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Introduction: In this article, we explore to what extent it is possible to leverage on very small data to build machine learning (ML) 
models that predict acute exacerbations of chronic obstructive pulmonary disease (AECOPD).
Methods: We build ML models using the small data collected during the eHealth Diary telemonitoring study between 2013 and 2017 
in Sweden. This data refers to a group of multimorbid patients, namely 18 patients with chronic obstructive pulmonary disease 
(COPD) as the major reason behind previous hospitalisations. The telemonitoring was supervised by a specialised hospital-based home 
care (HBHC) unit, which also was responsible for the medical actions needed.
Results: We implement two different ML approaches, one based on time-dependent covariates and the other one based on time- 
independent covariates. We compare the first approach with standard COX Proportional Hazards (CPH). For the second one, we use 
different proportions of synthetic data to build models and then evaluate the best model against authentic data.
Discussion: To the best of our knowledge, the present ML study shows for the first time that the most important variable for an 
increased risk of future AECOPDs is “maintenance medication changes by HBHC”. This finding is clinically relevant since a sub- 
optimal maintenance treatment, requiring medication changes, puts the patient in risk for future AECOPDs.
Conclusion: The experiments return useful insights about the use of small data for ML.
Keywords: machine learning, telehealth or digital health, COX proportional hazards, random survival forests, random forests, mHealth

Introduction
Acute exacerbations of chronic obstructive pulmonary disease (AECOPDs) are commonly defined as acute events with 
worsening of respiratory symptoms beyond normal day-to-day variations.1 AECOPDs, particularly those requiring hospita-
lisation, are associated with significant morbidity and mortality. Patient recovery is slow and is a major burden for health 
services. For these reasons, remote monitoring of COPD patients and care at home with the view of early detection of 
AECOPD is of paramount importance. The benefit of creating prediction models to detect AECOPDs in advance is generally 
acknowledged, because, with timely treatments, they could help reduce AECOPD severity and recovery time. To the best of 
our knowledge, the use of small data to build predictive models for AECOPDs that are trustworthy in real-world scenarios has 
never been discussed explicitly before. The purpose of the experiments presented in this article is therefore to explore to what 
extent it is possible to leverage on very small data to build machine learning (ML) models that predict AECOPDs. ML is 
a subset of artificial intelligence (AI).

Previous Work
Extensive previous work exists on the effect of telehealth and regular self-monitoring on patients affected by long-term 
diseases, including COPD. A recent survey by Metting et al summarises the findings based on investigations carried out 
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on respiratory and systemic symptoms of asthma and COPD.2 According to this survey, remote patient monitoring helps 
patients improve disease-related self-management and care-plan adherence, boosts involvement in care and improves 
patient experience and satisfaction, especially when an educational component is included regarding different aspects of 
self-management.2 This picture is confirmed by other studies that point out how daily monitoring of COPD is an essential 
step to prevent the occurrence and the risk of future AECOPDs, eg, the studies by Rassouli et al with Swiss COPD 
patients,3,4 and the studies by Persson and Lyth et al with Swedish patients.5–7

Predictions are important for optimising remote patient care. Unfortunately, predicting AECOPDs is considered as 
one of the most difficult tasks in the medical field.8 Many studies (summarised in Table 1) and systematic reviews9 

describe the application of ML algorithms to predict AECOPDs. In the survey by Guerra et al,10 the prediction models 
displayed great heterogeneity regarding the quantity and nature of predictors, time horizon, statistical methods employed, 
and metrics used to evaluate model performance. Furthermore, it was determined that only two of the 25 studies 
validated the accuracy of the model developed. The evaluation of the models means that the reliability of the approach is 
assessed, thus, to see whether a model is successful or not. Indeed, evaluation is one of the core tasks in an ML workflow. 
Model evaluation involves assessing the effectiveness of a system’s predictions. This is achieved by evaluating the 

Table 1 Previous Studies That Build Predictive Models for AECOPDs Employing ML

Authors Dataset Size (# Patients) ML Methods

Singh et al (2022)11 20,054 Gradient boosting (with virtual twins), GLMtree, GUIDE, and Elastic Nets

Marques et al (2022)12 352 Decision Tree

Zeng et al (2022)13 1848, 2725, 3204, 4009, 4875, 

5793, 6504, 7089, 7529

39 classification algorithms supported by WEKA as well as Extreme Gradient 

Boosting (XGBoost)

Chmiel et al (2022)14 2374 Logistic Regression and Random Forest

Ställberg et al (2021)15 7823 Logistic Regression, Random Forest, Xgboost

Joshe et al (2021)16 101 Logistic regression and Decision Tree

Hussain et al (2021)17 2900 Random Forest, Support Vector Machine, Gradient Boosting, XGBoost, K-Nearest 

Neighbor (KNN)

Wu et al (2021)18 67 Random Forest, Decision Tree, KNN, Linear Discriminant Analysis, AdaBoost, 

Deep Learning

Peng et al (2020)19 410 C5.0

Ma et al (2020)20 441 + 192 control patients Logistic Regression, Multilayer Perceptron (MLP), Decision Tree, XGBoost, 
Support Vector Machines, KNN

Wang et al (2019)21 303 Random Forest, Support Vector Machine, Logistic Regression, KNN, Naive Bayes

Orchard et al (2018)22 135 (1) Nonparametric predictive methods (2) Regularized classifiers based on the 

adaptive extensions of elastic nets (3) Ensembles of boosted classifiers (4) Long 
short-term memory multitask neural network models

Fernandez-Granero et al 
(2018–2015)23,24

16 Radial basis function neural network (RBF), k-means, probabilistic neural network, 
Decision Tree Forest.

Leidy et al (2016)25 5761, 508, 10,214 Naive Bayes, Bayes Network, ID3, C4.5.

Saleh et al (2017)8 1985 Naive Bayes, Bayes Network, ID3, C4.5.

Mohktar et al (2015)26 21 A Classification and Regression Tree (CART)

Amalakuhan et al (2012)27 106 Random Forest

Abbreviations: CART, Classification and Regression Tree; GLMtree, Generalized Linear Model Tree; GUIDE, Generalized unbiased interaction detection and estimation; 
KNN, K-Nearest Neighbor; MLP, Multilayer Perceptron; RBF, Radial basis function neural network; XGBoost, Extreme Gradient Boosting.
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performance of the newly trained model using a new and independent dataset. Since normally ML algorithms work well 
when they are fed with sizeable amount of data, to date, no study exists that investigates whether it is possible to build 
ML models for AECOPD prediction based on very small data.

The term “small dataset” implies a small number of records. The quantity depends on the nature of the problem to be 
solved. In this context, “small” means between a couple of dozens. The risk with models that are built on small datasets 
is that they either underfit, ie, they are under-specified, and results are vague, or they overfit, ie, they are over-specified 
and results are good, but valid only for the sample that has been used to train the algorithm. In both underfitting and 
overfitting, the model is unable to generalise, which refers to the capacity to make correct predictions on data that the 
model has not seen before, as it is always the case in real-world scenarios. In Table 1, we list a few studies (the list is 
indicative and not systematic) and show the datasets in terms of size and ML methods used by the authors to build 
predictive models for AECOPDs.

With the exceptions of the studies by Fernandez-Granero et al23,24 which present a special case of predictive model 
based on respiratory sounds recorded for six months with an ad-hoc designed electronic sensor, and with the exception of 
Mohktar et al,26 who themselves point out the issues related to small sample sizes in respiratory-related telehealth 
research, the size of all the datasets shown in Table 1 is large and varies from 7823 to 67 subjects.

The eHealth Diary Study: Initial Cohort, Samples and Datasets
The eHealth Diary study is a 12-month longitudinal telemonitoring study, in which data was collected between 2013 and 
2017 in Östergötland, Sweden. The telemonitoring system, the Health Diary, is based on patients’ use of a digital pen for 
health state reporting to a specialised hospital-based home care (HBHC) unit.5–7 The underlying assumption behind the 
telemonitoring, based on the Health Diary, is that patients with advanced COPD would undergo fewer AECOPDs due to 
regular home monitoring administered via a digital diary and the digital pen. Once included in the study, according to the 
criteria described in Lyth et al,7 patients were introduced to the telemonitoring system, which was supervised by the 
specialised HBHC unit. Staff associated with this unit were responsible for the health care provided during the period of 
the study. The study included patients with COPD, aged ≥65 years, who were frequently hospitalised due to AECOPDs – 
at least two inpatient episodes within the last 12 months. A total of 36 COPD patients with advanced stages of disease 
were included. Previous statistical and qualitative analysis report that the number of hospitalisations was significantly 
reduced, and quality of life was improved for COPD patients participating in telemonitoring.5–7

To apply ML consistently and to avoid distortion in the results, we applied several eligibility criteria to the cohort 
described above. Criterium 1. A patient must have recorded symptom assessments via the Health Diary during at least 75 
days along one year, not necessarily contiguous. If the patients, who enrolled in the study, did not explicitly drop-out for 
internal or external reasons, and if they did not die during the study period, we assumed that they wanted to be included 
in the study up to the end, even if there might be many missing data. We counted the average number of days with 
recorded symptom assessments per patient in one year, defining the minimum as 75 days. This assumption was to show 
that the treatment during the study was effective/not effective. Criterium 2. Patients who died during the study period 
were excluded. Since it is impossible to establish whether the death of these patients was caused by the inefficacy of the 
treatment during the study or for natural causes, such as advanced age, it is hard to make any initial hypothesis. 
Therefore, we excluded these patients from our ML experiments. Criterium 3. Some patients dropped out because they 
relocated or because they were admitted to care home or palliative care. We excluded these patients from ML analysis, as 
well, because they did not fulfil criterium 1. Once the eligibility criteria were applied, we ended up with a total of 18 
patients suitable for ML experiments.

In our experiments, patients were represented by four constants (ie, values that do not vary during the study period), 
ie, gender, age at study inclusion, the number of hospitalisations during the year before the study and the forced 
expiratory volume in one second (FEV1) value at study inclusion, plus three sets of variables, namely symptoms 
[breathlessness at rest (BaR), breathlessness at physical activity (BaPA), mucus and cough], contacts with HBHC (patient 
calls HBHC nurse, HBHC physician calls patient, home visit by HBHC physician, HBHC nurse calls patient and home 
visit by HBHC nurse) and medications (maintenance medication changes by HBHC, and intake of the P.R.N. medications 
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anxiolytics, antibiotics, cortisone, extra inhalations or other medications), whose values are recorded on a daily basis or 
when they occur.

We used the number of AECOPDs during the study as class (or dependent variable) and all the other variables as 
attributes (or independent variables) characterising the class. All the predictive models created in these experiments 
relied on supervised learning, which is a subcategory of ML. This means that an algorithm is trained on input data, which 
have been labelled to predict a particular output (the class). Supervised learning is good for both classification (when the 
class is a word) and regression problems (when the class is a number). Since the variable “number of exacerbations 
during the study” is a number, we applied supervised algorithms for regression, namely Random Survival Forest (RSF) 
on time-dependent data and Reduced Error Pruning Tree (REPTree) and Random Forest (RF) for time-independent data. 
These two algorithms have been used previously on medical data with good results, both on big datasets28,29 and 
relatively small datasets.30

Time-Dependent and Time-Independent Representations
From raw data, two representations were created, one based on time-dependent variables, and the other one based on 
time-independent variables. We created several datasets based on these two representations. The data collected in the 
eHealth Diary study were specified by the patients via the Health Diary forms.5 The data were stored in an SQL database 
and then manually migrated to Excel sheets. The data in the Excel files were organised per patient and the assessments 
and the events in chronological order by date. From these raw data, several datasets were extracted. All the data were 
anonymised.

The datasets used with survival algorithms (see Cox Proportional Hazards Models for details) were organised by day 
number, ie, the number of the day during the 365-day long study, when an assessment or an event occurred. We call them 
time-dependent datasets, meaning that they contain 365 rows per patient, and each patient is described every day by the 
assessments and the events that occurred that day. For example, one patient had an exacerbation on day number 5 and 
that day the BaR value was 5, the BaPa value was 8, and so on. We used this representation for COX Proportional 
Hazards (CPH) and for RSF. The datasets used for REPTree and RF were instead time-independent, meaning that each 
patient was represented by the sum of the events occurred during 365 days or the mean of the assessments. For example, 
one patient, who was a female and aged 69 at the time of the study inclusion, had 5 exacerbations during the study 
period, the overall average of BaR was 3.32 for 365 days, the Mucus mean was 2.97 and so on. The time-based 
representation helped us to track the progress of the exacerbation events during the study and most influential factors in 
that progression. On the other hand, the time-independent datasets gave us a quantitative/cumulative representation of 
assessments and events characterising each patient, who attended the study for 365 days.

If missing data occurred on the same day that an exacerbation event occurred, the missing data were searched for in 
the medical records and filled-up manually. If the missing data occurred during days without an exacerbation event, all 
the records containing missing data were removed with the command na.omit() in R.

Statistical Measures Used to Describe the Samples
In the descriptive statistics of the COPD sample used in this study, we described the numeric data using four measures of 
central tendency, namely min, max, mean, mode, and four measures of spread, ie, standard deviation (SD), skewness, 
kurtosis, and standard error (SE). The analysis of AECOPD rate was carried out using both Poisson regression and 
negative binomial regression. Both methods have been used in previous COPD research.3

Methods Used in the Experiment
Cox Proportional Hazards Models
We applied the “coxph(Surv(time, status).)” model in the comparison with RSF. It calculates a standard COX model with 
right censored data. This format is called “timeline data”.31–34 Timeline data comprises a case identifier and a timeline 
variable, with a unique value pair for each row. The remaining covariates consist of any number of variables, the values 
of which were observed at that particular time, or missing if there was no observation of that variable at that time.31–34 

https://doi.org/10.2147/COPD.S412692                                                                                                                                                                                                                               

DovePress                                                                                              

International Journal of Chronic Obstructive Pulmonary Disease 2023:18 1460

Jacobson et al                                                                                                                                                        Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


COX models assume time-dependent covariates to be constant in each risk interval,31–34 for this reason it is called 
“proportional”. The proportional hazards assumption can be verified by conducting statistical tests and graphical 
diagnostics that employ the scaled Schoenfeld residuals.31–34 A non-significant relationship between residuals and time 
confirms the proportional hazards assumption, whereas a significant relationship contradicts it.

Interpretation and Evaluation
Survival analyses produce p-values for three tests to determine the overall significance of the model: the likelihood-ratio 
test, the Wald test and the score log-rank statistics. For global statistical significance of the CPH model, we used the 
likelihood ratio test, because it has better behaviour for small sample sizes.31–34 COX regression coefficients relate to 
Hazard, that is, a positive coefficient indicates a poorer prognosis, and a negative coefficient suggests a protective 
influence of the variable it is linked to.

The concordance index, also known as the C-index, is the most employed assessment metric for survival models. It 
quantifies the degree of rank correlation between predicted risk scores. The concordance statistics, also called the 
C-statistics, compute the agreement between an observed response and a predictor. It is defined as the ratio of correctly 
ordered (concordant) pairs to comparable pairs. The C-statistic is a measure of goodness of fit. Thus, the C-index reflects 
the discrimination power by the individual risk level, from those with a low risk to those with a high risk. In clinical 
studies, the C-index gives the probability that a randomly selected patient, who experienced an event (eg, in our case an 
AECOPD), had a higher risk score than a patient who had not experienced the event. When the model is no better than 
predicting an outcome than random chance the value is 0.5. Values over 0.7 indicate a good model, while values over 0.8 
indicate a strong model. A value of 1 means that the model perfectly predicts those group members, who will experience 
a certain outcome and those who will not.35,36

The Akaike information criterion (AIC) is a mathematical approach to assess the degree of fit between a model and 
the data it was created from. In statistics, the AIC is employed to compare numerous models and identify the one that 
best fits the data.37 To achieve a balance between bias and variance or accuracy (fit) and simplicity of the model, the 
information criterion is commonly employed for model comparison. There is no value for AIC that can be considered 
“good” or “bad”, because we simply use AIC to compare regression models. Thus, AIC is a relative measure that 
compares one model to another to choose the one that loses less information.

The Integrated Brier Score (IBS) provides an overall calculation of the model performance at all available times.38 It 
is known that the Brier score of a perfect predictive model is 0.02, while the Brier score of a trivial model is 0.25.39

Machine Learning Algorithms Used in the Experiments
Decision Tree for Regression (REPTree)
RepTree is a rapid decision tree learner that constructs a decision/regression tree utilising information gain as the splitting 
criterion and subsequently prunes it with a reduced error pruning algorithm.40 It is the most intuitive ML algorithm and is 
suitable for small data.

Random Forest
RF is a supervised ML algorithm that is extensively used in regression and classification problems. RF creates multiple 
decision trees on different samples and then utilizes their majority vote for classification or averaging for regression.41 

The name Random Forest implies that the algorithm comprises numerous individual decision trees that operate as an 
ensemble. Each tree in the RF produces a class prediction, and the one with the highest number of votes is ultimately 
selected as the model’s prediction.42 Each tree is trained on different objects and different features.

Random Survival Forest
Traditionally, ML for time-dependent data is less developed than for other types of data. However, several ML algorithms 
(eg, RSF) can be used for time-dependent data, and especially for clinical studies. In this study, we compare the 
performance of two algorithms, ie, traditional survival analysis in the form of CPH and ML-based RSF on the same 
dataset. The same way of comparison has been applied previously on other diseases.30 In this study, we use 
R implantations of both algorithms, namely the survival package for survival analysis and the Random Forests for 
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Survival, Regression and Classification (RFSRC) package. Like RF, RSF is also an ensemble ML method that utilises 
multiple independent decision trees. In the RSF model, each decision tree receives a random subset of samples and 
randomly selects a subset of variables at each split in the tree to make predictions. The final prediction of the RSF model 
is determined by averaging the predictions of each individual tree.30

Interpretation and Evaluation
The topmost node in the decision tree is called the root node, while the bottom-most node is called the leaf node. A node 
divided into sub-nodes is called a parent node, while the sub-nodes are called child nodes. The values on the lines joining 
the nodes represent the splitting criteria, which in turn are based on the values in the parent node feature. In the leaf node, 
the value before the parenthesis denotes the classification value and the first value in the first parenthesis is the total 
number of instances from the training set in that leaf. The second value is the number of instances incorrectly classified in 
that leaf and the first value in the second parenthesis is the total number of instances from the pruning set in that leaf. 
The second value is the number of instances incorrectly classified in that leaf. We evaluated the Reptree and RF with the 
root mean square error (RMSE). The RMSE value is calculated by taking the square root of the variance of the residuals. 
This value reveals how close the observed data points are to the model’s predicted values. While R-square is 
a comparative measure of how well a model performs, the RMSE is an absolute measure of fit. By interpreting the 
RMSE as the standard deviation of the unexplained variance, it helps to quantify the amount of variation that the model’s 
predictions do not account for. Generally, RMSE can be understood as a measure of the average error between a model’s 
predictions and the actual data, giving more weight to larger errors. Lower values of RMSE generally indicate a better fit 
of the model to the data. RMSE is a useful measure for assessing the ability of the model to predict the response variable. 
If the main goal of the model is prediction, then RMSE is the most important criterion for evaluating the quality of the 
model’s fit.43

We evaluated the RSF models with the concordance index (to make a comparison with CHP models), and with the 
out of bag (OOB) score. Each tree in the RSF is trained on a bootstrap resample of the training data, and an average 1/3 
of the original training data is not used in training each tree. The whole point of the OOB is to have an estimate of the 
error for unseen data, but that is only an estimate, since not all trees in the RSF are contributing to the decision.

Two hyperparameters are important in RSF: number of randomly drawn candidate variables (mtry) and number of 
trees. Normally, mtry=p/3 for regression is reasonable, with p being the number of predictor variables. Depending on the 
number of covariates used to build the models, a varying number for this parameter is used. We used 300 trees.

Synthetic Data for Time-Independent Datasets
The COPD sample is small, which can affect the performance of the ML algorithm. One way to overcome this limitation 
is to create synthetic data. While there is no easy way to create synthetic data with time-independent datasets, some well- 
established algorithms exist. In these experiments, we used the R package bespoke to augment the time-independent 
datasets.44 Bespoke ML offers the possibility to evaluate the similarity of the distribution between authentic data and 
synthetic data. Augmentation is sometimes needed to avoid underfitting or overfitting. Underfitting is a situation in which 
a data model fails to accurately capture the relationship between input and output variables, resulting in high error rates 
on both training set and unseen data. It occurs when the model is too simplistic. Some reasons for underfitting include 
insufficient training time, limited input features, or excessive regularisation. Just like overfitting, underfitting also leads to 
training errors and poor model performance, as the model cannot capture the dominant trend in the data. If a model 
cannot generalise well to new data, then it cannot be used for classification or prediction tasks.

Results of the Sample COPD: 18 Patients
In this section, we describe the COPD sample and present experiments based on the sample.

Sample COPD: Descriptive Statistics
Table 2 summarises the descriptive statistics. We observed that anxiolytics, antibiotics, cortisone, inhalation, and other 
remedies had high SD, high SE, and high kurtosis. Women tended to be older (mean 76 years), while men had an average 
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age of 72. The COPD sample was unbalanced for gender, since females (11 women) were overrepresented with respect to 
males (7 men). The variable “Exacerbations during the study” showed that most women experienced a higher number of 
AECOPDs than men did.

The distribution of the 71 AECOPDs during the study (irrespective of gender division) was bimodal, showing a peak 
at 2 exacerbations (5 patients) and a lower peak at 8 exacerbations (2 patients; see the x-axis) (see Figure 1). It is 
important to notice that the distribution representation does not account for the progression of the exacerbations in the 
sample over time. This progression is shown in Sample COPD: COX and Time-Dependent Datasets (see Figure 2).

Sample COPD: COX and Time-Dependent Datasets
In this section, we compare two CPH models – the first one with 2 dates and the second one with only one date. After 
some empirical trials, we noticed that the P.R.N. attributes were not reliable, because when they were included in the 
modelling, the CPH assumptions were violated. For this reason, we excluded them from the CHP models presented 
below.

When two dates are specified with coxph [coxph(surv(time1, time2, status).)], together with time-dependent covariates, at 
each AECOPD the algorithm compared the current covariate values of the patient affected by AECOPD to the current values 
of all other patients, who were at risk at that time. We observed that in this model only two variables were statistically 
significant, namely “maintenance medication changes by HBHC” and “home visit by HBHC physician” (Table 3).

Table 2 The Descriptive Statistics of the COPD Sample

COPD Patients (n=18) Min Max Mean Mode SD SE Skew Kurtosis

Age (years) 65 86 74.61 74 6.58 1.55 0.34 −1.25

Hospitalisations during the year before study inclusion (no/year) 1 9 3.11 2 2.03 0.48 1.66 1.87

Exacerbation during the study (no/year) 0 10 3.94 2 3 0.71 0.69 −0.93

FEV1 value at study inclusion (% of predicted; 1 missing value) 13 79 39.76 23 19.16 4.65 0.56 −0.82

BaR (scale 0–10) 0 5.04 1.89 1.01 1.59 0.38 0.51 1.21

BaPA (scale 0–10) 1.87 8.75 5.9 7.82 5.9 0.45 −0.37 −0.83

Mucus (scale 0–10) 0.05 6.5 2.09 2.97 1.71 0.4 0.9 0.16

Cough (scale 0–10) 0.02 6.46 1.94 2.79 1.64 0.39 1.02 0.71

Patient calls HBHC nurse (no/year) 0 67 13 1 16.51 3.89 1.97 3.62

HBHC physician calls patient (no/year) 1 35 12.11 7 8.96 2.11 0.79 0.03

Home visit by HBHC physician (no/year) 4 31 14.22 11 7.47 1.76 0.38 0.66

HBHC nurse calls patient (no/year) 2 42 21.88 38 11.26 2.65 0 −1.03

Home visit by HBHC nurse (no/year) 4 115 44.88 10 38.24 9.01 0.66 −1.15

Maintenance medication changes by HBHC (no/year) 1 39 14.22 20 10.44 2.46 0.71 −0.41

Anxiolytics (“as needed” or P.R.N. medication) (no/year) 0 280 44.55 0 95.44 22.49 1.70 1.22

Antibiotics (“as needed” or P.R.N. medication) (no/year) 0 175 23.22 0 43.08 10.15 2.49 5.76

Inhalation (“as needed” or P.R.N. medication) (no/year) 0 312 57.33 0 98.03 23.10 1.56 0.87

Cortisone (“as needed” or P.R.N. medications) (no/year) 0 318 75.5 0 112.06 26.41 1.06 −0.58

Other remedies (“as needed” or P.R.N. medications) (no/year) 0 294 80.5 0 106.95 25.20 1.02 −0.62

Abbreviations: BaPA, breathlessness at physical activity; BaR, breathlessness at rest; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 
one second; HBHC, hospital-based home care; P.R.N, pro re nata; SD, standard deviation; SE, standard error.
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The variable “maintenance medication changes by HBHC” had a hazard ratio of 147, which told us that patients, who 
got a maintenance medication change, had an increased risk of getting an AECOPD. The corresponding 95% confidence 
interval was 24–895, which is significant. Seventy-one AECOPDs had occurred to the patients in the sample. The global 
p-value of the model was significant (p˂0.0001). C-index was very high (0.99), and AIC was quite low (77.03). The test 
for the proportional hazard assumption showed that the test was not statistically significant for any variable, including the 
global test. Thus, we could safely assume that the model was valid. The COX model with two dates was statistically 
significant; all tests (likelihood ratio test, Wald test, log-rank score test) demonstrated statistical significance (p˂0.00001). 
The Kapler–Meyer curve showed that there is a progressive decrease of AECOPD hazard probability, showing that 
patients become less exposed to AECOPD risk along the period of the telemonitoring study (see Figure 2).

In comparison, a COX model with only a single time indication violated the proportional assumptions, and the AIC 
was very high (meaning that the model was not parsimonious). Since this model did not comply with the COX 
assumptions, we discarded it.

Sample COPD: RandomForestSRC and Time-Dependent Dataset
For this experiment, we used the R package RandomForestSRC. RFSRC can handle only one date. We build a model 
with the following command:

rfsrc(Surv(Day_Number, Exacerbation_Event) ~ BaR + BaPA + Mucus + Cough + patient_calls_HBHC_nurse + 
HBHC_doctor_calls_patient + home_visit_by_HBHC_doctor + HBHC_nurse_calls_patient + home_visit 
_by_HBHC_nurse + medication_change, data=COPD_cox_df, mtry = 6, ntree = 300, nsplit = 10, ntime = 150, seed = 
123,456,789, block.size = 10, importance=TRUE, splitrule=“logrank”)

Figure 1 The distribution of exacerbations during the study (irrespective of gender division).
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The output is shown in Table 4. We observed a low error rate (OOB). Table 5 shows the importance for this model. 
The most important variable, as in the case of the COX model, was the “maintenance medication changes by HBHC” 
(shortened “medication_change”), followed by “home visit by HBHC doctor”.

We compared the cross validated (5-fold) C-index for both the COX model with 2-time indication and the RFSRC 
model with one-time indication. The plot showing the two cross-validated C-indexes is shown in Figure 3. Employing 
IBS, we also observed that the predictive power of the RSF model was higher than the COX model (see Figure 4).

Figure 2 The Kapler–Meyer curve of AECOPD hazard probability. 
Abbreviation: AECOPD, acute exacerbation of chronic obstructive pulmonary disease.

Table 3 The Results of the CPH Model with 2 Dates

Characteristics HR 95% CI p-value

Maintenance medication change by HBHC 147 24.0, 895 ˂0.001

Home visit by HBHC doctor 3.61 1.00, 13.0 0.050

HBHC doctor calls patient 3.40 0.60, 19.3 0.2

HBHC nurse calls patient 2.56 0.76, 8.68 0.13

Home visit by HBHC nurse 1.51 0.38, 6.01 0.6

Mucus 1.27 0.62, 2.58 0.5

Patient calls HBHC nurse 1.17 0.31, 4.43 0.8

BaR 1.13 0.73, 1.75 0.6

Cough 1.02 0.49, 2.11 >0.9

BaPA 0.87 0.63, 1.22 0.4

Abbreviations: BaPA, breathlessness at physical activity; BaR, breathlessness at rest; CI, confidence interval; 
HBHC, hospital-based home care; HR, hazard ratio.
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Sample COPD: Time-Independent Synthetic Data and Trees-Based ML Algorithms
The purpose of these experiments was to predict the number of AECOPDs given a set of recorded values. Contrary to 
what happened with the survival models above, the P.R.N. attributes had a positive effect on the prediction models built 
with time-independent datasets. For this reason, we included them in the modelling described below. In this set of 
experiments, we used both the synthpop R package to create synthetic data and the Weka workbench to build predictive 
models. Both synthetic data and predictive algorithms were created.

Table 4 RFSRC and Time-Dependent Dataset – Output Data

Sample size 5738

Number of AECOPDs 71

Number of trees 300

Forest terminal node size 15

Average no. of terminal nodes 21.39667

No. of variables tried at each split 6

Total no. of variables 10

Resampling used to grow trees swor

Resample size used to grow trees 3626

Analysis RSF

Family surv

Splitting rule logrank *random*

Number of random split points 10

(OOB) Error rate 2.20734007%

Abbreviations: OOB, out of bag; RFSRC, Random Forests for Survival, Regression 
and Classification; RSF, Random Survival Forest.

Table 5 The Results of the RSF Model

Characteristics Importance Relative Importance

Maintenance medication change by HBHC 0.3597 1.0000

Home visit by HBHC doctor 0.0031 0.0087

Patient calls HBHC nurse 0.0002 0.0006

HBHC nurse calls patient 0.0000 0.0001

Home visit by HBHC nurse 0.0000 −0.0001

BaR −0.0009 −0.0026

Mucus −0.0012 −0.0035

Cough −0.0013 −0.0036

HBHC doctor calls patient −0.0029 −0.0080

BaPA −0.0055 −0.0153

Abbreviations: BaPA, breathlessness at physical activity; BaR, breathlessness at rest; HBHC, hospital-based home 
care; RSF, Random Survival Forest.
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First, we created a 10-cross-validated prediction model with the authentic data sample of 18 patients. The class is the 
number of AECOPDs so to frame the problem as regression. We evaluated the performance looking at correlation, 
RMSE and number of nodes for REPTree and correlation and RMSE for RF. We can see in Table 6 and the dataset 
“Authentic” that neither a simple tree algorithm like REPTree nor a more complex ensemble algorithm performed well 
on the authentic dataset, that is correlation was very low and RMSE was very high. This result confirmed that a very 
small dataset is indeed very challenging for ML. Naturally, lower values indicate a better fit of the model.

For this type of data, there is a straightforward possibility to augment the dataset with synthetic data. To this end, we 
used the R package synthpop, which allowed to check the similarity of the synthetic data distribution compared to the 

Figure 3 The two cross-validated C-indexes. 
Abbreviation: RSF, Random Survival Forest.

Figure 4 The predictive power of the models. 
Abbreviation: RSF, Random Survival Forest.
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observed, authentic distribution. We built 6 synthetic datasets increasing in size, thus, including 1000, 2000, 3000, 4000, 
5000 and 10000 synthetic records. The distribution of the 1000 synthetic record dataset is shown in Figures 5A and B. 
For all variables, the authentic and the synthetic data demonstrated an excellent similarity as illustrated by the examples 
shown in Figures 5A and B.

As shown in Table 6, the 1000 synthetic dataset had the best cross-validated performance, with the highest correlation 
score, the lowest RMSE, and the lowest number of trees (as for REPTree). Therefore, we took this model, and we tested 
it on authentic data. We observed that the validation on the authentic dataset was less optimistic than the validation 
achieved with the cross validated model, but still encouraging (Table 7). According to the tree constructed by the 
REPTree algorithm, the root node (ie, the node that evaluates the variable that best splits the data) was “Other remedies” 
(shortened “other”; see Figure 6).

Discussion
The focus on small data is dictated by privacy preserving legislation. Feng et al noticed that although several ML and AI 
methods have recently been applied, very few methods have significantly contributed to the clinical practice.45 Often, 
there is gap between research results and real-world applications. This drawback can be addressed by evaluating the 
generalisation power of ML models in real scenarios. Unfortunately, this is a difficult task, because the legal devices do 
not currently cover all the aspects implicit in data-driven applications as for data protection, private law liability and legal 
personhood.46 This means that if predictive models are built using private data, they cannot be used in real-world 
applications, so their potential remains unleashed. Since most clinical data have privacy restrictions, new approaches and 
new insights are required to overcome this loophole.

In these experiments, we therefore tried to apply the principle of data minimisation established by the EU General 
Data Protection Regulation (GDPR).47 The principle of data minimisation implies that only data necessary to fulfil 
a certain purpose should be used as stated in Article 5, 1c: “adequate, relevant and limited to what is necessary in relation 
to the purposes for which they are processed (‘data minimisation’)”.48 ML models normally require sizable data. 
However, to abide to the data minimisation principle, a new trend has emerged in AI and ML, namely the artificial- 
devised data minimisation.49,50 We observed, however, that there is not always the need to minimise data artificially, 
since many studies (especially in medicine) are focused and restricted to limited cohorts but produce indeed valuable 
data. Normally, this data is deemed to be too small to be used with ML. In this article, we present experiments to 
understand whether and to what extent it is possible to build ML models based on natural small data, thus avoiding 
artificial data minimisation.

The research question we wanted to answer with these experiments was: is it possible to build reliable ML models 
with small data to predict AECOPDs? The answer to this question is, yes, we can. However, as expected, modelling with 
small data is extremely challenging and extra care must be applied to avoid caveats and empirical limitations. The main 
caveats are underfitting and overfitting, which has to do with the lack of generalisation. Indeed, ML applied to small data 
sets, as in the present study, raises concerns about the generalisability to a larger population. We know that patients with 

Table 6 10-Fold Cross-Validated Models

Dataset REPTree RF

Correlation RMSE Nodes Correlation RMSE

Authentic − 0.6084 119.0339 5 0.1889 105.9907

1000syn 0.6399 75.6252 17 0.6408 75.5562
2000syn 0.6447 80.8876 21 0.6203 83.0392

3000syn 0.631 77.5511 47 0.6121 79.5851

4000syn 0.631 79.9781 51 0.6105 81.7041
5000syn 0.6306 78.3859 29 0.6237 78.9413

10000syn 0.6361 80.3389 143 0.6285 80.9951

Abbreviations: RepTree, Reduced Error Pruning Tree; RF, Random Forest; RMSE, root mean square error.
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COPD constitute a highly heterogenous group of people. Not only may the most common features of the COPD itself, 
that is airway obstruction, COPD symptoms and AECOPD frequency, vary a great deal between individuals, other 
phenotypic dimensions are created due to co-morbidities, fragility, etc. It should be pointed out that although the present 

Figure 5 (A and B) The distribution of the 1000 synthetic record dataset.
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study applied ML algorithms on a small population of patients with COPD, this population was highly homogenous, that 
is, exhibiting advanced COPD, great co-morbidity and fragility. Thus, the limitations of our study may be possible to 
compensate for by additional small datasets, employed for various ML approaches, on other phenotypes of COPD. 
Together, such experiments would make it possible to cover many patients with COPD, thus, collectively increasing the 
generalisability of the ML approaches.

To the best of our knowledge, the present ML study shows for the first time that the most important variable for an 
increased risk of future AECOPDs is the variable “maintenance medication changes by HBHC”, followed by “home visit 
by HBHC doctor”. These findings are clinically relevant as a sub-optimal maintenance treatment, requiring medication 

Table 7 The Performance of the 1000 Synthetic Dataset

Datasets REPTree RF

Training Set Test Set Correlation RMSE Nodes Correlation RMSE

1000syn COPD18_authentic 0.566 86.678 17 0.4954 91.8444

Cross-validated dataset

1000syn 0.6399 75.6252 17 0.6408 75.5562

Abbreviations: RepTree, Reduced Error Pruning Tree; RF, Random Forest; RMSE, root mean square error.

Figure 6 The REPTree algorithm. 
Abbreviations: BaR, breathlessness at rest; BaPA, breathlessness at physical activity; RepTree, Reduced Error Pruning Tree.
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changes, puts the patient in risk for future AECOPDs. The importance of the variable “home visit by HBHC” is 
explained by the fact that the diagnosis AECOPD is made by the HBHC doctor, who also is responsible for starting the 
treatment for the AECOPD.

Conclusion and Future Work
Developing predictive algorithms with clinical reliability is a priority for the future development of telemonitoring of 
COPD. The possibility of creating predictive models based on small data would be a big asset for future health care, 
because often creating big datasets with patient data is prohibitive and expensive. Since many relatively small studies are 
carried out, it would be beneficial and profitable that these small data would be analysed not only qualitatively or 
manually or with traditional statistics but also with ML. Small data can be a trove of important information, but the 
challenge is to find methods that can generalise well on small datasets and make reliable predictions.
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