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Abstract: The natural history of severe hemoglobinopathies like sickle cell disease (SCD) is 

rather variable, depending on the circumstances, but the main influence on such variability is 

the level of fetal hemoglobin (HbF) in the patient’s red cells. It is well known that a significant 

HbF level is associated with a milder course of disease and fewer complications. Therefore, 

attempts have been made to reactivate using various means the HbF production, which is nor-

mally switched off perinatally. A pharmacological approach has been attempted since the 1980s, 

ranging from drugs like 5-azacytidine and its derivative, decitabine, to a series of compounds 

like hydroxyurea and a number of histone deacetylase inhibitors like butyrate, which seem to 

act as epigenetic modifiers. Many other disparate agents have been tried with mixed results, but 

hydroxyurea remains the most effective compound so far available. Combinations of different 

compounds have also been tried with some success. Established treatments like bone marrow 

or cord blood transplantation are so far the only real cure for a limited number of patients with 

severe hemoglobinopathies. Improved chemotherapy regimens of milder toxicity than those 

employed in the past have made it possible recently to obtain a stable, mixed donor-recipient 

chimerism, with reversal of the SCD phenotype. However, great effort is directed to cell 

engineering, searching for an effective gene vector by which a desired gene can be transferred 

into new classes of vectors for autologous hemopoietic stem cells. Recent studies are also aiming 

at targeted insertion of the therapeutic gene into hemopoietic cells, which can also be “induced” 

human stem cells, obtained from somatic dedifferentiated cells. Attention in this area must be 

paid to the possibility of undesired effects, like the emergence of potentially oncogenic cell 

populations. Finally, an update is presented on improved HbF determination methods, because 

common international standards are becoming mandatory.

Keywords: sickle cell disease, hemoglobin F, determinants, inducers, cell engineering, induced 

pluripotent stem cells

Introduction
In the wide spectrum of congenital hemoglobin disorders, two entities have always 

attracted attention because of their severity and extensive geographic distribution, 

ie, beta thalassemia major and sickle cell disease (SCD). In the present review, attention 

is focused on the latter disease, characterized by a qualitative defect in beta-globin 

production, due to replacement of a single amino acid (valine for glutamic acid) in the 

beta-globin chain and formation of an anomalous hemoglobin, called hemoglobin S. This 

induces severe deformity of red cells upon deoxygenation, hampering microcirculation, 

and leading to vascular occlusion and critical organ damage.1

However, it has been noted that the natural history of this disease shows considerable 

heterogeneity in signs and symptoms, due to a variety of concomitant situations. 
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Actually, the main factor in the variable severity of SCD is 

the level of fetal hemoglobin (HbF) produced by patients. 

There are indeed many disparate conditions, in which a higher 

level of HbF than expected can be found. They range from 

hereditary disorders to acquired ones, as well as from blood 

diseases to nonhematological situations (Table 1). It is well 

known that populations showing a genetically determined 

presence of HbF have a milder form of SCD, including 

a reduced incidence of severe clinical complications.2 It is 

therefore understandable that many efforts have been directed 

to restore the production of HbF in adults.3

As for the background of this process, recent studies 

have produced a good amount of information, particularly on 

gamma-globin gene control. In the present paper, we therefore 

propose a brief initial survey of these genetic factors, and then 

focus on new ways of drug treatment for reactivation of HbF 

level, as well as attempts at correction of the genetic defect by 

cell engineering. A brief update on recent methods for HbF 

assay is also included.

Genetics of HbF
It is well known that only a tiny fraction of HbF is still present 

in the majority of adults, as a result of the switch to HbA in 

early life. However, the switch may be impaired by a number 

of mutations in the beta-globin cluster,4 leading to uniform 

increase of HbF (pancellular hereditary persistence of fetal 

hemoglobin [HPFH]), a condition allowing a normal way of 

life, or to a nonuniform distribution of HbF, based on the coex-

istence of two populations of red cells, one with a high content 

of HbF (so-called F cells) and another with a negligible amount 

of the same. In this case, the condition is called heterocellular 

HPFH, which is regarded as a multifactorial quantitative trait, 

quite distinct from the classical form of pancellular hereditary 

persistence of fetal hemoglobin.5

A number of interesting studies have proposed different 

mechanisms which may be responsible for such persistence 

of HbF in adults, and can be either mutations in critical 

genic regions involved in the activation of globin genes or 

deletions of the globin gene cluster. Examples of the former 

event are single base substitutions in the promoter region 

of the gamma-globin genes, found in adults with high HbF 

production,6 or T to C substitution in the gamma-globin 

gene, leading to disruption of the assembly of a repressive 

chromatin structure, which normally silences the expression 

of the gamma-globin gene in adult erythrocytes.7 In the latter 

case, (ie, deletional persistence of HbF), Gazouli et  al,8 

attempting to explain the production of the HbF phenotype 

in adult red cells, carried out an investigation in transgenic 

mice lacking two elements of the Aγ-to-δ gene region, sug-

gesting that a deletion of silencer elements in that gene region 

may account for persistent expression of HbF in the adult 

stage. Previous experiments by the same authors had shown 

that a juxtaposition of downstream enhancers may also con-

tribute to that effect, but different models are not mutually 

exclusive. According to another study, a downregulation 

of the transcriptional repressor, ZHX2, or some chromatin 

remodelling factors may also be involved in deletional 

hereditary persistence of fetal hemoglobin.9 Anyway, there is 

an obvious benefit from the analysis of multiple mechanisms 

of HbF persistence in adults, namely a better understanding 

of the molecular basis for the perinatal hemoglobin switch.

As far as possible genetic determinants of HbF production 

are concerned, recent investigations have produced interesting 

data (see Table 2). An early hypothesis suggested that variability 

Table 1 Conditions affecting hemoglobin F levels

Hereditary diseases
  • �Thalassemia syndromes (homozygous beta thalassemia,  

heterozygous beta thalassemia, delta beta thalassemia,  
homozygous and heterozygous)

  • �Other hemoglobinopathies (hereditary persistence of hemoglobin F,  
homozygous and heterozygous, sickle cell anemia, hemoglobin C,  
hemoglobin E, Hemoglobin Lepore syndrome, some  
unstable hemoglobin)

  • Hereditary spherocytosis
  • �Hemoglobin variants with retention time similar to that  

of hemoglobin F

Acquired conditions
Non neoplastic blood disorders
  • Pernicious anemia
  • Sideroblastic anemia
  • Pure red cell aplasia
  • Refractory normoblastic anemia
  • Aplastic anemia
  • Paroxysmal nocturnal hemoglobinuria
  • Recovery from bone marrow transplant
Neoplastic blood disorders
  • Acute leukemias
  • Erythroleukemia
  • Juvenile chronic myeloid leukemia
  • Marrow neoplastic metastases
  • Hepatoma

Treatment-related situations
  • Antileukemic chemotherapy
  • �Therapy with hydroxyurea, aza-deoxycytidine,  

butyrates, and erythropoietin

Miscellaneous
  • Pregnancy
  • Hyperthyroidism
  • Chronic renal disease
  • Trisomy 13 (Palau syndrome)
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in HbF was mainly due to independent genetic factors, an effect 

particularly evident in patients with SCD.10 A seminal study 

showed that a variation of genetic determinants on chromosome 

11p16 was involved in the expression of HbF, and precisely at 

position 158.11 However, the effect of such variation is modest 

in normal people, and its presence is not always associated 

with high HbF, but variants at this locus have a considerable 

frequency in certain populations like Asian Indians, in whom it 

was first studied and found to be associated with the presence 

of moderate levels of HbF in normal individuals.12

A second determinant was found in a large Indian family 

with beta thalassemia and hereditary persistence of fetal 

hemoglobin, situated in a region on chromosome 6q23-q24, 

between the HBS1L and MYB genes.13 This locus was there-

fore termed HMIP (HBS1L-MYB intergenic polymorphism), 

and is an important component (about 19%) of the F cell trait 

in the general population.

A strong association with HbF level was eventually 

observed with a third locus, situated on chromosome 2p15, 

namely the BCL11A, leading to the hypothesis that a prod-

uct of this locus, a multizinc finger transcription factor, may 

encode a stage-specific regulator of HbF expression.14 On the 

clinical side, extensive research carried out among patients in 

Sardinia and other groups showed that a variant of BCL11A 

was strongly associated with individuals having high HbF 

levels, as well as with patients having mild forms of thalas-

semia and SCD.15 A very recent study, based on genome-wide 

association, has also identified a regulatory region in the 

olfactory receptor gene cluster (on chromosome 11), which 

may play a role in gamma-globin gene expression.16

Finally, it should be stressed that, although recent progress 

in the genetics of HbF has not yet promoted therapeutic 

applications, every contribution to the understanding of 

genetic mechanisms presiding over HbF synthesis and to the 

HbF-to-HbA switch is a necessary premise for the formulation 

of treatment strategies for severe hemoglobin disorders.

Inducers of fetal hemoglobin
Agents capable of inducing production of fetal hemoglobin 

have been known for many years, and have also been used 

in clinical trials (Table 3). 

1)  It was in the early 1980s that 5-azacytidine was shown 

to be able to reinduce production of HbF in adults, as well as 

in experimental animals. A few patients with beta thalassemia 

and SCD treated with this drug showed a modest correction 

of globin chain imbalance and had lower transfusion needs.17 

However, the possibility that such treatment could have an 

oncogenic effect discouraged the undertaking of these tri-

als. It was only years later that a derivative of azacytidine, 

namely deoxy-azacytidine, or decitabine, was found to be 

effective in reactivating production of fetal hemoglobin, 

and was therefore started in regular trials on SCD patients.18 

As for possible toxic effects from this drug, only revers-

ible neutropenia was observed, while tests on experimental 

animals not only showed absence of tumorigenic action, 

but even suggested a decrease of tumor formation in mice 

predisposed to cancer.19

Parenteral administration of decitabine can produce a 

notable increase of HbF levels as well as stimulate erythroid 

differentiation in SCD patients.20 Oral preparations have also 

been tested in animals, with the aim of making them more 

acceptable to patients.21 More investigations are needed to 

study possible long-term adverse effects of this compound.

Great interest was devoted to the study of the mecha-

nism of action of different compounds in the induction 

of HbF. Early suggestions of a relevant effect on DNA 

hypomethylation at the promoters of the gamma-globin gene3 

were followed by the realization that different mechanisms 

may be involved. A unifying theory has been proposed, based 

on the assumption that a variety of cellular stresses and 

stimuli can promote coordinated stress responses, including 

gamma-globin gene activation. Different signaling pathways, 

like cAMP, p38MAPK, and others may be involved.22

2)  Hydroxyurea (hydroxycarbamide [HC]) has been 

known for a long time as a well tolerated oral treatment for 

some myeloproliferative disorders. Its action on HbF produc-

tion, first observed in baboons, was then tested and demon-

strated in clinical trials on SCD patients. Predictably, bone 

marrow suppression was observed after long-term treatment, 

but this effect was reversible.3 The mechanism of action of 

this compound seems to be mediated through the induction 

of a GTP-binding protein SAR, which modulates expres-

Table 2 Genetic determinants of hemoglobin F production

Locus Chromosome
  • Xmn1-HBG2 11

  • HMIP (HBS1L-MYB intergenic polymorphism) 6

  • BCL11A 2

  • OR5 -OR6 (olfactory receptor gene cluster) 11

Table 3 Inducers of hemoglobin F production

  • Nucleoside analogs, ie, azacytidine and decitabine
  • Hydroxyurea (hydroxycarbamide)
  • �Histone deacetylase inhibitors, ie, butyrate, trychostatin A, apicidin, 

scriptaid, hydroxyamides
  • �Others, including erythropoietin, valproate, thalidomide derivatives,  

kit ligand
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sion of the gamma-globin gene in erythroid cells.23 Very 

good results have been reported recently in a 17-year trial 

carried out in a variety of sickle cell syndromes. A dramatic 

reduction of severe pain crises, transfusion requirements and 

hospital admissions was obtained, showing how prolonged 

and tolerable treatment with hydroxyurea can profoundly 

modify the natural history of the disease.24

As for the mechanism of action of hydroxyurea, a series of 

investigations point to an effect on genes which are involved in 

hemoglobin synthesis. One of these genes is the transcription 

factor, EGR1, which is one of the most upregulated genes 

following HC treatment. Another group of genes, represented 

by CENTB1 (centaurin, beta 1), ARHGAP4 (Rho GTPase 

activating protein 4), and RIN3 (Ras and Rab interactor 3), 

were found to be induced after hydroxyurea administration.25 

Another study, carried out in reticulocytes from SCD patients 

after hydroxyurea treatment showed an altered expression of 

genes associated with the regulation of globin expression, 

like SUD53, FZD5, and PHC3.26 These results show that 

hydroxyurea produces significant changes in the gene 

expression pattern, with activation of transcription factors and 

pathways involved in signal transduction, eventually leading 

to an increase of globin gene expression.

The search continues to find agents able to enhance the 

action of hydroxyurea in SCD patients. In this context, a 

compound which has been known for a long time as an HbF 

inducer is erythropoietin, which is capable of increasing 

the amount of F cells and HbF concentration. A synergistic 

action was seen when erythropoietin was associated with 

hydroxyurea, either simultaneously or sequentially, and 

of special interest is the finding of a good erythropoietin 

response in patients who were hydroxyurea-intolerant. 

In this case, erythropoietin treatment made it possible to 

tolerate hydroxyurea dosage escalation, with an increase 

in F cells and only minor side effects.27 More studies are 

in progress to investigate the potential of such a drug 

combination.

3)  Butyrate was the earliest of a number of compounds 

used in this context because of their action as inhibitors of 

histone deacetylase. It is indeed known that by promoting his-

tone acetylation, butyrate increases the transcription rate of the 

gamma-globin gene, as well as the translation of gamma-globin 

mRNA.28 It has also been demonstrated that transcription 

factors like GATA1 and NF-E32 are involved.29

Other histone deacetylase inhibitors, and butyrate itself, 

have also shown a different mechanism of action, namely 

through activation of the p38MAP kinase pathway. The effector 

molecules have been identified by Sangerman et al as CREB1 

and ATF2, acting via the aforementioned pathway, which 

therefore appears to be one of the main mediators of gamma-

globin gene regulation.30 Many more compounds, acting 

as histone deacetylase inhibitors, have been mentioned as 

beneficial agents in sickle cell disease.31

New classes of synthetic histone deacetylase inhibitors, 

defined as aroyl-pyrrolyl hydroxyamides and uracil-based 

hydroxyamides, have also been tested. Of 24 agents, two 

were found to be active for their ability to induce HbF 

in different models of erythroid differentiation. The two 

compounds increased the γ/(γ + β) ratio in normal erythroid 

cells. Interestingly, both compounds were also effective in 

correcting the impaired in vitro maturation of beta thalassemic 

erythroblasts.32 These results and those obtained with other 

types of histone deacetylase inhibitors seem to suggest that 

compounds acting as epigenetic modifiers, namely capable 

of modulating gene expression, may be a promising area of 

investigation.

4)  A number of disparate compounds has been suggested 

as endowed with stimulating activity on the production of 

gamma-globin and HbF. One of them is valproate, which 

was found to induce hemoglobin synthesis in erythroid cells, 

again by activation of the p38 pathway.33

An interesting compound tried in this context is the kit 

ligand, an important cytokine for the initiation of hemopoiesis. 

In unilineage erythroid cultures of 20 patients with major beta 

thalassemia or thalassemia intermedia, addition of kit ligand 

induced a marked increase of gamma-globin synthesis, 

thus reaching HbF levels three-fold higher than in control 

cultures.34

Worth mentioning is the effect of thalidomide, which 

seems capable of inducing HbF expression via activation 

of the same p38MAPK signaling pathway, as well as the 

action of two thalidomide analogs, used as immunomodu-

lators, which have been shown to possess, among other well 

known activities, a stimulating effect on HbF production. 

Such compounds, ie, pomalidomide and lenalinamide, 

recently tested on early erythroid progenitors in vitro, caused 

increased proliferation of immature erythroid cells, regulated 

hemoglobin transcription, and induction of HbF without 

cytotoxicity. A synergistic effect was also observed in 

association with hydroxyurea.35

Cell transplant and cell engineering
An effective strategy employed in SCD is the transplantation 

of hemopoietic bone marrow or cord blood, thus delegating 

to transplanted stem cells the task of providing normal levels 

of hemoglobin A. However, it has been calculated that, up 
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to 2008, more than 1600 allogeneic transplants had been 

performed in beta thalassemia, but many fewer were done 

in SCD, perhaps because fewer patients in the advanced 

stages were eligible, due to the presence of severe vascular 

damage.36

This option is moreover restricted by limited availability 

of suitable donors and the severe effects of marrow ablation 

treatment, including reduced fertility, especially in women. 

To overcome such limitations, unrelated donors have been 

used with some success and nonablative regimens have also 

been employed, while, in order to preserve reproductive 

potential in women, ovarian tissue preservation and subse-

quent implantation have been employed, obtaining successful 

embryo development.37

More recently, sophisticated strategies, based on cell 

engineering, have been developed to transfer correcting 

genes in patients with a single gene defect. It is certainly 

fair to mention some remarkable success obtained by gene 

therapy in genetic immunodeficiency diseases.38 As far as 

SCD is concerned, a search has been going on for a long time 

to find an effective gene vector which would allow transfer 

of a desired gene into hemopoietic stem cells. After early 

attempts using gamma retroviral vectors to transduce globin 

genes into dividing stem cells,39 lentiviral vectors, a subclass 

of retroviruses capable of transducing not only proliferating 

but also quiescent cells, proved more effective.40 It has been 

stressed that lentiviral vectors should be erythroid-specific, 

differentiation- and stage-restricted, position-independent, 

and sustainable over time.41

This approach can be adopted for SCD, forcing the 

expression of fetal hemoglobin, which, even at low con-

centration, has been shown to exert a potent antisickling 

effect.42 On the other side, it has been noted that gene therapy 

for SCD, to be effective, should induce a therapeutic gene 

in the greatest part of the red cell population, because even 

a small proportion of remaining sickle cells may cause 

vaso-occlusion and severe ischemia.43

As for the cell type to be used for such correction, the 

most primitive progenitors, namely embryonic stem cells, 

were used initially in mice with SCD by the technique of 

gene targeting and homologous recombination.44 The clinical 

limitation of this procedure is at present the restriction 

on human embryonic stem cell research. However, great 

attention has been devoted recently to a special class 

of hemopoietic stem cells, which can be used for cell 

engineering, namely induced pluripotent stem cells, which 

can be obtained by reprogramming somatic cells and 

restoring the potential to develop new differentiated cells.45 

However, many questions are still unsolved about possible 

applications of human induced pluripotent stem cells in cell 

engineering and regenerative medicine, like the permanence 

of foreign DNA in the host genome. New techniques have 

therefore been developed to remove the integrated DNA 

from the genome of induced pluripotent stem cells,46 making 

them safer for clinical use.

It is apparent that a number of modalities are 

now available to try to modify the genetic defects in 

hemoglobinopathies, including the sickle mutation. This 

brings to the forefront the issue of safety requirements in 

gene therapy. It is indeed well known that, in a few cases of 

genetic immunodeficiency, a neoplastic proliferation was 

triggered by insertional mutagenesis of a proto-oncogene, 

raising the possibility that recombinant retroviral vectors 

could influence the expression of nearby genes.47 Although 

gamma-globin gene vectors seem less prone to induce the 

expression of dangerous genes, this is a problem which 

requires great attention and is presently the object of 

intensive research.

Progress in methods for fetal 
hemoglobin determination
Unfortunately, there is no international standardization 

program for HbF, and no quality specifications have been 

reported so far, although these are available for glycated 

hemoglobin and total hemoglobin. Therefore, it is important 

to outline criteria used for measurement units and the 

reference interval for the expression of HbF. a uniform 

measurement unit, used worldwide, is the relative percentage 

of total hemoglobin, although this is not in line with the 

international SI system. Every professional laboratory should 

build its own reference interval, by measuring HbF in at 

least 100 adults, who are not iron-depleted and not carriers 

of alpha or beta thalassemia.

It is generally assumed that HbF above 1% in a healthy 

adult individual could be due either to a genetic defect or to 

some acquired condition. A review on this topic has been 

proposed recently as a guide for the interpretation of clinical 

HbF data and a valuable aid to correct diagnosis.48

Among the more sophisticated methods for the 

assessment of HbF levels, we may include the determination 

of single nucleotide polymorphisms, whose variations have 

received wide application in molecular genetics.49 It is to 

be expected that studies of genomic regions associated 

with HbF levels will provide interesting indications for 

the diagnosis and perhaps the therapeutic approach to 

hemoglobinopathies.
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Future directions
•	 Identification of the full set of genes controlling gamma-

globin synthesis and HbF production

•	 Optimization of the efficacy of compounds already used 

for activating HbF production and exploration of new 

drug combinations

•	 Reduction of the risk-benefit ratio of stem cell transplants, 

making it possible to treat a larger number of patients

•	 Attempt to translate gene therapy from the experimental 

arena to clinical reality, keeping into account its dangers 

and limitations.

The first point implies further efforts along a pathway 

which has already produced promising results. It has been 

stressed, however, that only about half of the genetic factors 

influencing HbF control has been identified and that multiple 

loci, perhaps of limited relevance, still have to be located.5 

Environmental factors also await to be clarified and in this 

context more comparisons between affected populations in 

different parts of the world and groups exposed to different 

life situations should be profitable.50

As for the second point, the list of compounds which 

have been proposed as therapeutic agents is quite impressive, 

but so far hydroxyurea is the only one subjected to exten-

sive clinical trials and shown to produce satisfactory 

results, although not in all cases. More research is needed 

to elucidate the mechanism of action of hydroxyurea and 

the other compounds, because a better pharmacological 

treatment will reduce the need for the most difficult and 

expensive forms of therapy. More combination treatments 

will undoubtedly be tried (keeping hydroxyurea as the main 

component) with the aim to formulate the best scheme for 

any individual patient, according to age, gender, and severity 

of disease. Further investigations will also be centered on 

practical aspects of drug presentation, eg, the possibility to 

give decitabine in an oral form,21 which has been already 

tried in monkeys and is likely to prove more acceptable in 

human patients.

Stem cell transplantation is commonly considered the only 

curative treatment for SCD and, as such, is receiving special 

attention. A number of reports have highlighted the problems 

involved using reduced intensity preparative regimens for 

treating these patients and many failures have been reported, 

due in most cases to lack of sustained donor engraftment.51 

However, in a recent study of nonmyeloablative allogeneic 

hematopoietic stem cell transplantation, including total body 

irradiation and treatment with immune suppressors, a stable, 

mixed donor recipient chimerism was achieved, with reversal 

of the sickle cell phenotype.52

Furthermore, in addition to “technical” problems, there 

is a daunting issue of ethical impact pending on hemopoietic 

stem cell transplantation, namely the opportunity of giving 

birth to a sibling in order to provide a suitable donor for a 

severely affected child. The morality of this practice has been 

indeed questioned, particularly if programming a donor is 

performed exclusively as a utilitarian operation.53

The problems involved in gene therapy designs are still 

a great challenge and more research is certainly needed. 

As for human trials, worries have been raised very recently, 

because it was shown that a patient with beta thalassemia, 

treated successfully with a lentivirus-modified beta-globin 

gene in 2007, and presently transfusion-free, now produces 

about 10% of blood cells with an insertion which may give 

a growth advantage and thus tumorigenic potential.54

One area of investigation is therefore the search for 

new types of vectors, possibly nonviral. In this respect, it is 

worthwhile to mention very recent progress obtained using 

biodegradable polymeric vectors, and a class of these vectors 

has recently been developed and optimized for high trans-

fection efficiency.55 This may encourage more investigation 

along this line.

Further developments are awaited following the previously 

quoted attempts to correct the SCD mutation by homologous 

recombination. Actually, this procedure, proposed earlier in a 

mouse model,56 was performed recently in a patient with beta 

thalassemia, with skin fibroblasts removed, transformed into 

pluripotent stem cells, and then differentiated into hemopoietic 

stem cells, capable of producing normal adult hemoglobin. 

It was even suggested to collect cells from amniotic fluid 

or chorionic villus sampling, used for prenatal diagnosis, 

reprogram them into induced pluripotent stem cells, correct 

the mutation, and reinfuse them during the perinatal period, 

ie, an option for very early treatment before organ damage 

takes place.57

As for the tools necessary to introduce specific changes 

into the genome of patient-derived induced pluripotent stem 

cells, a recent approach is based on zinc finger nuclease 

technology, which enables targeting of a specific DNA 

binding domain to a preselected chromosomal site.58,59 Both 

approaches allowed the introduction of defined genetic 

modifications in highly sensitive induced pluripotent stem 

cells, without reported side effects on the pluripotency of 

these cells or their genetic stability.

Mention was made before of an encouraging improve-

ment obtained with severe thalassemia by gene therapy.54 

However, as far as SCD is concerned, 100  years have 

passed since the first description of the disease and, despite 
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remarkable progress in the knowledge of pathogenetic and 

clinical aspects, a consistently effective treatment remains 

elusive and requires further investigations.60
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