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Abstract: In recent years, the abnormal glucose metabolism of tumor cells has attracted increasing attention. Abnormal glucose 
metabolism is closely related to the occurrence and development of tumors. Monocarboxylate transporters (MCTs) transport the sugar 
metabolites lactic acid and pyruvate, which affect glucose metabolism and tumor progression in a variety of ways. Thus, research has 
recently focused on MCTs and their potential functions in cancer. The MCT superfamily consists of 14 members. MCT1 and MCT4 
play a crucial role in the maintenance of intracellular pH in tumor cells by transporting monocarboxylic acids (such as lactate, pyruvate 
and butyrate). MCT1 and MCT4 are highly expressed in a variety of tumor cells and are involved the proliferation, invasion and 
migration of tumor cells, which are closely related to the prognosis of cancer. Because of their important functions in tumor cells, 
MCT1 and MCT4 have become potential targets for cancer treatment. In this review, we focus on the structure, function and regulation 
of MCT1 and MCT4 and discuss the developed inhibitors of MCT1 and MCT4 to provide more comprehensive information that might 
aid in the development of strategies targeting MCTs in cancer. 
Keywords: monocarboxylate transporter, tumor, tumor microenvironment, function, regulation

Introduction
The monocarboxylate transporter (MCT) superfamily contains 14 members and is encoded by the solute carrier family 16 
(SLC16A) gene family. The MCT proteins show sequence homology. Thus far, only the functions of MCT1–4 have been 
elucidated. These proteins mediate the bidirectional transport of monocarboxylic acids (such as lactate, pyruvate, ketone 
bodies and gamma-hydroxybutyrate) across the plasma membrane.1 A recent report also indicated that MCTs mediate 
succinate export in the retina.2 The concentration of H+ and monocarboxylic acid on both sides of the cell membrane 
determines the direction of transport.3 Some evidence has shown that MCTs facilitate the plasma membrane transport of 
certain drugs, such as salicylates and valproic acid.4 The transmembrane movement of monocarboxylic acids is essential 
for cells that rely on glycolysis for energy.5,6 Under physiological conditions, MCT1 and MCT4 cooperate to form 
a lactate shuttle system that maintains lactate homeostasis between glycolytic and oxidative cell.7 Lactate is an important 
metabolite in human health and disease.8

MCT1 (which is encoded by SLC16A1) is found in most tissues. MCT4 (SLC16A3) is strongly overexpressed in 
highly glycolytic and anaerobic tissues.9 MCT1 and MCT2 have very high affinity for pyruvate (Km ≈0.1–0.74 mmol/L) 
and stereoselective L-lactate (Km ≈1–3.5 mmol/L), and MCT4 has low affinity for pyruvate (Km ≈153 mmol/L) and 
lactate (Km ≈28 mmol/L).3,10–12 Consistent with their high affinity for pyruvate and lactate, MCT1 and MCT2 are mainly 
expressed in red skeletal muscle, heart and neurons, where they transport lactate into cells to provide fuel for oxidative 
phosphorylation.13 MCT3 is expressed only on the basolateral membrane of the choroid plexus and retinal pigment 
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epithelium, with a moderate affinity for lactate (Km ≈6 mmol/L), and MCT4 is mainly expressed in highly glycolytic 
cells, such as white skeletal muscle fibers and astrocytes.14

Metabolic abnormalities are one of most important hallmarks of cancer. In cancer cells, glycolysis is amplified to 
meet the energy demands of rapid proliferation.15 Lactic acid produced by glycolysis must be transported to the 
extracellular environment; therefore, cancer cells require high levels of MCTs to maintain this metabolic 
phenotype.16,17 MCT1 and MCT4 play important roles in cancer metabolism and promote cancer development through 
multiple mechanisms.18 Some cancer cells still undergo glycolysis under aerobic conditions to produce energy to meet 
the high metabolic demand. This metabolic mode of aerobic glycolysis in cancer cells is called the “Warburg effect”.19 

Lactic acid and other products generated by glycolysis require MCT-mediated transport to the outside of the cell to 
maintain intracellular pH homeostasis. The transported lactate also leads to a decrease in the pH of the microenviron-
ment. In tumor tissue, the acidification of extracellular microenvironment caused by co-transporting protons is conducive 
to angiogenesis, tumor cell proliferation, invasion and metastasis.19 Therefore, targeting MCTs may represent a possible 
treatment strategy for cancer.

Structure and Function of MCT1 and MCT4
Structure
The crystal structures of MCTs have not been fully described. However, topological prediction indicates that all family 
members have 12 transmembrane helices (TMs), a C-terminus and N-terminus within the cell, and a large cytoplasmic 
loop between TM6 and TM7. In the MCT superfamily members, the TM regions are more conserved than the loop and 
C-terminus.11 Lysine 38, aspartic acid 302, and arginine 306 are particularly important for substrate binding and 
transporter activity, as shown by human MCT1 modeling, and MCT1 and MCT 4 have been confirmed as proton- 
linked MCTs.11 In the structure of hMCT1 and hMCT4, seven key residues are conserved and involved in the 
translocation cycle of L-lactate.20 Conserved helix 5 is essential for transport function and is involved in 
stereoselectivity.21 The loop between TM6 and TM7 contributes to the substrate affinity of hMCT.22 In MCT1, TM6 
binds to basigin (an immune protein) mainly through hydrophobic interaction.7 An arginine residue in TM8 is conserved 
in most SLC16 family members due to its involvement in carboxyl binding of the carboxyl group of monocarboxylate 
esters.23,24 D302 and R306 on the inner surface of TM8 accept protons and lactate, respectively.25 F360 in helix 10 and 
R306 in TM8 play a key role in substrate selectivity by acting as steric hindrance protrusion channels, and residues 
around R306 are not always conserved, suggesting that these residues may be involved in substrate recognition.24,26 

R278 in TM8 of hMCT4 is also a key residue for substrate recognition (Figure 1).27

After synthesis, MCTs need to be transported to the plasma membrane to function. The correct localization and 
function of MCT1 and MCT4 require the assistance of glycosylation chaperones.

CD147/basigin, a member of the immunoglobulin superfamily, is involved in immune response and 
immunosuppression.29 CD147/basigin is located on the cell surface and consists of an extracellular Ig-like domain, 
a single transmembrane fragment and a short intracellular cytoplasmic tail; it is widely distributed in vivo and promotes 
tumor migration by inducing matrix metalloproteinases (MMPs).30,31 CD147/basigin also regulates the expression of 
vascular endothelial growth factor (VEGF) and metalloproteinases in xenograft tumors and stimulates tumor angiogenic 
potential and growth rate.29

There are four isoforms of basigin (BSG) proteins, of which the BSG1 isoform is located in the retina and closely 
interacts with MCT3.32,33 BSG2 (hereafter, BSG), the most prevalent and studied isoform, contains two immunoglobu-
lin-like domains that are chaperones of MCT1 and MCT4 and help them to fold properly. BSG thus maintains their 
stability, promotes their cellular expression and mediates proper localization on the cell membrane surface.31,34 Le Floch 
et al found that the expression of MCT1 and MCT4 was significantly reduced in cells under normoxia and hypoxia after 
knockdown of the CD147/BSG gene in colon adenocarcinoma cells.35 Thus, the interaction of MCT1 and MCT4 with 
BSG in the plasma membrane is important for their activity.36,37 In patients with bladder urothelial carcinoma, high 
expression of MCT1 and CD147 is associated with poor overall survival, while high expression of MCT4 is associated 
with poor recurrence-free survival; high expression of MCT1 and MCT4 is an independent prognostic indicator for poor 
overall survival and recurrence-free survival, respectively.38 One study showed that CD147 is upregulated in bladder 
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tumor tissues and is significantly associated with tumor invasiveness and poor prognosis.39 Several studies have 
identified CD147 expression as an independent prognostic factor in bladder urothelial carcinoma.40,41 CD147 and 
MCT1 have also been associated with drug resistance of tumor cells. Afonso et al found that CD147 and MCT1 were 
associated with bladder cancer progression and resistance to cisplatin-based chemotherapy, revealing that targeting 
CD147 and MCT1 is helpful in treating cisplatin-resistant bladder cancer.39

Function
Lactic acid is mainly produced from glucose through a reaction catalyzed by a series of glycolytic enzymes. After 
glucose uptake by cells via glucose transporters, pyruvate is generated in the cytoplasm by the following steps: 1) 
glucose, catalyzed by hexokinase (HK), consumes one molecule of ATP to produce one molecule of glucose 6-phosphate 
(G-6-P); 2) G-6-P is converted to fructose-6-phosphate (F-6-P) catalyzed by phosphate hexose isomerase (PGI); 3) F-6-P, 
catalyzed by 6-phosphofructokinase 1 (PFK1), consumes one molecule of ATP to produce fructose-1,6-diphosphate 
(F-1,6-BP); 4) F-1,6-BP, catalyzed by aldolase (ALDO), produces glyceraldehyde 3-phosphate (G-3-P) and dihydrox-
yacetone phosphate (DHAP), which are isomers of each other; 5) G-3-P dehydrogenation is catalyzed by glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) to 1,3-diphosphoglycerate (1,3-PGA); 6) 1,3-PGA is catalyzed by 3-phosphogly-
cerate kinase (PGK) to produce 3-phosphoglycerate (3-PG) and a molecule of ATP is produced; 7) 3-PG is converted to 
2-phosphoglycerate (2-PG) under the catalysis of enolase, yielding phosphoenolpyruvate (PEP); and 8) PEP forms 
pyruvate under the catalysis of pyruvate kinase (PKM). Through this series of reactions, one molecule of glucose is 

Figure 1 Prediction model of hMCT1 (a) and hMCT4 (b). 
Notes: Adapted from Sasaki S, Kobayashi M, Futagi Y, et al. Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4). PLoS One. 
2013;8(7):e67690. Creative Commons.28
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converted to two molecules of pyruvate. In the case of sufficient oxygen supply, pyruvate enters the mitochondria to 
produce a large amount of energy through the tricarboxylic acid cycle (TCA). In the case of insufficient oxygen, pyruvate 
generates lactate under the catalysis of lactate dehydrogenase A. In normal tissue cells, such as red skeletal muscle, heart 
and neurons, MCT1 transports lactate into cells, where it is converted by lactate dehydrogenase B (LDHB) to pyruvate, 
which is supplied by oxidation through the TCA. In white skeletal muscle fibers and astrocytes, MCT4 transports lactate 
production out of cells and maintain intracellular acid-base balance (Figure 2).

Malignant tumors are characterized by heterogeneity; they contain both aerobic regions close to blood vessels and 
hypoxic regions far from blood vessels. Cancer cells in hypoxic areas obtain energy through glycolysis, which produces 
less energy; thus, cancer cells in hypoxic areas need more glucose to produce energy, which is called “glucose 
starvation”.42 Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1) is overexpressed, and HIF-1 induces the 
expression of glucose transporter 1 (GLUT1). GLUT1 is responsible for glucose uptake, and hypoxic cancer cells take up 
a large amount of glucose through overexpressed GLUT1. Glucose generates a large amount of energy to meet the needs 
of cell metabolism through the glycolytic pathway and simultaneously produce pyruvate and H+. Pyruvate is converted 
to lactate by LDHA, which leads to a decrease in intracellular pH.43 MCTs transport the produced lactate and pyruvate 
out of the cell and play an important role in the lactate shuttle between hypoxic and aerobic cancer cells.44 Similarly, 
oxidized cancer cells obtain an additional supply of lactate through MCT1/4-mediated lactate shuttle by promoting 
aerobic glycolysis in adjacent stromal fibroblasts.45,46 MCT4, which has low affinity for lactic acid, transports lactic acid 
produced by hypoxic cancer cells through glycolysis outside of cells. MCT1, which has a high affinity for lactic acid, can 
transport lactic acid to normoxic cancer cells. Lactate entering cancer cells is converted to pyruvate by lactate 
dehydrogenase catalyzed B (LDHB). After then, pyruvate enters the TCA as the substrate for cancer cell oxidation 
power (Figure 3). If lactate is the only energy source for tumor cells, inhibition of MCT1 leads to cell death.42,47 For 
aerobic cells, oxidative lactate metabolism may be more favorable than aerobic glycolysis because it produces ATP at 
most 7.5-fold.18 At the same time, aerobic cancer cells use lactate for energy, so more glucose can enter hypoxic cancer 

Figure 2 Glucose metabolic process. Glucose enters cells via glucose transporters (GULT). Many enzymes are involved in the process of anaerobic glycolysis. The 
production of pyruvate from glucose is catalyzed by three key enzymes: hexokinase (HK), 6-phosphofructokinase 1 (PKF1) and pyruvate kinase (PKM). Pyruvate is catalyzed 
by lactate dehydrogenase A (LDHA) to lactate. The tricarboxylic acid cycle (TCA) process is catalyzed by several key enzymes: citrate synthase (CS), isocitrate 
dehydrogenase (IDH) and ketoglutarate dehydrogenase complex (KGDHC). Blue areas (eg, red skeletal muscle, heart and neurons) and green areas (eg, white skeletal 
muscle fibers and astrocytes) indicate lactate transport in normal cells.
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cells to produce energy to meet proliferation and metabolism needs. Studies have shown that glucose transporters and 
downstream glycolytic enzymes are overexpressed in more than 70% of cancers.48,49

Stromal cells in contact with tumor cells undergo metabolic reprogramming and transform into cancer-associated 
fibroblasts (CAFs). The lactic acid produced by CAFs through aerobic glycolysis can also be transported to the 
extracellular through MCT4, and lactic acid is taken up by aerobic cancer cells for oxidation energy.50 Additionally, 
the lactate shuttle between glycolytic cancer cells and vascular endothelial cells is also through MCTs.51 Lactate 
produced by tumor cells through high glycolysis is exported through MCT4, and vascular endothelial cells transport 
lactate into cells through MCT1.52,53 Therefore, MCTs play a crucial role in lactate transport between tumor cells, 
between tumor cells and stromal cells as well as between tumor cells and vascular endothelial cells (Figure 3). Within the 
same tumor cell, MCT1 and MCT4 are expressed in different amounts. Sonveaux et al found that aerobic cancer cells in 
human neck and colon xenograft tissues expressed high levels of MCT1 compared with hypoxic regions that showed 
almost no detectable MCT1 expression, but this phenomenon was not observed in other tumor types.47 MCT4 expression 
is increased in hypoxic and poorly angiogenic tumor regions.54,55 Another study found that MCT4 is associated with the 
sarcolemma of fast twitch fibers in muscle.56 In addition to the ability of MCT1 to transport lactate into cells, MCT1 also 
releases lactate into the medium.57 Mathupala et al showed that targeted inhibition of MCT1 and MCT2 expression 
significantly reduced lactate efflux from glioblastoma multiform cells.58 Thus, MCT1 can transport lactate in both 
directions. MCT1 and 4 also have a certain ability to transport ketone bodies, and the affinity of MCT1 for ketone bodies 
is higher than that of MCT4. Therefore, MCT1 participates in the development of tumors by mediating the transport of 
ketone bodies.1 These suggest that MCTs may be a potential target for anti-cancer therapy by knocking down MCTs (by 
inhibitors or siRNA) or by combining MCT knockdown with chemotherapy or radiotherapy for anti-tumor treatment.59

Figure 3 Schematic of lactate shuttling from cell to cell through the MCTs. Hypoxic cancer cells and cancer-associated fibroblasts (CAFs) use glucose to produce lactate 
through glycolysis, and lactate is transported out of the cell by MCT4. Aerobic cancer cells transport lactate through MCT1. Vascular endothelial cells transport lactic acid 
into cells through MCT1 and promote angiogenesis through NF-KB/IL8 pathway (㊉: activate).
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Lactic acid produced by tumor cells is not only taken up by cells for oxidative energy but it also inhibits the killing effect of 
immune cells on tumor cells, giving cancer cells immune tolerance.60,61 Lactate produced by tumors is internalized by 
cytotoxic T cells (CTLs) and inhibits cytotoxic T cell proliferation and anticancer function by inhibiting p38 and JNK/c-Jun 
activation.62 Lactate polarizes macrophages to promote the M2 phenotype of tumors and exerts an immunosuppressive 
function by activating G protein-coupled receptor 132 (GPR132). Lactate also inhibits the antitumor immune response of 
dendritic cells (DCs) by inhibiting the differentiation of monocytes into DCs.62 One study showed that the elevated lactate 
level in the tumor microenvironment is a by-product of glycolysis in breast cancer that both weakens the anticancer immune 
response in a concentration-dependent manner and plays a key role in the regulation of the tumor immune 
microenvironment.63 Another study reported that the down-regulation of MCT4 promoted the cytotoxicity of NK cells in 
breast cancer, indicating that MCT4 is involved in the suppression of the tumor immune microenvironment.64 Sun et al found 
that MCT4 may act as an immune suppressor by reducing macrophage maturation or perturbing T cell metabolism.65

Role of MCTs in the Proliferation, Migration and Progression of Tumor Cells
MCTs play an important role in tumor cell proliferation, invasion and migration and tumor progression. MCT4, together 
with proton cotransporter, transports lactate produced by cancer cells through glycolysis out of the cell and transports 
lactate into vascular endothelial cells through MCT1. Lactate and pyruvate stimulate the expression of HIF-1.66,67 HIF-1 
further promotes the expression of vascular endothelial growth factor (VEGF), which promotes the generation of blood 
vessels, providing more nutrients for tumor cells.68 Gloire et al found that lactic acid promotes the phosphorylation and 
degradation of IkBα in endothelial cells, and then promotes the activation and transfer of free NF-κB to the nucleus for 
transcriptional regulation to promote angiogenesis.69 Other studies have shown that lactate promotes the secretion of IL-8 
in endothelial cells, which in turn promotes the expression of NF-κB and angiogenesis. Inhibition of MCT1 inhibits the 
formation of the tumor microvascular network and tumor proliferation.70 Zhao et al found that MCT1 regulates tumor 
growth and metastasis by regulating the NF-κB pathway, and inhibition of MCT1 reduced the growth and metastasis of 
osteosarcoma and improved the effect of chemotherapy in osteosarcoma.71 Additionally, lactate exported by MCT4 is the 
fuel for cancer cell proliferation, and cancer cells transport lactate into cells through overexpression of MCT1.47 Hong 
et al showed that inhibition of MCT1 prevents breast cancer cell proliferation by preventing pyruvate transport to the 
outside of cells; however, it did not increase cell apoptosis.72 A previous study showed that silencing of MCT1 and 
MCT2 inhibits tumor growth and leads to apoptosis and necrosis of tumor cells.58 Pertega et al reported that both MCT1 
and MCT4 expression were increased and positively correlated with prostate cancer progression.73

CAFs are important components affecting cancer cell invasion and metastasis. Giannoni et al found that CAFs trigger 
a pro-oxidative environment in cancer cells, profoundly affecting tumor progression and metastatic spread.74 In another 
study by the same group, CAFs were found to promote epithelial-mesenchymal transition in human prostate cancer cells 
and promote tumor growth, increase the development of stem cell markers and induce spontaneous metastasis.75 Studies 
have shown that MCT4 is involved in the metabolic reprogramming process of prostate cancer cells and CAFs, and 
a higher expression of MCT4 in prostate cancer cells corresponds with a worse clinical outcome.76 Other studies reported 
that CAFs interact with bladder cancer cells to promote tumor progression, and the expression of MCT1 and MCT4 is 
up-regulated in fibroblasts.77 Therefore, MCTs may affect cancer invasion and metastasis by affecting the metabolic 
reprogramming process of cancer cells and CAFs. MCT4 also discharges lactate produced by CAFs from cells and 
transports it into cancer cells through MCT1 to provide energy for cancer cell proliferation (Figure 3). Zhang et al found 
that inhibition of MCT1 reduced bladder cancer cell proliferation, migration and invasion.78 Another study found that 
inhibition of MCT4 by siRNA significantly inhibited the trans-pore migration of MDA-MB-231 cells by 85%.79 This 
suggests that MCTs can enhance the ability of cancer cells to migrate and invade not only by affecting stromal cells in the 
tumor microenvironment but also by directly influencing the tumor cells.

Under hypoxic conditions, tumor cells secrete a variety of stimuli to recruit macrophages to the hypoxic site.80 A large 
amount of lactic acid produced by glycolysis of tumor cells is absorbed into cells by macrophages through MCT1. Some 
reports showed that lactate entering macrophages activates GPR132 to induce M2 polarization of macrophages by increasing 
the expression of Arg1 and Mrc1. M2 macrophages can enhance the adhesion, migration and invasion of cancer cells.81,82
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Regulation of MCT1 and MCT4
The expression levels of MCTs vary among different tissues. MCT levels are regulated at both pre- and post- 
transcriptional levels (Figure 4).83

HIF-1
Tumor cells are exposed to hypoxia, which induces the expression of hypoxia-inducible factor (HIF-1), a transcription 
factor that initiates a series of responses, including angiogenesis and various pro-survival mechanisms.84 HIF-1 is stably 
expressed in a hypoxic environment and upregulates the activity of GLUTs, glycolysis-related enzymes and other 
hypoxia-related genes, reducing the dependence of cells on the oxidative pathway and transferring cell metabolism to 
the glycolytic pathway.85 Elevated HIF-1 in rapidly growing cells, such as embryos and tumors, not only stimulates 
glycolysis but also reduces pyruvate flow to the TCA by inhibiting LDH in mitochondria.86,87 This HIF-1-mediated 
inhibition of LDH reprogramming in glucose metabolism is the main basis of the “Warburg effect”.13

In the hypoxic environment, HIF-1 binds to two hypoxia response elements upstream of the transcription start site to 
up-regulate the expression of MCT4. The MCT1 promoter lacks the hypoxia response elements that are bound by HIF-1, 
so HIF-1 does not induce the increase of MCT1 expression.88 Previous studies have shown that HIF-1 and specific 
protein 1 (SP1) jointly mediate the expression of CD147 in the hypoxic microenvironment of epithelial solid tumors.89 

This up-regulation of CD147 expression indirectly plays a role in the regulation of MCT. Additionally, several 
investigators have shown that hypoxia does not lead to upregulation of MCT1 and MCT4 in MCF-7 cells, but it does 
lead to upregulation of MCT1-associated carbonic anhydrase IX (CAIX), which promotes the rapid secretion of lactate 
and H+ from breast cancer cells in uncatalyzed reactions.90

p53
The p53 tumor suppressor has been the subject of intensive investigation. The occurrence of cancer is closely related to 
mutation of the p53 gene, and approximately 50% of human cancers lose p53 function because of gene mutation.91 p53 

Figure 4 MCTs partial adjustment mode diagram. 
Notes: ㊉: Activate, ㊀: suppress. 
Abbreviations: TCF/LEF, T-cell factor/lymphoenhancer factor; CBP, CREB-binding protein; MACC1, metastasis-associated in colon cancer-1.
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regulates the expression of genes related to cell cycle progression, apoptosis, cell differentiation and senescence.92 p53 
inhibits cell proliferation and mediates homeostatic regulation of immunity and inflammation, homeostatic regulation of 
cell competition and homeostatic regulation of stem cell self-renewal and differentiation.91 During stress, this activates 
p53 transcriptional activity and promotes senescence or apoptosis of damaged cells, contributing to the protection of 
tissue integrity under severe stress conditions.91 p53 is also involved in the regulation of metabolic pathways in tumor 
cells, and loss of p53 stimulates glycolysis and impairs the mitochondrial respiratory chain, thereby promoting the switch 
of ATP production from oxidative phosphorylation to glycolysis.93 Boidot et al found that p53 deficiency promoted the 
expression of MCT1 under hypoxic conditions, thereby promoting lactate release from elevated glycolytic flux.94 Under 
hypoxic conditions, loss of p53 is associated with the stabilization of MCT1 mRNA, and p53 inhibits MCT1 expression. 
NF-κB plays a crucial role in the hypoxia-induced increase of MCT1 expression in p53-deficient cells.

Myc
The Myc oncogene is activated in many malignant tumors and closely associated with tumorigenesis. Approximately 
100,000 cancer-related deaths each year are associated with dysregulated Myc expression.95 Upregulation of Myc 
expression is observed in 50% to 60% of tumors and directly contributes to malignant transformation through its 
pathogenic role in tumorigenesis, development and maintenance.96 Myc transforms normal cells into tumor cells by 
increasing the transcription level of high-affinity target genes and even saturating them. Myc also up-and down-regulates 
low-affinity target genes.97 Myc oncoproteins belong to a family of so-called “hypertranscription factors” that may 
regulate at least 15% of genetic transcription across the genome, including multiple targets involved in cell growth, 
metabolism and division.98,99 Prominent targets of Myc regulation include genes that encode enzymes that drive aerobic 
glycolysis, a hallmark of most tumors.100,101

The MCT1 promoter region has a typical Myc binding site, and Myc regulates the expression of MCT1 through this 
site.102 MCT1 expression is increased in MCF10 breast epithelial cells expressing Myc and in certain tumors.103 Other 
studies have shown that c-Myc regulates MCT1 expression by regulating the activity of the MCT1 promoter.95 Myc also 
transcriptionally represses miR29A and miR29c, resulting in enhanced expression of MCT1.104

Butyrate
Butyrate, a short-chain fatty acid (SCFA), is produced by bacterial fermentation of undigested carbohydrates in the colon 
and is the main fuel for colon cells. In the gut, SCFAs are transported across the cell membrane by pH-dependent, H+- 
coupled MCT and sodium-coupled monocyclic acid transporter (SMCT).105 The main consequence of reduced intracel-
lular SCFA oxidation is metabolic starvation and mucosal atrophy.106 After entering cells, butyrate is metabolized to 
provide energy for cells and also has a regulatory effect on gene expression. Butyrate regulates gene expression at several 
levels, including through transcription, mRNA stability and elongation mechanisms.107

One study showed that butyrate upregulates MCT1 expression and activity through transcriptional and post-transcriptional 
mechanisms.108 Borthakur et al demonstrated that butyrate upregulates MCT1 promoter activity, thereby promoting the expres-
sion of MCT1, and the authors showed that this regulatory process involves the NF-κB pathway.109 In another study by the same 
group, butyrate and niacin were shown to reduce intracellular cAMP levels, which in turn promoted MCT1 expression.110

G-Protein-Coupled Receptors (GPRs)
G protein-coupled receptor 81 (GPR81), also known as hydroxycarboxylate receptor 1 (HCAR1), is a lactate receptor 
that is highly expressed in adipocytes and present at low levels in a variety of normal cells.111–113 GPR81 is also 
expressed in a variety of cancer cells, such as colon, breast, lung, hepatocellular carcinoma, cervical cancer and salivary 
gland cancer cells.114 GPR81 has multiple functions in vivo, including in cell development and survival, lipid metabo-
lism, lactate transport, promotion of tumor angiogenesis, tumor growth and metastasis.114–117 Roland et al showed that 
GPR81 regulates lactate uptake and MCT1 gene expression, and silencing GPR81 reduces tumor cell activity and tumor 
cell proliferation when lactate is the only available energy source.114

GPR109A, a nicotinic acid receptor, is highly expressed in neutrophils, macrophages, monocytes, dendritic cells, 
skin, liver cells, retinal cells, bone and adipocytes.118,119 GPR109A is activated by monomethyl fumarate (MMF) and 
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niacin (niacin or vitamin B3).120 Promoter methylation inhibits GPR109A expression in human colon cancer cells, and 
IFN-γ reverses the DNA methylation-mediated silencing of GPR109A.121 Butyrate and niacin activate the expression of 
GPR109A and promote the expression of MCT1 in colon cancer cells. In cells silenced for GPR1089A with siRNA, 
butyrate showed no effect on the expression of MCT1.110

Metastasis-Associated in Colon Cancer-1 (MACC1)
MACC1 is an oncoprotein that regulates the hepatocyte growth factor/methionine kinase receptor epidermal growth factor 
(HGF/c-Met) pathway, which promotes carcinogenesis and tumor progression by promoting the migration and invasion of 
cancer cells and inhibiting the apoptosis of cancer cells.122 MACC1 plays a key role and functions as a biomarker for the 
progression and metastasis of a variety of solid tumors, such as gastrointestinal tumors and gynecological tumors. MACC1 
has been demonstrated as a clinically useful prognostic and predictive biomarker in multiple types of solid tumors.123 

MACC1 plays an important role in tumor cells and tumor microenvironment to promote glucose metabolism of tumor cells 
and provide energy for cells. MACC1 regulates the sensitivity of tumor cells to chemotherapeutic drugs.

Wang et al found that MACC1 regulates the expression of MCT1 in gastric cancer. The overexpression of MACC1 
increased MCT1 protein expression in the gastric cancer cell line MKN45, while its silencing decreased MCT1 
expression.124 Furthermore, increasing MCT1 expression in gastric cancer cells enhanced chemosensitivity to 5-FU 
and cisplatin. However, which pathway MACC1 regulates MCT1 expression is still unclear.

Phorbol 12-Myristate 13-Acetate (PMA) and Luminal Leptin
PMA, a protein kinase C agonist, significantly increased apical butyrate uptake and MCT1 protein expression in Caco-2 
cells.125 Intestinal MCT1 gene expression is regulated by PMA at the transcriptional level, which is dependent on PKC 
activation, and the up-regulation of MCT1 gene expression by PMA involves atypical PKC-ζ isoforms and the activator 
protein 2 (AP2) transcription factor.126

Leptin is a hormone with multiple functions that is synthesized in different peripheral tissues, such as stomach, 
salivary glands, placenta and kidney.127 Leptin is associated with food intake and energy expenditure.128 Studies have 
shown that luminal leptin can regulate intestinal butyrate uptake by increasing cellular MCT1 mRNA expression.129 The 
pathway by which leptin regulates MCT1 expression requires further investigation.

Promoter Methylation
DNA methylation is a key epigenetic process that involves the addition of methyl groups to a cytosine adjacent to 
a guanidine, a CpG dinucleotide.130 Alterations in DNA methylation status within genes can lead to differences in gene 
transcription and mRNA expression levels without changing the nucleotide sequence. While hypermethylation is 
associated with gene silencing, hypomethylation is associated with activating gene expression.131 Many MCTs have 
been reported to contain CpG islands in their promoter sequences. In renal clear cell carcinoma, MCT4 is regulated by 
promoter methylation; the degree of promoter methylation is decreased and MCT4 mRNA expression is significantly 
increased in renal clear cell carcinoma tissues compared with adjacent non-tumor tissues.132 Asada et al found that the 
MDA-MB-231 human breast cancer cell line treated with 5-aza-2′-deoxycytidine, a demethylating agent, restored MCT1 
mRNA expression, suggesting that MCT1 is similarly regulated by promoter methylation.133

Post-Transcriptional Regulation via miRNAs
MCTs are regulated not only before transcription, but also after transcription. Increasing studies have shown that MCTs 
are post-transcriptionally regulated by miRNAs, which bind to MCT mRNAs, leading to the degradation of mRNA. Ng 
et al found that miR-124 bound to the 3′-untranslated region of MCT1 mRNA in medulloblastoma, resulting in decreased 
MCT1 expression, suggesting that miR-124 is a negative regulator of MCT1.134 Liang et al demonstrated that miR-495 
binds to the 3′ untranslated region of human MCT1 and down-regulates MCT1 mRNA and protein expression in HeLa 
cells.135 Additionally, miR-342-3p directly targets MCT1 in triple-negative breast cancer, and loss of miR-342-3p leads 
to MCT1 overexpression and metabolic reprogramming.136
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While several studies have evaluated the regulation of MCT1 by miRNA, few reports are available on miRNA- 
mediated regulation of MCT4. Xu et al found that miR-1 mimics and inhibitors down-regulate the mRNA and protein 
expression of MCT4 and this miRNA may indirectly regulate the expression of MCT4 by regulating HIF-1.137 In 
hepatocellular carcinoma, miR-145 inhibited lactate efflux by targeting MCT4, thereby reducing the intracellular pH of 
tumor cells; the therapeutic effect of miR-148 was demonstrated in a HepG2 tumor-bearing mouse model.138 In diabetic 
vascular complications, miR-425-5p down-regulates the expression of MCT4 In vascular endothelial cells, which 
becomes a target for the treatment of diabetic complications.139

In addition to the mechanisms described above, there are a number of other regulatory modalities. Fan et al found that 
autophagy promotes MCT1 expression and induces glycolysis in liver cancer cells by activating Wnt/β-catenin signaling 
to promote transcription.140 In addition, and Sprowl-Tanio et al found that MCT1 is also a direct Wnt target gene in colon 
cancer cell lines.141 Transcription factors upstream stimulators 1 and 2 (urf1/2) suppress MCT1 expression in the human 
gut by inhibiting the transcription of MCT1.142 In colon cancer cells and stromal cells, the antioxidant transcription factor 
nuclear factor E2-related factor-2 (Nrf2) promotes metabolic symbiosis between colorectal cancer cells and stromal cells 
by regulating MCT1 and MCT4.143 In L6 cells, Hashimoto et al found that lactic acid stimulates the generation of 
reactive oxygen species, which activates the NF-κB and Nrf2 pathways and in turn leads to MCT1 expression.144 The 
authors also showed through microarray analysis that AP-1 may be involved in the regulation of MCT1. Increasing 
carbonic anhydrase affects MCT activity on the plasma membrane and regulates MCT. Carbonic anhydrase II (CAII) 
enhances the transport activity of MCT1.145 The activities of MCT1 and MCT4 were enhanced by carbonic anhydrases 
IV (CAIV) and IX (CAIX).146,147 Aspatwar et al found that co-expression of catalytically inactive carbonic anhydrase– 
related proteins VIII, X and XI in Xenopus oocytes enhanced the transporter activity of MCT1.148 Some studies have 
indicated the regulation of MCT4 by AMPK, PKC, FBI-1 and interleukin 1β.149–153

The adjustment of MCTs is summarized in Table 1.

Inhibitors of MCTs
MCTs transport monocarboxylic acids, especially lactic acid, provide energy for tumor cells, promote the proliferation, 
invasion and migration of tumor cells and are closely related to the degree of malignancy in a variety of tumors. In solid 
tumor cells, such as in non-small cell lung cancer, increased MCT expression indicates poor prognosis and high 
expression of MCT4 predicts poor prognosis.154 MCT1 is an independent prognostic marker for survival in non-small 
cell lung cancer.155 Drug resistance of tumor cells is also related to the up-regulation of MCT expression. Therefore, 
inhibition of MCT may be a therapeutic strategy for a variety of tumors. For example, inhibition of MCT1 has an 
antimetabolic effect on oxidized tumor cells, while targeting MCT1 in endothelial cells has a strong antiangiogenic 
effect.51 Aerobic cancer cells mainly transport lactate produced by hypoxic cancer cells into cells through MCT1 to 
generate energy for cell metabolism. After MCT1 inhibition, aerobic cancer cells switch from lactate metabolism to 
glucose metabolism to generate energy, forcing aerobic cells to take up more glucose from nearby blood vessels. Because 
of the high glucose consumption of aerobic cells, hypoxic cells are deprived of glucose, which is the only energy source 
for these cells, leading to glucose starvation and subsequent apoptosis induction in hypoxic cells, indirectly inhibiting 
hypoxic cancer cell survival.42 After MCT4 inhibition, hypoxic cancer cells are unable to transport lactate out of the cell, 
leading to cytosolic acidification, which in turn leads to cell death. Therefore, MCT inhibitors may play a crucial role in 
the treatment of a variety of cancer cells. Compared with inhibitors against MCT1, MCT4 inhibitors are relatively rare.

AZD3965 and AR-C155858
AZD3965, an analogue of AR-C155858, is a pyrrolidine derivative that is a first-rate potent inhibitor of MCT1 with high 
affinity for MCT1. AZD3965 has been shown to have promising tumor inhibitory effects in a variety of preclinical 
xenograft tumor models.156–159 Through in vitro cell experiments, AZD3965 was demonstrated to inhibit cell 
proliferation.160 Upon co-expression of MCT1 and MCT4, tumor cells showed relative tolerance to AZD3965 single- 
agent activity, suggesting that MCT4 may continue to drive lactate transport even in the presence of AZD3955.104 

Clinical evaluation of AZD3965 is also ongoing.161 AZD3965 not only targets MCT1-mediated lactate transport, but it 
has also been reported to be involved in enhancing pyruvate/mitochondrial metabolism.72,162 Moreover, mitochondrial 
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complex I inhibitor, metformin and mitochondrial pyruvate carrier inhibitor UK5099 increased the sensitivity to 
AZD3965.162

AR-C155858, a potent MCT1 inhibitor, does not inhibit MCT4. AR-C155858 exerts its inhibitory effect by binding to 
the TM7–10 of MCT1.163 AR-C155858 selectively blocks MCT1 and MCT2 activities in activated T lymphocytes and 
prevents lactate efflux.57 AR-C155858 inhibits the lactate efflux of HL60 cells, a highly glycolytic leukemia cell line 
expressing MCT1 but not MCT4.164 Furthermore, similar to AZD3965, AR-C155858 shows limited activity in tumor 
cells with MCT4 expression; in tumor cells expressing both MCT1 and MCT4, MCT4 was able to promote lactate efflux 
when MCT1 was blocked.35

Coumarin Carboxylic Acids
Coumarin is an important structural unit found in many important drug molecules with favorable pharmaceutical 
properties.165 A variety of derivatives of coumarin have MCT inhibitory effects. Draoui et al reported that the 7-alkyl 
amino substituent on the 3-carboxycoumarin scaffold was required for significant inhibition of MCT.166 Tateishi et al 
showed that 7-amino-carboxycoumarin derivatives bind MCT1 in astrocytes, and targeted imaging of MCT1 by labeled 
7-amino-carboxycoumarin derivatives may help further study the pathological mechanism of central nervous system 
diseases.167 Furthermore, 7-aminocarboxycoumarin derivatives caused significant tumor growth retardation by inhibiting 
lactate influx in cervical cancer SiHa xenografts and HCT-116 cell transplantation models.164

Table 1 Summary of MCTs Regulation

MCTs Regulating Modes Ref

MCT1/4 Nrf2 [143]
CAIV/IX [146,147]

Promoter methylation [132,133]

MCT1 P53 [94]
Myc [95,102–104]

Butyrate [108–110]

Wnt /β-catenin [140,141]
GPR81/109A [110,114]

MACC1 [124]
PMA [125,126]

Luminal leptin [129]

AP1 [144]
Urf1/2 [142]

NF-κB [109,144]

CAII [145]
MiR-124 [134]

miR-495 [135]

miR-342-3p [136]
MCT4 HIF-1 [88]

AMPK [150,151]

PKC [151,152]
FBI-1 [149]

IL-1β [153]

miR-1 [137]
miR-145 [138]

miR-148 [138]

miR-425-5p [139]
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Bay-8002
BAY-8002 with a 5-(phenylsulfonyl benzamide) benzoic acid scaffold is an effective and specific oral hMCT1 inhibitor. 
BAY-8002 inhibits the proliferation of lymphoma cells and has no inhibitory effect in MCT4-expressing oocytes. BAY- 
8002 and AZD3965 have the same or overlapping binding sites on MCT1.168

Inhibitors of MCT4
So far, only two MCT4-specific inhibitors, VB124 and Bindarit, have been reported. VB124 selectively inhibits MCT4 and 
has a very low inhibitory effect on MCT1. Cluntun et al found that VB124 specifically inhibits MCT4 and inhibits lactate 
efflux.169 VB124 inhibits MCT4 in mouse H9c2 cells to prevent and reverse cardiac hypertrophy. In an in vitro HCC model, 
VB124 inhibited MCT4, resulting in less lactate output, which enhanced the killing effect of immune cells on HCC cells.170

Bindarit, an anti-inflammatory agent that inhibits the production of inflammatory cytokines, is a highly selective and 
non-competitive hMCT4 inhibitor that selectively inhibits hMCT4 more than hMCT1 in Xenopus laevis oocytes.171,172

Nonselective Inhibitors of MCTs
α-Cyano-4-Hydroxycinnamate and Analogs
The MCT1 inhibitor α-cyano-4-hydroxycinnamate (CHC), a cyanoacetic acid, has been extensively studied for its 
inhibitory effect on MCT1 and MCT4. In vitro cell experiments and xenograft models showed that CHC inhibited 
MCT1 to reduce tumor size, sensitize hypoxic tumor regions to radiotherapy and induce cell death when lactate was the 
only energy source.47 Colen et al used CHC to inhibit lactate efflux in glioblastoma tumors, affecting tumor invasion and 
proliferation capacity.173 CHC also inhibits MCT in the mitochondrial membrane, which reduces the flow of pyruvate to 
mitochondria and inhibits cell proliferation.174,175 Other studies have shown that CHC affects DNA repair by inhibiting 
MCT to limit lactate flux.176

α-Cyano-4-hydroxy-3-methoxycinnamic acid (ACCA) is a derivative of CHC that inhibits MCTs and has a high 
affinity for MCT1.11 Hamdan et al demonstrated that ACCA selectively inhibited the growth of breast cancer cells 
in vitro by inhibiting MCT1.177

Jonnalagadda et al recently reported that N,N-dialkyl cyanocinnamic acids not only showed high potency against 
MCT1 but also showed excellent MCT4 inhibition.178 In vivo xenograft model studies revealed that N,N-dialkyl 
cyanocinnamic acids exhibit excellent efficacy and selectivity in MCT1-expressing tumors.165

Isobutyrate Derivatives
Fibrate lipid-lowering agents, such as bezafibrate, fenofibrate anion (the active metabolite of fenofibrate) and clinofibrate, 
contain butyrate, which has an isobutyrate moiety, and exhibit inhibitory effects on both MCT1 and MCT4.171,179 The 
inhibitory potency of clinofibrate on hMCT4 was similar to that of bezafibrate and fenofibrate anions; its inhibitory 
potency on hMCT1 was slightly higher than that of other fibrates.171

A previous study showed that 1-benzyl-1-hindazole-3-carboxylate, a derivative of benzylindazole and dechlorinated 
form of clonamide, slightly inhibits hMCT1 and hMCT4. Bendazak, a non-steroidal anti-inflammatory drug, showed 
a slight inhibitory effect on hMCT1 and hMCT4.180

Other Inhibitors
Some early MCT inhibitors, such as phloretin, quercetin and 4.4′-di-iso-thiocyanostilbene-2,2′-disulfonate (DIDS), 
showed low affinity and poor specificity.7 Nancolas et al found that the antitumor drug ionidamine inhibited the ability 
of MCTs to transport lactate in Xenopus oocytes, but it showed nonselective inhibitory activity against transporters.181 

Other inhibitors include the MCT1 inhibitor indolecyanoacrylate, pteridine dione and trione and the MCT4 inhibitor 
acriflavine (ACF).42,182,183 ACF disrupted the interaction of MCT4 with CD147 to inhibit MCT4 function in glioblas-
toma stem cells; ACF also significantly reduced angiogenesis and tumor progression under hypoxic conditions.184

Some inhibitors of MCTs are summarized in Table 2.
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Conclusion
MCT1 and MCT4 are highly expressed in a variety of tumor cells; they play key roles in transporting monocarboxylate in 
the intracellular and extracellular environment and connect the lactate shuttle between tumor cells, tumor cells and non- 
tumor cells. MCT1 and MCT4 affect the glucose metabolism of tumor cells and play a crucial role in tumor cell 
proliferation, migration and invasion. MCT1 expression is closely related to the prognosis and drug resistance of tumors. 
Therefore, targeting MCTs has become a possible strategy for the treatment of cancer. In drug-resistant tumor cells, the 
combination of targeted MCT and chemotherapeutic drugs reversed the drug resistance of tumor cells. These findings 
suggest a potential new strategy for cancer treatment.

In recent years, increasing studies have been performed on drugs that inhibit MCTs, most of which are non-specific 
inhibitors. Considering the role of MCTs in tumor progression, research on specific MCT inhibitors is becoming 
important. Nano-drug delivery carriers have been recently developed and are widely used in pre-clinical trials because 
of their good biocompatibility and low toxicity. Nano-drug delivery vectors can carry not only genes but also drugs. 
A nano-drug delivery vector loaded with gene targeting MCTs may specifically and effectively inhibit MCTs, making 
this approach a potential method to inhibit MCT for cancer treatment.

The role of MCT1 and MCT4 in tumor cells goes far beyond these described above, and more studies are needed to 
explore other roles of MCTs in tumor cells. Inhibitors for MCTs also need to be continuously developed and explored in 
clinical trials.
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Table 2 Summary of Inhibitors

MCTs Inhibitors Ki or EC50* Ref

MCT1 AZD3965 1.6nM [156–161]
AR-C155858 2.3nM [57,163,164]

7-Aminocarboxycoumarin Derivatives 11nM [164,167]

Indole cyanoacrylate – [42]
Pteridine Dione and Trione – [183]

BAY-8002 7.9nM; 10nM [168]

MCT4 VB124 8.6nM [169,170]
Bindarit 30.2uM [171,172]

ACF 4.6mM [184]
MCTs CHC 0.99uM [47,173–176]

ACCA 1mM [11,177]

N,N-dialkyl cyanocinnamic acids – [165,178]
Isobutyrate derivatives – [171,179]

BIC 40uM [180]

Bendazak 36uM [180]

Notes: *Ki: The concentration of the corresponding free inhibitor when 50% of the substrate is bound by the 
inhibitor. EC50: The concentration of the inhibitor corresponding to 50% of the maximum biological effect can 
be achieved after a specific exposure time.
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