular structures including cataracts, 
Peters Anomaly, sclerocornea, optic nerve and retinal colobomas worsens visual prognosis.10,99 Since ARS is 
a congenital disease and glaucoma is typically diagnosed during childhood, it is also critical to address refractive 
error, amblyopia, and strabismus.101,102 Both high myopia and astigmatism can cause bilateral amblyopia if the 
refractive error is left uncorrected. Furthermore, asymmetry of refraction (anisometropia) or ocular findings affecting 
the cornea, lens, retinal or optic nerve can lead to unilateral amblyopia. This can be further exacerbated by strabismus, 
which due to asymmetry of vision and lack of fusion, is common.100 As a result, correction of refractive error with 
glasses or contact lenses, part-time occlusion and strabismus surgery may be needed to optimize visual outcomes. 
Thus, coordinated management between glaucoma specialists and pediatric ophthalmology is critical in patients 
with ARS.
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Systemic Manifestations in ARS
While the ocular findings in ARS draw the most attention, there are systemic manifestations that are important to 
recognize as they may help solidify the clinical diagnosis and potentially require other subspecialty care (Supplemental 
Table 1).15,17–19,21,24,25,27,31,35,62 Due to the common origin of craniofacial and ocular neural crest cells, there is 
a characteristic craniofacial appearance associated with ARS which consists of maxillary hypoplasia with mid-face 
flattening, mandibular hypoplasia, hypertelorism, micrognathia, cleft palate, and telecanthus.3,4,17–19,25,30,31,33,34,62,103 

Dental anomalies due to decreased odontoblast and cementoblasts are very common in ARS and are classically 
microdontia (small teeth) and oligodontia (too few teeth).2,15,19,21,24,25,27,31,35,62,68,104 Further, tooth enamel is often 
abnormal leading to a high rate of dental caries.62,105 As a result of these teeth abnormalities, children with ARS need 
evaluation and close monitoring by pediatric dentistry.106 Although less common than the craniofacial and dental 
abnormalities, congenital heart defects such as aortic and mitral valve stenosis and hypoplasia of the cardiovascular 
outflow tracts have been found in almost one-quarter of ARS patients.15,19,35,62,67,68,107–109 Additional systemic findings, 
including redundant periumbilical skin, hypospadias, anal stenosis, hearing loss, skeletal anomalies, and growth retarda-
tion have all been reported with ARS.10,17–19,25,27,31,33–35,62,68,110–113 Further, neurologic involvement including white 
matter hyperintensities, hydrocephalus, Dandy Walker malformations, and arachnoid cysts with developmental delays 
and learning disabilities have all been described in individuals with ARS.17,19,25,31,35,62,106,114 More recently, FOXC1 and 
PITX2 mutations have been associated with small cerebral vessel abnormalities that increase stroke risk such that all 
individuals diagnosed with ARS should undergo brain imaging.42 With the rarity of ARS, there is often under-recognition 
of the constellation of systemic and ocular manifestations. Greater knowledge of this disease amongst specialists 
including ophthalmologists, dentists, and cardiologists is needed.

Conclusions
As ARS is often diagnosed by ophthalmologists, it is important to recognize both the eye and systemic manifestations 
and coordinate appropriate care with other specialties.62 Glaucoma is the main source of morbidity and often requires 
angle-bypass surgery to obtain IOP control.10 However, in children affected with ARS, it is critical to also simultaneously 
address refractive error, amblyopia, and strabismus to optimize visual outcomes.101,102 Since ARS is inherited in an 
autosomal dominant pattern, biological parents of affected children should be examined as there can be phenotypic 
variation and eye findings may be subtle. Genetic testing can help confirm the diagnosis, but lack of identification of 
a gene mutation does not rule out this clinical diagnosis. The discovery of additional genes associated with ARS will 
improve our understanding of molecular pathways involved in craniofacial and ocular neural crest cell development.
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