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Abstract: Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an 
injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an 
inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the 
initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic 
pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of 
inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article 
reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, 
neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future 
research and development of therapeutic targets for CRPS. 
Keywords: complex regional pain syndrome, neuroinflammation, neurogenic inflammation, glial cells, keratinocytes

Introduction
Complex regional pain syndrome (CRPS) is a type of excessive pain and inflammation syndrome that typically follows 
an injury (eg, trauma, fracture, surgery, or local ischemia) to a limb.1 The persisting regional pain is often dispropor
tionate in duration and extent to the inciting injury. Based on the presence or absence of definite peripheral nerve injury, 
CRPS is classified into two types: CRPS type I (without definite peripheral nerve injury, formerly known as reflex 
sympathetic dystrophy) and CRPS type II (with definite peripheral nerve injury, previously referred to as causalgia).1,2 

There are diverse clinical manifestations of CRPS, encompassing refractory pain, vascular alterations, and autonomic 
nervous system dysfunction.3,4 These persistent and distressing symptoms often result in disability and remarkable 
economic burden to families and the society. CRPS can also significantly affect patients’ mental health, social relation
ships, and their quality of life.5,6 The pathophysiological mechanism of CRPS is complex and not yet fully elucidated. 
Possible mechanisms include inflammatory and immune responses dysregulation, autonomic nervous system dysfunc
tion, peripheral and central sensitization, brain sensorimotor cortex remodeling, genetic susceptibility, and psychosocial 
factors.7–9

Inflammation is a biological response to tissue damage, involving the recruitment of immune cells and the release of 
inflammatory mediators. When this process occurs in either the peripheral or central nervous system, it is referred to as 
neuroinflammation.10 Similar to inflammation, neuroinflammation is characterized by the infiltration of immune cells, 
activation of glial cells, and increased production of inflammatory mediators in the peripheral (PNS) and central nervous 
system (CNS).10–12 Neuroinflammation is typically a tightly regulated physiological process that facilitates the regenera
tion and healing of damaged tissue. However, if the regression of neuroinflammation is impeded, sustained neuroin
flammation will decrease the threshold of nociceptors, leading to their activation by subthreshold stimuli.13–15 Aberrant 
neuroinflammation in the PNS and CNS plays a crucial role not only in the development but also in the maintenance of 
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chronic pain.16,17 Recent studies have provided supportive evidence for the role of neuroinflammation in CRPS, which 
may contribute to both the transition from acute to chronic pain and the persistence of chronic pain.8,18–20 The primary 
cells involved in this process include nociceptors, neurons, glial cells (such as Schwann cells, astrocytes, microglia, and 
oligodendrocytes), immune cells (including T cells, macrophages, and mast cells), keratinocytes and others.15

Neuroinflammation is a form of localized inflammation that surpasses systemic inflammation in its ability to initiate 
and sustain CRPS pain. Targeting neuroinflammation could be a potential therapeutic approach for CRPS. However, 
a comprehensive review summarizing the involvement of neuroinflammation in CRPS is currently lacking. Drugs 
developed specifically targeting neuroinflammation for the treatment of CRPS are still limited. This article reviews the 
role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, 
neuropeptides, glial cell activation, immune cell infiltration, cytokines, and keratinocytes. The aim is to offer valuable 
insights for future research and facilitate the development of effective therapeutic targets for CRPS.

Neurogenic Inflammation
Neurogenic inflammation refers to the inflammatory response in the nervous system that is triggered by neuronal 
activity.12,21,22 Neurogenic inflammation is first observed in the skin, where mechanical or chemical stimulation can 
activate nociceptive receptors (particularly C fibers) within the affected tissue. This activation stimulates peripheral nerve 
endings, thereby facilitating the release of neuropeptides.23 These neuropeptides interact with immunomodulatory cells, 
leading to the secretion of proinflammatory cytokines, local vasodilation, protein extravasation, and other inflammatory 
reactions.24,25 They also promote pain signaling and induce peripheral sensitization.25–28 Neuropeptides can bind to their 
corresponding receptors in the CNS, activating microglia and astrocytes, which in turn can amplify neurogenic 
inflammation.28–30

Activation of C nociceptors in the periphery leads to the transmission of pain signals to the nociceptive neurons in 
dorsal root ganglion (DRG). Inflammatory mediators are expressed and released by nociceptive neurons through their 
central terminals into the spinal cord, where they persist and cause associated symptoms.11,25,31 These mediators include 
neuropeptides, glutamate, brain-derived growth factors, cytokines, chemokines, growth factors, adenosine triphosphate 
(ATP), and enzymes. Neurogenic inflammation serves as the primary trigger mechanism in the pathogenesis of CRPS and 
has been considered central in the development of CRPS25,32 (Figure 1).

Neuropeptide
Neuropeptides are synthesized primarily by sensory neurons in the trigeminal ganglion and DRG and then transported via 
axoplasmic transport to both central and peripheral nerve endings. These neuropeptides are important in signal 
transduction, acting on adjacent neurons to induce neurogenic inflammation as well as peripheral sensitization of 
CRPS.25,33 Both clinical trials and animal studies have demonstrated that certain neuropeptides, particularly substance 
P (SP), calcitonin gene-related peptide (CGRP), and neurokinin A (NKA), can be released by peripheral nerve fibers in 
individuals with CRPS.21,34–36 Dysfunction of neuropeptide-containing primary afferent C fibers leads to vascular 
symptoms, trophic changes, and the formation of pain in CRPS.36–38 The quantity of Langerhans cells is elevated in 
CRPS murine models and the skin of CRPS patients, while these increments are diminished in neuropeptide signaling- 
deficient animals.39 SP and NKA can also activate NKA1 receptors, leading to local vasodilation, increased vascular 
permeability, and plasma extravasation.21 By acting on vascular smooth muscle and endothelial cells, CGRP can cause 
vasodilation, elevation of skin temperature, and erythema.21 CGRP can also enhance sweat gland activity, promote 
increased sweat secretion,40 and stimulate hair growth,41 all of which are common manifestations of CRPS. In the tibial 
fracture model for CRPS type I, there was an increase in the expression levels of CGRP and SP in DRG at L4 and L5 
levels on the affected side.36 SP and CGRP have a direct effect on attracting and activating cell types involved in both 
innate immunity (mast cells, dendritic cells) and adaptive immunity (T lymphocytes).21 In the chronic constriction of 
sciatic nerve model of CRPS, neutral endopeptidase (NEP, a neuropeptide-degrading enzyme) gene knockout mouse 
were more sensitive to heat, cold, and mechanical stimuli than wild type mice. These phenotypes were only seen in 
animals with nerve but not tissue injuries, further validating the pivotal role of substance P and CGRP in neurogenic 
inflammation.42 In CRPS type II animal models, the expression of SP and CGRP was significantly upregulated not only 
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at the injury site but also in adjacent neuromuscular tissues, indicating the involvement of neuropeptides in inflammation 
propagation.43 On the other hand, a CRPS mouse model with substance P and CGRP receptor knockout did not exhibit 
abnormal pain, edema, or skin temperature elevation in the affected limb.44 Animal studies also showed that substance 
P receptor antagonists alleviated skin temperature changes, edema, and pain in CRPS.45 Angiotensin-converting enzyme 
inhibitors are involved in the metabolism of substance P and bradykinin, which may limit the expansion of neuroin
flammatory response in these patients.46 Additionally, recent clinical studies suggest that impaired peptide metabolism 
could contribute to post-traumatic pain in individuals with CRPS or limb trauma.47

In summary, neuropeptides, particularly SP and CGRP, mediate the enhanced neurogenic inflammation and pain in 
CRPS28–30 (Figure 1). The development of pharmaceuticals targeting the inhibition of SP or CGRP signaling pathways 
may represent a promising approach for alleviating CRPS-associated pain.

Cytokines
Nociceptive peripheral nerve terminals are equipped with receptors and ion channels that can detect molecular mediators 
released during inflammation. Upon activation, nociceptive action potentials propagate to the cell bodies of nociceptors 
located in the DRG, which then transmit these signals to the spinal cord and brain for pain processing. After peripheral 
nerve injury, a range of cytokines is upregulated,48 which can activate and sensitize C fibers,29 thereby exacerbating 
neurogenic inflammation. Those inflammatory cytokines play a crucial role in modulating nociceptor activity and pain 
sensitization.49 This part provides an overview of their involvement in neuroinflammation and CRPS.

Clinical studies have demonstrated that the equilibrium between proinflammatory and anti-inflammatory cytokines is 
disrupted in CRPS,50 resulting in a shift towards a proinflammatory cytokine profile.51 The concentrations of proinflammatory 
cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor (TNF)-α are 
elevated in the serum, cerebrospinal fluid, and skin blister fluid of patients with CRPS,51–53 while levels of anti-inflammatory 
cytokines such as interleukin-4 (IL-4), interleukin-10 (IL-10) and transforming growth factor-β are reduced in their 

Figure 1 The role of neurogenic inflammation in the pathophysiology of CRPS. Nociceptive receptors can be activated by mechanical or chemical stimulation, leading to the 
release of cytokines, chemokines, neuropeptides, growth factors, ATP and enzymes. In the peripheral nervous system, these substances can induce local vasodilation, 
increase vascular permeability and plasma extravasation, elevate skin temperature and cause erythema, enhance sweat secretion and hair growth, as well as infiltrate and 
activate immune cells; in the central nervous system, they are capable of sensitizing nociceptive neurons while activating microglia and astrocytes. (By Figdraw). 
Abbreviations: CRPS, complex regional pain syndrome; ATP, adenosine triphosphate.
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serum.50,52,54,55 The elevated levels of TNF-α and IL-6 in the skin of CRPS patients persist throughout both acute and chronic 
stages, indicating a persistent role for cytokines in exacerbating neurogenic inflammation of CRPS.56

Animal studies have yielded similar findings, as demonstrated by a significant upregulation of proinflammatory mediators 
and chemokines in the plantar, spinal dorsal horn (SDH), and DRG of rats in the chronic post-ischemia pain (CPIP) model of 
CRPS.57–59 Furthermore, upregulation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflam
masome expression has been observed in the spinal dorsal horn of rats with CPIP. Inflammasomes play a crucial role in the 
occurrence and development of cytokine-mediated chronic pain, with proinflammatory cytokines IL-1β and IL-18 being the 
primary products of neutrophilic alkaline phosphatase (NALP) 1 and NLRP3 inflammasomes.19,60–62 Transcriptome analyses 
have demonstrated a marked increase in immune and inflammatory responses within the SDH of CPIP rats.63 This activation 
may activate astrocytes and microglia within the SDH, ultimately resulting in the onset of mechanical allodynia.64,65

During neuroinflammation, proinflammatory cytokines continuously act on their corresponding receptors on nociceptive 
neurons to initiate signaling cascades that alter the gating properties of ion channels through phosphorylation or other mechan
isms. This ultimately leads to a decrease in firing thresholds and results in heightened pain sensitivity or “hyperalgesia”.13,66 

Cytokines can also participate in neuropeptide transduction pathways, thereby promoting neuroinflammation and contributing to 
the development of CRPS. In the tibial fracture model of CRPS type I, the upregulation of TNF-α, IL-6, and C-C motif ligand 
(CCL) 2 expression in the spinal cord was not observed in SP and CGRP receptor knockout mice, indicating that these cytokines 
may serve as downstream effectors of neuropeptides during neurogenic inflammation and act as a link between peripheral and 
central sensitization.67 Animal experiments have shown that the impact of SP on CRPS type I is achieved through the activation of 
NALP1 inflammasome and subsequent induction of IL-1β expression.42,60 This pathway was more prominently activated in 
immobilized mice, with elevated expression levels of neurokinin-1 (NK-1) receptors, TNF-α, IL-1β, and nerve growth factor 
(NGF) observed in both acute and chronic phases. These findings may explain why immobilization serves as a risk factor for 
CRPS.68,69 In a mouse model of CRPS type I, the use of neutralizing antibodies to block IL-1β prevented activation of glial cells in 
the SDH and reduced pain responses, revealing that IL-1β plays a crucial role in the pathogenesis of CRPS type I.70

In sum, multiple pro-inflammatory cytokines play important roles in neuroinflammation and pain in CRPS (Figure 2). 
Blocking their signaling showed analgesic effect in rodents. However, a randomized controlled clinical trial evaluating 

Figure 2 The role of cytokines and immune cells in the development of neuroinflammation in CRPS. Nociceptors release neuropeptides and neurotransmitters from their 
peripheral terminals, which activate immune responses. Immune cells infiltrate and produce numerous molecules that bind to receptors in nociceptors, leading to a shift 
towards a proinflammatory cytokine profile, ultimately resulting in an increase in neuronal excitability and sensitization. The bidirectional regulation and interaction between 
immune cells and neurons endow them with a crucial role in the pathogenesis of CRPS. (By Figdraw). 
Abbreviations: CRPS, complex regional pain syndrome; IL-4, interleukin-4; IL-10, interleukin-10; IL-1, interleukin-1; IL-6, interleukin-6; TGF-β, transforming growth factor- 
β; TNF-α, tumor necrosis factor-α.
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the efficacy of anti-TNF-α monoclonal antibodies in treating CRPS ultimately proved to be unsuccessful. Instead of 
alleviating symptoms as expected, intravenous administration of TNF-α monoclonal antibody resulted in a deterioration 
of patients’ overall health.71 Therefore, further efforts and investigations are imperative to explore the potential of 
cytokine-targeting drugs as a treatment for CRPS.

Immune Cells
The interaction between immune cells and neurons plays a crucial role in the development of neurogenic inflammation in 
CRPS.13 Upon activation by noxious or innocuous stimuli, nociceptors release neuropeptides and neurotransmitters from 
their peripheral terminals, which exert potent effects on the function of both innate and adaptive immune cells (such as 
macrophages, mast cells, and T lymphocytes). Receptors for neuronal mediators are expressed by these immune cells, 
allowing for a direct response to nociceptors.72 During CRPS, immune cells infiltrate and produce numerous molecules 
that bind to receptors in nociceptors, resulting in an increase in neuronal excitability and the formation of 
sensitization.13,73 The bidirectional regulation and interaction between immune cells and neurons endow them with 
a crucial role in the pathogenesis of CRPS.

Mast cells are situated close to sensory neurons and blood vessels. Upon activation, they release a variety of 
neuroactive and vasoactive substances such as bradykinin, histamine, prostaglandins, TNF, vascular endothelial growth 
factor, and serotonin via degranulation. These substances sensitize nearby nociceptive terminals and contribute to the 
further expansion of neuroinflammation in the affected area.29 Mast cells are involved in the neuroinflammatory process 
of CRPS and contribute to central sensitization during its chronic phase.74,75 During CRPS, the release of substance 
P from nerve terminals may play a crucial role in mast cell degranulation and subsequent inflammatory mediator release, 
which can further upregulate SP expression in peptidergic nerves.76 Skin biopsies of patients with acute CRPS revealed 
a significant increase in the proliferation and activation of mast cells.28 In addition to contributing to pain during acute 
inflammation, mast cells also accumulate in chronic inflammatory conditions,77 thereby perpetuating the chronicity of 
pain in CRPS.78 Studies have shown that the loss of dermal nerve fibers in CRPS patients may hinder mast cell migration 
towards surviving nerve fibers due to a lack of chemotactic signals. This failure of normal interaction between nerve 
fibers and mast cells could be one of the underlying pathophysiological mechanisms behind CRPS.79

Macrophages and monocytes exhibit a proinflammatory M1 phenotype, releasing numerous inflammatory cytokines, 
growth factors, and lipids. Their involvement in chronic pain and neuroinflammation has been extensively 
demonstrated.80–83 In chronic pain, neurons in DRG and SDH produce chemokines to attract macrophages and mono
cytes to infiltrate around them,84,85 which subsequently triggers CGRP production within these neurons.86,87 CPIP is 
a widely used method for modeling CRPS in rodents, and CPIP mice lacking macrophages did not exhibit mechanical or 
cold allodynia.88

T cells are distinguished by their surface molecule and can be broadly classified into helper T (Th) cells, regulatory 
T (Treg) cells, and cytotoxic T cells.89 Depending on their subtypes, Th cells can secrete either proinflammatory 
cytokines such as IL-1β, TNF-α, and IL-17 or anti-inflammatory cytokines like IL-4 and IL-10.89 The increase of 
CD4+ and CD8+ T cells in CRPS patients suggests an enhanced antigen-specific T lymphocyte response.90–92 

Furthermore, research has demonstrated heightened T cell activity among individuals with CRPS. Compared to normal 
controls, CRPS patients exhibit an altered T cell system (Th17, Tregs, and CD39+ T cells), characterized by a reduced 
number of proinflammatory Th17 cells, an increased proportion of CD39+ Tregs, and minimal changes in systemic 
cytokine levels. These findings suggest that an increase in CD39+ Tregs mediates the decrease in Th17 cells observed in 
CRPS. This transfer of anti-inflammatory T cells may represent the mechanism underlying inflammation control in 
CRPS.93 Additionally, the downregulation of IL-37 and tryptophan, coupled with the upregulation of Tregs, CD8+ 

T cells, and granulocyte macrophage-colony stimulating factors, may significantly promote inflammatory activation 
among patients diagnosed with CRPS.91

In summary, immune cells are crucial components in the pathogenesis of neuroinflammation. They are subject to 
regulation by neurons and can reciprocally modulate neuronal activity by releasing immunomodulatory factors, thereby 
significantly contributing to the development of CRPS (Figure 2).
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Glial Cells
Glial cells are widely distributed throughout the nervous system, where they interact with neurons, immune cells, and 
blood vessels to play a crucial role in the development of neuroinflammation.94–96 They express a range of receptors for 
neuropeptides and neurotransmitters, which can be activated by the products of neurogenic inflammation. This activation 
triggers the release of glial mediators that regulate pain sensitivity,97 resulting in the hypersensitivity of pain-related 
receptors or ion channels on neurons, ultimately leading to peripheral and central nociceptive sensitization.73,98,99 Glial 
cells have been identified as a major contributor to central nociceptive sensitization and are believed to be involved in the 
pathogenesis of CRPS in the chronic phase.100–103 Activation of astrocytes and microglia in the spinal dorsal horn of 
CPIP rats leads to the production of various proinflammatory mediators, such as cytokines and chemokines that regulate 
pain processing.59,104–106 Among the cells in the central nervous system, microglia are the initial responders to peripheral 
nerve injury within a few days (pain initiation), followed by astrocytes activation within days to weeks (pain 
maintenance).107–109

Autopsies of patients with long-term CRPS have revealed that activation of microglia and astrocytes was predomi
nantly at the level of initial injury but extended throughout the spinal cord.110 Animal experiments have demonstrated 
that SP activated microglia and astrocytes in the spinal dorsal horn, leading to sustained central sensitization. This finding 
suggested a potential link between peripheral neurogenic inflammation and central sensitization.100 The involvement of 
microglia and astrocyte interaction in CRPS has also been demonstrated in animal studies.104,106 Microglia are innate 
immune cells in the spinal cord and brain that function as sentinels of neuronal activity. They can monitor and influence 
neuronal activity by producing TNF-α, Il-1β, and prostaglandin (PG) E2, as well as neurotrophins which sensitize 
primary nociceptive neurons and secondary pain-mediated interneurons.97,111 Single-cell sequencing analysis showed 
that microglia produced most of the TNF-α in the spinal cord.112 The previous classification of activated microglia into 
two phenotypes (M1 pro-inflammatory microglia and M2 anti-inflammatory microglia) was based on the presence of 
specific cell surface molecules and the expression of particular sets of cytokines.113 However, it is now evident that this 
oversimplified perspective fails to adequately capture the intricate physiology of microglial cells.114 Neuropeptides and 
neurotransmitters can trigger the transformation of microglia in the ipsilateral spinal dorsal horn from a quiescent state to 
an “activated” phenotype characterized by proliferation, high motility, phagocytosis, expression of novel receptors (such 
as P2X4 ligand-gated ion channel), and release of proinflammatory mediators.115–117 This process facilitates the onset 
and progression of pain.61 Activation of transient receptor potential ion-channel subfamily V member 4 (TRPV4) ion 
channels promotes spinal microglia proliferation and activation, enhances spinal neuron excitability and plasticity, and 
mediates neuropathic pain.118

Astrocytes constitute 20% to 40% of glial cells and are non-neuronal and non-immune in nature. They execute a diverse 
array of physiological functions, including the maintenance of blood-brain barrier integrity, facilitation of neuroprotection and 
repair, as well as regulation of synaptic transmission based on their phenotype.94 In chronic pain, astrocytes facilitate the 
transmission of pain signals at the spinal cord by modulating microglial activation and neuronal synaptic transmission. 
Moreover, astrocytes in the superior central nervous system participate in regulating chronic pain-related aversion and anxiety 
through mechanisms such as synapse formation regulation.119 Astrocytes can establish gap junctions with neurons, thereby 
modulating neuronal activity directly. Following peripheral nerve injury in animals, astrocytes are activated by glutamate, 
ATP, and cytokines (TNF-α, IL-1β, and IL-6) that are released by afferent neurons or microglia.120 Reactive astrocytes can be 
categorized into two subtypes: toxic A1 astrocytes and neuroprotective A2 astrocytes.121 A1 astrocytes induce rapid neuronal 
and oligodendroglia death, while A2 astrocytes exert neuroprotective effects.122,123 Similar to microglia, recent studies have 
revealed that microglia can exhibit more than two states, and the current nomenclature of A1/A2 is being refined. This 
classification should be considered as a continuum rather than two distinct populations.121,124 Activated astrocytes secrete 
proinflammatory cytokines and chemokines, which increase the hypersensitivity of secondary neurons in the spinal cord,125 

thereby promoting the development of neuropathic pain.126–128 Astrocytes can also contribute to neuronal plasticity by 
generating new synapses and restructuring circuits.94 The activation of astrocytes is thought to occur after microglial 
activation, but it has a longer duration and therefore plays a crucial role in the persistence of chronic pain.94,129 

Manipulation of astrocyte activity through optogenetic or chemogenetic methods can effectively regulate chronic pain.119 
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The activation of matrix metalloproteinase-2 (MMP-2)/ c-jun N-terminal kinase 1/2 (JNK-1/2) in astrocytes also contributes to 
the development of CRPS.130

During the neuroinflammatory process in CRPS, neuropeptides and neurotransmitters generated by neurogenic 
inflammation can activate microglia and astrocytes, leading to a cascade of glial mediators that sensitize neurons and 
impact synaptic plasticity. This establishes a cyclic dialogue between microglia, astrocytes, and neurons that sustains 
central nociceptive sensitization and neuroinflammation. However, the current understanding of the underlying mechan
isms involving glia and CRPS remains limited. Therefore, further in-depth investigations are warranted for comprehen
sive exploration.

Keratinocytes
The skin, which consists of the epidermis and dermis, is the largest organ in the human body. Keratinocytes are the 
primary component of the epidermal layer. In addition to their supportive and protective functions, recent studies have 
emphasized the significance of keratinocytes in pain development and peripheral sensitization.131,132 Keratinocytes have 
been shown to perceive a wide range of stimuli, including cold, heat, noxious, and innocuous tactile stimuli.133,134 When 
exposed to mechanical stimulation, keratinocytes transmit signals to sensory nerve terminals and release ATP, thereby 
activating P2X4 channels on sensory neurons, resulting in the occurrence of pain.135 In vitro co-culture of keratinocytes 
and sensory neurons revealed that synapse-like structures formed between keratinocytes and pain-mediated Aδ and 
C fibers could activate primary sensory neurons, which is dependent on the release of presynaptic vesicles from 
keratinocytes.136

Skin is an organ of the neuroendocrine-immune system that has a close relationship with the nervous system. 
There are ample free nerve endings in the skin to detect external noxious stimuli. Neurogenic inflammation may 
start in the skin which is a common site of injury.23 Keratinocytes are crucial in initiating and sustaining 
neuroinflammation as they are the first point of contact for external stimuli or insults. Keratinocytes, originating 
from the ectoderm, can secrete various neuropeptides. A significant proliferation of keratinocytes has been observed 
in the skin of patients with CRPS. Besides being secreted in the serum, CGRP is highly expressed in the 
keratinocytes of CRPS patients and can stimulate the proliferation and cytokine secretion of keratinocytes.137 

When substance P and CGRP were injected into the plantar of mice, nociceptive stimuli mediated secretion of 
IL-1β by keratinocytes was increased. However, administering an IL-1 receptor antagonist effectively relieved pain 
induced by these neuropeptides.62 In CPIP rats, activation of N-methyl-d-aspartate receptors (NMDA) in keratino
cytes triggers the release of inflammatory factors, leading to the activation of astrocytes and microglia in the spinal 
cord and resulting in both peripheral and central sensitization59 (Figure 3).

After converting noxious stimuli into electrical signals, sensory nerve fibers must transmit them to the cell bodies 
of sensory neurons located in the DRG. Pain perception, transduction, and transmission can be regulated by pain- 
regulatory substances such as neuropeptides and cytokines secreted by keratinocytes. Keratinocytes serve as 
a significant origin of inflammatory mediators associated with pain. Studies have demonstrated that keratinocytes 
undergo proliferation and activation in a fracture model of CRPS, resulting in the secretion of cytokines such as IL- 
1β, IL-6, and TNF-α, which subsequently promote the development of hyperalgesia.138 In addition, keratinocytes are 
capable of releasing opioid peptides such as β-endorphin and proenkephalin to modulate the occurrence and 
progression of pain.139

Conclusions
Neuroinflammation is essential in the initiation and perpetuation of CRPS, involving intricate mechanisms that encom
pass multiple links in the pain transduction pathway from peripheral nociceptors to the central nervous system. These 
processes include nociceptive perception, transduction, transmission, and modulation. This article presents 
a comprehensive overview of the underlying mechanisms of neuroinflammation in CRPS, with a particular focus on 
neurogenic inflammation, inflammatory mediators (peptides and cytokines), immune cells, glial cells, and keratinocytes. 
Researches on pharmaceutical interventions targeting the neuroinflammatory mechanism underlying CRPS are currently 
insufficient. Further investigation into the regulatory mechanisms governing various components of neuroinflammation is 
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imperative to identify potential therapeutic targets that offer high efficacy and minimal adverse effects. Gaining 
a comprehensive understanding of the unique and individual roles that each component plays in the process of 
neuroinflammation may facilitate the discovery of novel insights and the development of innovative approaches to 
combat this debilitating condition. However, this review only provides a macroscopic overview of the role of neuroin
flammation in CRPS, without delving into subcellular processes such as intricate signaling cascades, ion channels, 
oxidative injury, and mitochondrial autophagy. Furthermore, the review neglects to mention therapeutic approaches 
targeting neuroinflammation in CRPS.
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