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Purpose: Klebsiella pneumoniae, a gram-negative bacterium, poses a severe hazard to public health, with many bacterial hosts having 
developed resistance to most antibiotics in clinical use. The goal of this study was to look into the development of resistance to both 
ceftazidime–avibactam and carbapenems, including imipenem and meropenem, in a K. pneumonia strain expressing a novel 
K. pneumoniae carbapenemase-2 (KPC-2) variant, referred to as KPC-49.
Methods: After 1 day of incubation of K1 on agar containing ceftazidime–avibactam (MIC = 16/4 mg/L), a second KPC-producing 
K. pneumoniae strain (K2) was recovered. Antimicrobial susceptibility assays, cloning assays, and whole genome sequencing were 
performed to analyse and evaluate antibiotic resistance phenotypes and genotypes.
Results: K. pneumoniae strain (K1), that produced KPC-2, was susceptible to ceftazidime–avibactam but resistant to carbapenems. The K2 
isolate harboured a novel blaKPC-49 variant, which differs from blaKPC-2 by a single nucleotide (C487A), and results in an arginine-serine 
substitution at amino acid position 163 (R163S). The mutant K2 strain was resistant to both ceftazidime–avibactam and carbapenems. We 
demonstrated the ability of KPC-49 to hydrolyse carbapenems, which may be attributed to high KPC-49 expression or presence of an efflux 
pump and/or absence of membrane pore proteins in K2. Furthermore, blaKPC-like was carried on an IncFII (pHN7A8)/IncR-type plasmid 
within a TnAs1-orf-orf-orf-orf-orf-orf-ISKpn6-blaKPC-ISKpn27 structure. The blaKPC-like gene was flanked by various insertion sequences 
and transposon elements, including the Tn3 family transposon, such as TnAs1, TnAs3, IS26, and IS481-ISKpn27.
Conclusion: New KPC variants are emerging owing to sustained exposure to antimicrobials and modifications in their amino acid 
sequences. We demonstrated the drug resistance mechanisms of the new mutant strains through experimental whole genome 
sequencing combined with bioinformatics analysis. Enhanced understanding of laboratory and clinical features of infections due to 
K. pneumoniae of the new KPC subtype is key to early and accurate anti-infective therapy.
Keywords: KPC, antibiotic resistance, whole genome sequencing, ceftazidime–avibactam, susceptibility testing

Introduction
The worldwide dissemination of carbapenem-resistant Enterobacteriaceae (CRE), particularly carbapenem-resistant 
K. pneumoniae (CRKP), poses a significant risk to public health. CRKP can cause various infections, such as urinary 
tract infections, bloodstream infections, and pneumonia, leading to high morbidity and mortality.1 Prevention and control 
of K. pneumoniae infection are becoming more challenging due to the development of antibiotic resistance. In addition to 
their resistance against most β-lactam antibiotics, including carbapenems, additional non-β-lactam antibiotic resistance 
genes, such as those for aminoglycosides and quinolones, are also present in the CRKP.2 The synthesis of carbapene-
mases encoded by the blaKPC gene is the leading cause of CRKP.3 In particular, K. pneumoniae carbapenemase 2 (KPC- 
2) and K. pneumoniae carbapenemase 3 (KPC-3) have been frequently associated with the development of CRKP. 
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Therefore, the development of newer, more effective antibiotics that can overcome this resistance is of high clinical 
importance in managing CRKP infections.

Inhibiting class A, class C, and some class D β-lactamases is the function of the novel enzyme inhibitor avibactam. 
Following the demonstration that ceftazidime–avibactam therapy significantly increased antibiotic activity against CRE, 
the Food and Drug Administration (FDA) and European Medicines Agency (EMA) authorized it for clinical use in 
2015.4,5 The combined use of avibactam and ceftazidime (ceftazidime–avibactam) has provided an effective treatment 
for K. pneumoniae infections. However, new variants resistant to ceftazidime–avibactam are being found in clinical 
settings, with their emergence being attributed to mutations in the blaKPC gene in CRE.6–9 Mutations in KPC, such as 
mutations in Asp179Tyr, Val240Gly, Ala240Val, Ala177Glu, Thr243Met, Pro169Leu, Asn179Asp, Tyr179Asp, 
Gln169Leu, and Gly130Ser, are the most important mechanism leading to ceftazidime–avibactam resistance, a widely 
reported phenomenon.7,10–13 In addition, combination of several resistance mechanisms, such as membrane pore protein 
mutations, increases KPC expression. Moreover, an increased efflux pump activity can also produce ceftazidime– 
avibactam resistance.14 These findings motivated us to conduct selection experiments using ceftazidime–avibactam to 
discover further mutations that may be accountable for the increasing rates of ceftazidime–avibactam-resistant variants.

Materials and Methods
Bacterial Isolates and Single-Step Mutant Selection
The parental strain of K. pneumoniae (K1) harboured blaKPC-2. The bacterial strains were identified by matrix-assisted 
laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). The selection procedure was performed 
as previously described.15 A 109 CFU/mL bacterial sample from an overnight broth culture was distributed on Mueller– 
Hinton agar (MHA) containing ceftazidime–avibactam (fixed at 4 mg/L). The concentrations of ceftazidime–avibactam 
were 2 to 16 times greater than the minimum inhibitory concentration (MIC) as demonstrated previously by the CLSI 
broth microdilution method. After continuous observation for several days, the strains growing on all plates were 
recorded, saved, and passed for 10 consecutive times. Three consecutive ceftazidime–avibactam concentrations were 
measured on the obtained strains. Mutants were found to have MIC values four times greater than those of the original 
strain.

Antimicrobial Susceptibility Tests and Identification of Carbapenem Resistance Genes
The MICs of meropenem, imipenem, ceftazidime–avibactam, ceftazidime, cefpodoxime, amikacin, polymyxin B, 
tigecycline, sulfamethoxazole, ciprofloxacin, and aztreonam were determined using the broth microdilution method. 
Antimicrobial breakpoints were determined according to the standards recommended by the European Committee for 
Antimicrobial Susceptibility Testing (EUCAST) for polymyxin B,16 the FDA for tigecycline,17 and the American 
Clinical and Laboratory Standards Institute (CLSI) for other antimicrobial agents.18 Carbapenemase was initially 
identified via phenotyping, immunochromatography, and the carbapenemase inhibition enhancement assay using phe-
nylboronic acid (PBA) and EDTA (PBA-EDTA assay).19 PCR and whole genome sequencing (WGS) were performed to 
confirm the isolation of carbapenemase. Escherichia coli strain ATCC 25922 and K. pneumoniae strain ATCC 700603 
served as controls for MIC testing.

Cloning Experiments
The blakpc gene was amplified using the Q5® High-Fidelity 2X Master Mix. KPC-F-EcoRI (5′-CCATGAT 
TACGAATTGTGCGCGGAACCCCTATTTG-3′) and KPC-R-BamH (5′-CGACTCTAGAGGATCCAATAGAT 
GATTTTCAGCCTTAC-3′) were used as primer pairs. The cycling parameters were: 98 °C for 30s, 98 °C for 30s, 
63 °C for 30s, and 72 °C for 60s for 30 cycles. The plasmid pHSG398 cloning site was exposed using restriction 
endonuclease and recombinantly reacted with purified PCR products using 2X Hieff Clone Enzyme Premix; then, the 
recombinant plasmid was transferred into the recipient E. coli DH5α strain via chemical transformation. The potential 
transformants were selected using MHA plates containing 50 mg/L of chloramphenicol (for pHSG398). PCR and sanger 
sequencing were then used to confirm the results.
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Whole Genome Sequencing and Data Analysis
The Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA) was used to extract genomic DNA. The whole 
genome sequence was submitted to next-generation sequencing (NGS) with the Illumina NovaSeq 6000 system (Oxford 
Genomics Centre, Oxford, UK) with 2×150 base pair (bp) paired-end reads and long-read high-throughput sequencing (LRS) 
on a PacBio Sequel II system.20 The long-reads generated by the PacBio Sequel II system were assembled using the Canu 
genome assembler21 and combined with the short-reads from the Illumina NovaSeq 6000 sequencing using Pilon22 to obtain 
the whole genome and complete plasmid sequences. The coding sequence (CDS) of the assembled sequences was predicted 
using the microbial-gene finding system Glimmer (http://ccb.jhu.edu/software/glimmer/index.shtml).23 Multi-locus sequence 
typing (MLST) was conducted using the MLST 2.0 software (https://cge.food.dtu.dk/services/MLST/).24 Plasmid replicon 
types were determined directly using the PlasmidFinder tool.25 Antimicrobial resistance genes were identified using 
ResFinder 4.0 (https://cge.cbs.dtu.dk/services/ResFinder-4.0/)26 and the Comprehensive Antibiotic Resistance Database 
1.1.3 (https://card.mcmaster.ca/).27 Comparative genomic circle maps were constructed using the Basic Local Alignment 
Search Tool BLAST Ring Image Generator (BRIG) (http://sourceforge.net/projects/brig).28 The insertion sequences (IS) and 
genomic islands (GI) on the plasmids were predicted using ISfinder (www-is.biotoul.fr)29 and IslandViewer 4 (https://www. 
pathogenomics.sfu.ca/islandviewer/upload/),30 respectively. Covariance analysis of the plasmids was performed using Easyfig 
(http://easyfig.sourceforge.net/).31 The autonomous transmissibility of plasmids was analysed using oriTfinder (https://tool- 
mml.sjtu.edu.cn/oriTfinder/instruction.html).32

Results
Antimicrobial Susceptibility in Parental and Mutant Strains
The parental strain (K1) was of the sequence type 859 (ST859) and carried the blaKPC-2 gene. It exhibited resistance to 
aminoglycosides, quinolones, cephalosporins, and carbapenems. The MIC values of imipenem and meropenem were 
128 mg/L and above 128 mg/L, respectively. K1 was still susceptible to tigecycline, polymyxin B, and ceftazidime– 
avibactam. The ceftazidime–avibactam-resistant mutant (K2) was isolated after incubating K1 on MHA plates containing 
16/4 mg/L ceftazidime–avibactam overnight. Although K2 exhibited an eight-fold reduction in the MIC of IMP and 
above a two-fold reduction in the MIC of MEM compared with that of K1, it was still resistant to both antibiotics. 
Importantly, K2 was also resistant to ceftazidime–avibactam with a MIC value of 64 mg/L (Table 1).

Table 1 Antimicrobial Susceptibility Results by Micro-Broth Dilution for KPC-Producing K. pneumoniae 
Isolates, KPC-Producing E. coli Transformants (pKPC-2-TM, pKPC-49-TM) and the E. coli DH5α-pHSG398

Antimicrobials MIC (mg/L)

K1 K2 E. coli E. coli E. coli
pKPC-2-TM pKPC-49-TM DH5α-pHSG398

Imipenem 128 16 16 0.125 0.125

Meropenem >128 64 4 0.125 ≤0.06
Ceftazidime >32 >32 16 64 0.5

Ceftazidime–avibactam 8 64 0.125 32 0.125
Cefpodoxime >128 128 4 2 0.125

Amikacin >128 >128 0.5 0.5 1

Polymyxin B 0.25 0.25 0.5 0.5 0.5
Tigecycline 0.5 0.5 0.125 0.125 0.125

Sulfamethoxazole ≤0.25 ≤0.25 ≤0.25 ≤0.25 0.25

Ciprofloxacin >8 >8 ≤0.06 ≤0.06 ≤0.06
Aztreonam >128 >128 128 32 0.125

Abbreviations: MIC, minimum inhibitory concentration; K1, KPC-2-producing K. pneumoniae strain; K2, second KPC-producing 
K. pneumoniae strain.
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Genes Associated with Antibiotic Resistance and Plasmid Traits in Parental and Mutant 
Strains
In both K1 and K2, blaKPC-like was carried on the IncFII(pHN7A8)/IncR plasmid (plasmid B), which had a gene size of 109,251 
bp with a guanine-cytosine (GC) content of 54.49%. K1 and K2 contained the same antibiotic resistance genes conferring 
resistance to β-lactams, including blaKPC-like, blaTEM-1B, blaSHV-12, as well as the rmtB gene conferring resistance to aminoglyco-
sides. Antibiotic resistance-associated genes, including efflux pump-associated genes acrAB-tolC, kpnEF, and kpnGH, as well as 
marA and ramA, which positively regulate the AcrAB-TolC efflux pump, were found in both K1 and K2. Genes related to 
membrane permeability, including ompK35 and ompK36, were not detected. Using K1 as the reference genome, investigation of 
single nucleotide polymorphisms (SNPs) with NGS revealed one mutation of blaKPC-like on IncFII(pHN7A8)/IncR in K2. The 
unique blaKPC-49 mutation differed from the parental strain expressing blaKPC-2 by a single nucleotide alteration (Nucleotide 487, 
C-A), resulting in the substitution of arginine for serine at amino acid position 163 (R163S).

The Nucleotide BLAST (BLASTn) search found that plasmid B had the highest alignment score in the whole 
sequence with the previously reported plasmid pB (CP069172.1)33 with query coverage and identity of 96% and 99.98%, 
respectively, and with pZHKPC1 (OM928502.1)34 with query coverage and identity of 95% and 100% respectively.

As shown in Figure 1, the findings of the BLASTn search suggested that plasmid B, pKP20194e-p2 (CP054728.1) 
and pKP58-2 (CP041375.1) had the highest alignment score at 44,910–54,954 bp, where blaTEM-1B, rmtB, and 
surrounding mobile genetic elements (MGEs) were expressed. In contrast, plasmid B, p12085-KPC (MN842292.1) 
and pKPC-L388 (CP029225.1) showed the highest alignment scores in the segment of 74531–10054 bp, where blaKPC- 

like, blaSHV-12 and surrounding MGEs were encoded. The plasmid PKP048 (FJ628167.2) was obtained from Nucleotide 
database screening for the blaKPC-2-harbouring K. pneumoniae in 2010.35 The comparison revealed that plasmid B had 
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Notes:This map was created with the BLAST Ring Image Generator . Copyright Nabil Alikhan 2010-2011. This program is free software: you can redistribute it and/or modify it under 
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high similarity to PKP048 in the region spanning between the blaSHV-12 and holE genes, and blaKPC-2 was in this region. 
According to the alignment results on a BLAST search, all plasmids under comparison were from K. pneumoniae, 
excluding p16055-KPC, which was derived from S. marcescens.

As shown in Figure 2, plasmid B contained two genomic islands (GIs) between 84,004 and 99,319 bp and the critical 
carbapenem-resistance gene, blaKPC-2, was carried on the first of the two GIs (GI 1). Upstream of blaKPC-2 were TnAs1, 
ISKpn6, a gene encoding a replication protein, klcA, and three genes encoding hypothetical proteins, whilst the ISKpn27 
insertion sequence was located downstream. The structure was “TnAs1-orf-orf-orf-orf-orf-ISKpn6-blaKPC-ISKpn27” from 
84,004 to 90,918 bp. Furthermore, GI 2 was 5749 bp in length, spanning from 9,3570 to 99,319 bp, with TnAs3 and IS5075 
flanking the two ends. It also included seven gene clusters encoding mercury resistance in the sequence of merE-merD-merA- 
merC-merP-merT-merR. The GI 1 region was very similar to the IncFII/IncR plasmids of K. pneumoniae, including 
pZHKPC1 (OM928502.1), pHS2953-KPC (MT875328.1), p12085-KPC (MN842292.1) and pKP0294e-p2 (CP054728.1). 
It was also present in the same plasmid type, p16055-KPC (MN823985.1), from S. marcescens. Similar structures were also 
found in the IncN plasmids, pL901 (CP045256.1) and pT211 (CP017083.1), isolated from Proteus mirabilis.

The oriTfinder tool was used to determine whether horizontal transfer elements, including the origin of transfer site 
(oriT), relaxase gene, type IV coupling protein (T4CP), and type IV secretion system (T4ss) were present in plasmid 
B. Importantly, plasmid B expressed part of the T4ss but not oriT, relaxase, or T4CP. Given that plasmid B did not 
express all four MGEs, it was concluded that plasmid B is a non-mobile plasmid.

Results of Cloning Experiments
We successfully obtained pKPC-2 and pKPC-49 recombinant plasmids through cloning experiments and transferred them 
into E. coli DH5α strains to produce the transformants, pKPC-2-TM and pKPC-49-TM. The comparative results 

Figure 2 Detailed structure and comparison of the blaKPC-2 gene clusters within the strains. Green arrow indicates transposase genes and red arrows show resistance genes. 
Arrows indicate the direction of translation of the coding genes. The larger picture depicts a genome-wide comparison of plasmid B with the near-source plasmids, and the 
smaller picture shows two conserved genomic islands (Islands 1 and 2).
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indicated that the MIC values of pKPC-49-TM against carbapenems (imipenem and meropenem) were reduced, whereas 
the MIC value of ceftazidime–avibactam was significantly increased. The variations in the susceptibility profiles of the 
donors and transformants are listed in Table 1.

Discussion
In the present study, we have identified a novel KPC-2 variant, sequence matched as KPC-49 by in-vitro single-step 
mutant selection. This variant was formerly identified as the KPC-3 variant.36 The newly discovered variant in ST859 
conferred resistance to both ceftazidime–avibactam and several carbapenems, distinguishing it from the KPC-49 variant 
in E. coli mentioned above. The KPC-49 variant in E. coli regained susceptibility to imipenem and meropenem. 
However, strain K2 was still resistant to imipenem and meropenem, and the pKPC-49-TM was susceptible to IMP 
and MEM in our study. According to the cloning experiment results, the MICs of imipenem and meropenem in the K1 
and K2 strains were higher than those of the transformants (pKPC-2-TM and pKPC-49-TM). The reason for this 
phenomenon might be the existence of other carbapenem resistance mechanisms, including high expression of KPC, 
over-production of efflux pumps, and loss of outer membrane porins (OMPs), which can render bacteria more resistant to 
carbapenems. The enzyme inhibition enhancement assay and bioinformatics analysis supported these possibilities. The 
enzyme inhibition enhancement test of strain K2 suggested that the diameter of the imipenem inhibition circle was 
expanded by ≥5 mm after adding phenylboronic acid to strain K2 compared with that of the single drug. The KPC-49 
variant likely allows bacteria to retain the hydrolytic ability of carbapenemase, and the high expression of KPC-49 in 
strain K2 is responsible for its resistance to carbapenems.

We also found that the K1 and K2 strains did not encode OmpK35 and OmpK36, two major OMPs of K. pneumoniae. 
The absence or deficiency of OMPs, along with the production of extended-spectrum beta-lactamases and/or AmpC, 
contribute significantly to carbapenem resistance in K. pneumoniae. Notably, this is also the mechanism of carbapenem 
resistance in K. pneumoniae that do not produce carbapenemases.37

In addition, bioinformatic investigation of antimicrobial resistance genes indicated that K1 and K2 strains expressed 
efflux pumps, including AcrAB-TolC from the resistance-nodulation-division family, KpnGH from the major facilitator 
superfamily, and KpnEF from the small multidrug resistance family. The genes marA and ramA positively control the 
efflux pump of AcrAB-TolC.38,39 Eliminating the AcrAB-TolC pump of K. pneumoniae could impact resistance, fitness, 
and virulence.40 High resistance to quinolones and decreased susceptibility to carbapenems have been linked to the efflux 
pump AcrAB-TolC in K. pneumoniae.41 Srinivasan et al reported that the insertion of an inactivated kpnGH gene 
fragment increased the susceptibility of K. pneumoniae to antibiotics such as ceftazidime, ciprofloxacin, and ertapenem.42 

They used specific efflux genes kpnE and kpnF to encode the efflux pump KpnEF, which recognises a variety of 
substrates such as ceftriaxone, erythromycin, and tetracycline in K. pneumoniae strain NTUH-K2044. When the kpnEF 
gene was knocked out, the sensitivity of the KpnEF pump to the previously mentioned antibiotics was reduced.43 marA 
and ramA both promote expression of AcrAB, thereby enhancing the ability of K. pneumoniae to eliminate antibiotics via 
the AcrAB-TolC efflux pump.38,39

Our analysis revealed that the KPC-49 variant was carried on an IncFII/IncR type blaKPC-bearing plasmid. IncFII/ 
IncR type plasmids are frequently isolated from K. pneumoniae, including the pZHKPC1,34 pHS2953-KPC, and p12085- 
KPC plasmids, as well as from other gram-negative bacteria, including the p16055-KPC plasmid from S. marcescens.

Plasmid B, on which blaKPC was expressed, was analysed using oriTfinder to determine its capacity for autonomous 
propagation. According to relevant research, plasmids can be classified into three categories32: 1) Conjugative plasmids 
containing relaxase, T4CP, and T4SS; 2) mobilisable plasmids containing only relaxase; and 3) non-mobilisable plasmids 
which lack relaxase. An analysis of the autonomous transmissibility of plasmid B using oriTfinder found that plasmid 
B did not have oriT, relaxase, and T4CP. Plasmid B can be categorised as a non-mobile plasmid since it lacks the 
necessary components for a mobile plasmid. A plasmid lacking a splice structure can transfer transposons, integrins, and 
its related resistance genes to another recipient bacterium with the help of another plasmid or by phage transduction or 
transformation.

In addition to plasmids, other MGEs, including insertion sequences, transposons, integrins, GIs, and integrated splice 
elements, play a critical role in the acquisition and dissemination of drug-resistant genes.44 GI 1 of plasmid B contained 
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the carbapenem resistance gene, blaKPC-2, in the TnAs1-orf-orf-orf-orf-orf-ISKpn6-blaKPC-2-ISKpn27 unit, which 
showed high similarity to the IncFII/IncR-type replicon of K. pneumoniae and was also present in the IncFII/IncR- 
type replicons of S. marcescens and IncN-type replicons of P. mirabilis. This suggests that GI 1 may not only be 
transferred horizontally between different bacterial species via plasmids but also in a transposable manner, binding to 
other types of replicons to achieve transfer of the drug resistance gene blaKPC. In addition to blaKPC, the plasmid encoded 
additional resistance genes, including blaTEM-1B, rmtB, and blaSHV-12. These resistance genes were surrounded by a range 
of insertion sequences and transposon elements, including the Tn3-family transposon, including TnAs1, TnAs3, IS26, 
IS5-IS903B, S91-IS1294, IS1182-ISKpn6, IS481-ISKpn27, IS110-IS5075, and IS1-ISKpn14, and they may also be 
transmitted through these MGEs.

In the present study, we analysed the development of resistance to ceftazidime–avibactam and carbapenems, 
including imipenem and meropenem, in K. pneumoniae expressing a novel KPC-2 variant (KPC-49) through bioinfor-
matics analysis and cloning assays. Of concern is that strain K2 remains resistant to imipenem and meropenem. It was 
found that factors associated with this situation may involve high expression of KPC49, efflux pumps, and absence of 
associated OMPs, with one or more contributing to the outcome. We can further clarify this by relevant experiments in 
future studies.

Conclusion
The over-prescription and inappropriate use of antibiotics in clinical care has led to the emergence of multiple drug- 
resistant strains that are difficult to eradicate and slow progress in the treatment of related diseases. Resistance 
genes can be transmitted through multiple mobile components. These have contributed to the global antibiotic 
resistance crisis. Technological innovations, such as WGS and NGS combined with bioinformatics analysis, provide 
valuable analytical tools for studying antimicrobial resistance. By combining traditional detection techniques with 
modern technologies, we have gained a more comprehensive and specific understanding of the drug-resistant 
phenotype, resistance mechanism, and transmission risk of the new KPC subtype K. pneumoniae. This will play 
a key role in early and precise clinical anti-infective treatment. It will also help to further combat microbial drug 
resistance.
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