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Background: Mitochondrial autophagy is closely related to the pathogenesis of osteoarthritis, In order to explore the role of 
mitochondrial autophagy related genes in knee osteoarthritis (KOA) and its molecular mechanism.
Methods: KOA-related transcriptome data were extracted from the Gene Expression Omnibus (GEO) database. Differentially 
expressed mitochondrial autophagy gene (DEMGs) were screened in patients with KOA by differential expression analysis. The 
STRING website was used to construct a protein-protein interaction (PPI) network among DEMGs. Molecular complex detection 
(MCODE) method in Cytoscape software was performed to identify hub DEMGs. Support vector machine recursive feature 
elimination (SVM-RFE) method was used to construct the hub DEMG diagnosis model. Genes with diagnostic value were identified 
as biomarkers by plotting receiver operating characteristic (ROC) curves and Expression validation. CIBERSORT algorithm was used 
to calculate the proportion of 22 immune cells in each sample in the GSE114007 dataset. Finally, biomarker expression was verified by 
qPCR.
Results: A total of 15 DEMGs were obtained and enrichment analyses showed that these DEMG strains were mainly enriched in the 
mitophagy-animal, shigellosis, autophagy-animal and FoxO signal pathways. The PPI network unveiled 13 DEMGs with interactions. 
In addition, 8 hub DEMGs (ULK1, CALCOCO2, MAP1LC3B, BNIP3L, GABARAPL1, BNIP3, FKBP8 and FOXO3) were obtained 
for KOA. And 5 model DEMGs (BNIP3L, BNIP3, MAP1LC3B, ULK1 and FOXO3) were screened. The ROC curves revealed that 
BNIP3 and FOXO3 has strong diagnostic value in these models of DEMG. Immune-infiltration and correlation analysis showed that 
BNIP3 and FOXO3 were significantly correlated with three different immune cells, including primary B cells, M0 macrophage and 
M2 macrophage. The cartilage tissue samples qPCR verification results show that FOXO3 and BNIP3 were all down-regulated in 
KOA (p < 0.01), and the validation results are consistent with the above analysis.
Conclusion: BNIP3 and FOXO3 have been identified as biomarkers for the diagnosis of KOA, which might supply a new insight for 
the pathogenesis and treatment of KOA.
Keywords: Gene Expression Omnibus, diagnostic, bioinformatics analysis, immune infiltration, biomarkers

Background
Knee Osteoarthritis (KOA) is a chronic and progressive disease characterized by loss of articular cartilage, subchondral 
sclerosis, and synovial and periarticular structural abnormalities that cause pain, swelling and even joint deformity in the 
surrounding tissues of the knee.1 Its pathogenic factors include abnormal biologic factors, genetic factors, cell aging and 
apoptosis, local inflammatory factors, free radicals and proteases, etc. Each of these risk factors may cause KOA, KOA is 
a degenerative, attritional disease,2 its pathology mainly involves articular cartilage and synovium, the key factor of KOA 
cartilage degeneration is chondrocyte death,3 which is caused by apoptosis and autophagy.4,5 Under normal conditions, 
articular chondrocytes maintain a dynamic balance between extracellular matrix (ECM) synthesis and degradation,6 which is 
broken in response to injury or inflammation and other stimuli, triggering chondrocyte stress and ECM degradation, it leads 
to abnormal accumulation of damaged proteins and dysfunction of organelles such as endoplasmic reticulum and 
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mitochondria,7,8 thus, cartilage degradation, chondrocyte apoptosis, subchondral bone dysfunction, and gradually develop 
into knee osteoarthritis.9 According to the latest Global Burden of Disease study, about 250 million people worldwide suffer 
from osteoarthritis, and knee joint is the most common site of osteoarthritis.2 Due to the lack of early diagnostic indicators, 
patients with KOA often miss the opportunity for optimal treatment, resulting in a poor prognosis.

Mitochondria are membrane-coated organelles present in eukaryotic cells that regulate important cell functions and 
cell survival. Mitochondria have many important functions, including cell adenosine triphosphate (ATP) production, Ca2 
+ buffering, and being the main source of endogenous reactive oxygen species (ROS) under oxidative stress.10 

Mitochondrial autophagy is a major intracellular protective mechanism, which can effectively promote the clearance 
of damaged mitochondria and thus maintain mitochondrial function.11,12 Mitochondria can protect chondrocytes and 
provide energy for cells, which is an important mechanism to maintain cell homeostasis and is closely related to the 
occurrence and development of cartilage degeneration in osteoarthritis.13 Inhibition of autophagy can lead to mitochon-
drial dysfunction and catabolic imbalance, leading to chondrocyte injury and apoptosis,14 thus leading to osteoarthritis.

In recent years, bioinformatics has provided powerful strategies for the screening of molecular markers, and cell 
classification tools have also facilitated the analysis of infiltration patterns of disease immune cells. Based on the role of 
mitochondrial autophagy in osteoarthritis, we explored the mechanism of mitochondrial autophagy gene in knee arthritis, 
attempted to identify diagnostic markers of KOA, and further explored the role of immune cell infiltration in KOA, 
providing theoretical possibilities for the development of new targeted drugs, which is of great significance for the study 
of the pathogenesis and prevention of KOA.

Materials and Methods
Data Extraction
RNA-sequencing (RNA-seq) data of KOA patients (GSE114007, GSE169077 and GSE51588) were obtained from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). The GSE114007 dataset, including cartilaginous tissues from 20 KOA samples 
and 18 normal samples, was used as the training set. The GSE169077 dataset, containing 6 KOA samples and 5 normal samples, 
was used as the validation set. The GSE51588 dataset (KOA: normal = 40:10) was also used as validation set. In addition, 88 
mitochondrial autophagy gene (MGs) were downloaded for this study based on the relevant literature (Sun et al 2021).

Differential Expression Analysis
In the GSE114007 dataset, differentially expressed genes (DEGs) between KOA samples and normal samples were 
detected utilizing the “DESeq2” R package (version 1.34.0) with an adjusted p<0.05 and a |log2FC|>0.5. Clinical 
characteristics (gender and age) were also controlled for to exclude the effect of other confounding factors. 
Subsequently, the DEGs were intersected with MGs using the “VennDiagram” R package (version 1.6.20) (Xin 
et al 2022) to get differentially expressed MGs (DEMGs). Subsequently, The Gene Ontology (GO) and The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEMGs were performed using 
the “clusterProfiler” R package (Jahr et al 2019; Lazarou 2015).

PPI Network Construction and Hub DEMGs Screening
To explore the protein interactions among DEMGs, the STRING (https://string-db.org) website was used to construct 
a PPI network, and DEMGs with interaction scores greater than 0.4 were retained. Moreover, hub DEMGs were 
identified using MCODE algorithm in Cytoscape (Xin et al 2022).

Construction and Validation of a Diagnostic Model for DEMGs
Based on the identified hub DEMGs, the SVM-RFE method was applied to screened the model DEMGs using the “caret” 
R package (version 6.0–91, https://CRAN.R-project.org/package=caret). Subsequently, diagnostic value of the model 
DEMGs was validated in a validation set (GSE169077). In addition, we used the “pROC” R package (version 1.17.0.1) 
to map the ROC curve to assess their diagnostic value. Finally, the model DEMGs with diagnostic value were validated 
in the training and validation set.
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Immune Cell Infiltration with CIBERSORT
To further explore the correlation between model DEMGs and different immune cells, the infiltration of 22 immune cells 
in the GSE114007 dataset was estimated by CIBERSORT algorithm. Then, the “psych” R package (version 2.2.3) was 
performed between model DEMGs and immune cells.

Experimental Verification
Cartilage tissue samples were obtained from KOA patients and normal samples with their knowledge and consent from 
Beijing Jishuitan Hospital Guizhou Hospital, and this study was approved by the Beijing Jishuitan Hospital Guizhou 
Hospital ethics committee, all methods were performed in accordance with relevant guidelines and regulations in the 

Ethical considerations in the review of biomedical research involving human subjects and the Declaration of 
Helsinki (approval number: LW20221206).

10 pairs of frozen cartilage tissue samples were divided into two groups, of which 10 samples were normal group (Normal) 
and the other 10 samples were KOA group (Case). Then, total RNA of samples was isolated and purified by TRIzol (Ambion) 
reagent following the instruction manual. Then, the extracted RNA was tested for concentration by NanoPhotometer N50. 
Next, reverse transcription via SureScript-First-strand-cDNA-synthesis-kit (Servicebio) by an ordinary PCR instrument. 
Reverse transcription product cDNA was diluted 5–20 times with ddH2O (RNase / DNase free). Subsequently, polymerase 
chain reaction (PCR) amplification reaction was performed by CFX96 real-time quantitative PCR instrument. 1 min at 95 °C 
(pre-denaturation), followed by at 95 °C for 20s (denaturation), 55 °C for 20s (annealing) and 72 °C for 30s (elongation). The 
above reactions were subjected to forty cycles. Primer sequences were showed in Table 1.

Statistical Analysis
All statistical analyses and visual plotting of the results were performed based on R software (https://www.r-project.org/, 
version 4.0.3, R Statistical Computing Project). Correlation of model DEMGs with immune cells using Spearman 
coefficient analysis.

Results
Identification of DEMGs
To screen DEMGs in KOA, we firstly screened DEGs between KOA samples and normal samples in the GSE114007 
dataset. A total of 4279 DEGs, including 1969 down-regulated and 2310 up-regulated in KOA samples, were identified 
(Figure 1a and b). Comparison of differences in clinical characteristics revealed no significant effect. (Table S1). Then, 
15 DEMGs were obtained for subsequent analysis by intersecting DEGs and MGs (Figure 1c).

GO and KEGG Analysis of the DEMGs
To explore the regulatory pathways and biological functions associated with the expression of DEMGs, we performed 
GO and KEGG analyses on these DMAEGs in the GSE114007 dataset. GO enrichment analysis suggested that in 
biological process (BP), these DEMGs were mainly involved in 5 items such as organelle disassembly, macroautophagy 
and cellular component disassembly; these DEMGs were mainly involved in 5 items such as mitochondrial outer 
membrane, organelle outer membrane and outer membrane in cellular component (CC); in molecular function (MF), 

Table 1 The Primer Sequences of Diagnostic Genes

Primer Sequence

BNIP3 F CCTCAGCATGAGGAACACGA
BNIP3 R GCCACCCCAGGATCTAACAG

FOXO3 F GGCCCGGGATAACCAACTCT

FOXO3 R CTCCACTTCGAGCGGAGAGA
Internal Control-GAPDH F CGAAGGTGGAGTCAACGGATTT

Internal Control-GAPDH R ATGGGTGGAATCATATTGGAAC
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these DEMGs are mainly involved in two items, ubiquitin protein ligase binding and ubiquitin-like protein ligase binding 
(Figure 2a). Moreover, KEGG pathway enrichment analysis indicated that these DEMGs were significantly associated 
with Mitophagy-animal, Shigellosis, Autophagy-animal, and FoxO signaling pathway pathways (Figure 2b).

Identification of the Hub DEMGs Through PPI Network
To explore the interaction between 15 DEMGs, the STRING website was applied to build a PPI network. Ultimately, 
a PPI network including 36 interactions and 13 nodes was obtained (Figure 3a). In addition, 8 hub DEMGs (ULK1, 
CALCOCO2, MAP1LC3B, BNIP3L, GABARAPL1, BNIP3, FKBP8, and FOXO3) were screened by the MCODE 
algorithm (Figure 3b).

Figure 1 Differential expression analysis. (a) Differentially expressed gene expression volcano plot between KOA and normal controls. (b) Differentially expressed gene 
expression heatmap between KOA and normal controls (adjusted p<0.05 and a |log2FC|>0.5). (c) Venn diagram shows the intersection of DEGs and MGs. 
Abbreviations: KOA, knee osteoarthritis; FC, fold change; DEGs, differentially expressed genes; MGs, mitochondrial autophagy gene.

Figure 2 Functional enrichment analysis. (a) GO enrichment analysis based on differentially expressed genes was performed in the GSE114007 databases. (b) KEGG 
enrichment analysis was performed to explore the associated pathways in the GSE114007 databases. 
Abbreviations: GO, Gene Ontology; KEGG, The Kyoto Encyclopedia of Genes and Genomes; BP, biological progress; CC, cellular component; MF, molecular function.
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Construction and Validation the DEMGs Diagnostic Model for KOA Patients
To further validation and selection of the DEMGs with significantly characteristic value of classifying KOA and normal 
samples from GSE114007 dataset, the SVM-RFE algorithm was performed to identify 5 model DEMGs (BNIP3L, BNIP3, 
MAP1LC3B, ULK1, and FOXO3) (Figure 4a). Meanwhile, we evaluated and validated the diagnostic value of the 5 model 
DEMGs in the GSE114007 and GSE169077 datasets, respectively. As shown in Figure 4b, the AUC values of these genes were 
above 0.9 in the training set, indicating that these genes have a strong diagnostic value. However, in the validation set, only 
BNIP3 and FOXO3 had AUC values, and its AUC values greater than 0.7 (Figure 4c). Additionally significant differences and 
consistent trends in BNIP3 and FOXO3 expression were found in the training and validation sets by expression analysis 
(Figure S1). Thus, these two genes were identified as having strong diagnostic value and were used for subsequent analysis.

Correlation Analysis of BNIP3 and FOXO3 in Immune Cells
To accurately assess the composition of immune cells in the KOA tissue microenvironment, the CIBERSORT algorithm was 
used to estimate the abundance of immune infiltrating cells of 22 different cell types and functional states between KOA and 
normal samples in the GSE114007 dataset. The results revealed that of the 22 immune cells only naive B cells, M0 
Macrophages, and M2 Macrophages were significantly different between the KOA and normal samples (Figure 5a). 
Furthermore, the correlation analysis of these immune cells with BNIP3 as well as FOXO3 showed that BNIP3 was 
significantly negatively correlated with M0 Macrophages (|cor|>0.3 and p value<0.05); while FOXO3 was significantly 
negatively correlated with M0 Macrophages and showed a significant positive correlation with naive B cells (Figure 5b and c).

Quantitative Real-Time PCR (qPCR) Identification
Based on the qPCR verification results, it can be seen that FOXO3 and BNIP3 were all down-regulated in KOA (p < 
0.01), and the validation results are consistent with the above analysis (Figure 6, Table 2).

Discussion
Mitochondrial autophagy can protect human chondrocytes from a series of pathological effects caused by mitochondrial 
dysfunction and effectively slow down the progression of cartilage degeneration in KOA. In the past, it was thought that 
articular chondrocytes were in an ischemic and anoxic environment, and the role of mitochondria in the metabolic 

Figure 3 The PPI network of DEMGs. (a) The PPI network shows the DEMGs with a minimum required interaction score >0.4. (b) The most significant module was 
obtained from PPI network with 8 hub genes. 
Abbreviations: PPI, protein-protein interaction; DEMGs, differentially expressed mitochondrial autophagy gene.

International Journal of General Medicine 2024:17                                                                             https://doi.org/10.2147/IJGM.S444847                                                                                                                                                                                                                       

DovePress                                                                                                                         
643

Dovepress                                                                                                                                                             Tang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=444847.docx
https://www.dovepress.com
https://www.dovepress.com


activities of chondrocytes was relatively limited. However, recent studies have shown that chondrocytes on the surface of 
cartilage are in a relatively aerobic state, and mitochondria-mediated aerobic respiration is still an important energy 
supply mode for articular chondrocytes.15 Mitochondria are involved in catabolism and anabolism, production of ROS, 
cell apoptosis and signal transduction. When the body is subjected to oxidative stress, endoplasmic reticulum stress, 
hypoxia ischemia, nutrient deficiency and other injuries, Mitochondrial autophagy disorders lead to mitochondrial 
dysfunction and catabolic imbalance.16 Mitochondrial damage can lead to the release of interleukin-1β (IL-1β), which 

Figure 4 Identification of model DEMGs. (a) The SVM-RFE algorithm was performed to identify 5 model DEMGs (BNIP3L, BNIP3, MAP1LC3B, ULK1, and FOXO3). (b) 
ROC analysis of 5 model DEMGs on the training set. (c) ROC analysis of 5 model DEMGs on the validation set. 
Abbreviations: SVM-RFE, support vector machine recursive feature elimination; ROC, receiver operating characteristic; AUC, area under the curve.
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further leads to chondrocyte death and ECM degradation. Overactivation of mitochondrial autophagy can lead to 
autophagy death and osteoarthritis.14,17

In this study, a total of 4279 DEGs were obtained from the GSE114007 dataset, 15 DEMGs were obtained by 
crossing DEGs and MGs. GO enrichment analysis showed that these DEMGs were mainly involved in organelle 
decomposition, macroautophagy and cell component decomposition in biological processes (BP). In the same type of 
cell, autophagy can be protective or harmful, depending on the type and degree of stimulation. Maintaining a healthy 
mitochondrial population is essential for cell survival. As a kind of autophagy, macrophage plays an important and 
complex role in bone metabolism. Eukaryotic cells can regulate molecular degradation and organelle renewal through 
macrophage, and play an important role in bone regeneration, bone metabolism, and bone degenerative diseases such as 
osteoarthritis.18 In addition, the main BP of KOA included inflammatory response regulation, collagen catabolic process, 
extracellular matrix decomposition, etc. When mechanical injury or inflammatory stimulation exceeds the compensatory 
capacity of articular cartilage, chondrocyte stress and ECM degradation are triggered, thus causing cartilage degeneration 
and gradually developing into KOA.19,20 KOA can be alleviated by inhibiting inflammation, chondro breakdown, and 

Figure 5 Immune infiltration analysis. (a) Violin diagram of the proportion of 22 different immune cell types and functional states between KOA and normal samples. (b) 
Correlation between BNIP3 and immune cells. (c) Correlation between FOXO3 and immune cells. *p < 0.05. 
Abbreviation: NS, not significant.

International Journal of General Medicine 2024:17                                                                             https://doi.org/10.2147/IJGM.S444847                                                                                                                                                                                                                       

DovePress                                                                                                                         
645

Dovepress                                                                                                                                                             Tang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


extracellular matrix degradation.21 In the cell component (CC), these DEMGs mainly involved 5 items such as 
mitochondrial outer membrane, organelle outer membrane and outer membrane. Mitochondrial outer membrane is 
a biological membrane located in the outermost layer of mitochondria. Under stimulation, Mitochondrial outer membrane 
permeabilization (MOMP) can permeabilization. ROS released by damaged chondrocytes promote the expression of 
matrix metalloproteinases such as MMP13. Meanwhile, excessive ROS generation leads to mitochondrial dysfunction 
and enhanced permeability of mitochondrial outer membrane.22 Mitochondrial proteins are released into the cytoplasm to 
mediate downstream reactions, Bnip3 is localized in the mitochondrial outer membrane, it induces mitochondrial 
autophagy in the presence of mitochondrial membrane permeability and Bax/Bak deficiency.23 In molecular function 
(MF), these DEMGs are mainly involved in ubiquitin-protein ligase binding and ubiquitin-like protein ligase binding. 
The ubiquitin-proteasome system is an important regulatory pathway to maintain protein homeostasis and function in 
cells, and abnormal regulation of ubiquitination can lead to metabolic bone disease. E3 ubiquitin ligases (E3) are key 
regulatory factors in the proliferation and differentiation of osteoblasts, play an important role in the regulation of bone 
formation related proteins and bone turnover, and have been shown to be ideal therapeutic targets for promoting bone 
formation and reducing bone loss,24 The degradation of BNIP3 by ubiquitination under severe hypoxia condition can 
lead to the inhibition of mitochondrial autophagy.25 KEGG pathway enrichment analysis showed that these DEMGs are 
mainly related to mitochondrial and autophagy signaling pathways, FoxO signaling pathway plays a function regulation 
role in bone cells, and is associated with bone metabolic diseases such as osteoarthritis and osteoporosis.26 FoxO 
transcription factor can prevent cellular and biological senescence, and its expression in OA cartilage is decreased with 
aging.27 Promote cartilage regeneration by up-regulating FOXO signaling pathway and alleviate the progression of 
osteoarthritis.28

In order to explore the interaction between DEMGs, we constructed a PPI network with the differential expression of 
mitochondrial autophagy genes using STRING, and used the MCODE algorithm to screen hub genes. Then, the SVM- 
RFE algorithm was used to verify the diagnostic markers of KOA, and the diagnostic value was evaluated and verified. 
Finally, BNIP3 and FOXO3 have been identified as potential biomarkers for the treatment of KOA patients, play a key 
role in the progression of KOA and can be used as therapeutic targets. BNIP3 is a mitochondrial outer membrane protein 
belonging to the Bcl-2 protein family, which regulates apoptosis, autophagy, mitochondrial transformation and cell 
protection.29 BNIP3 is an important mediator of autophagy.30 As a dual regulator, it has pro-apoptotic function.31 and 
controversial anti-apoptotic function.32,33 BNIP3 induces mitochondrial autophagy under various stress states. For 

Figure 6 qPCR validation of the BNIP3 and FOXO3 between KOA (Case) and normal controls. **p < 0.01, ***p < 0.001. 
Abbreviation: NS, not significant.

Table 2 qPCR Verification Results

Normal Case t, df P value

BNIP3 1.0202±0.0550 0.6013±0.2921 t=4.470, df=16 0.0004

FOXO3 0.9416±0.2038 0.4888±0.2809 t=3.865, df=15 0.0015
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example, under hypoxia conditions, BNIP3 promotes mitochondrial depolarization and directly activates mitochondrial 
autophagy by transporting mitochondria to autophagosomes.34,35 Bnip3 knockout reduces mitochondrial autophagy, 
resulting in accumulation of damaged mitochondria and increased production of reactive oxygen species.32 BNIP3 
induced mitochondrial dysfunction mainly by activating Bax/Bak and the mitochondrial permeability transition pore 
(mPTP).36 Overexpression of BNIP3 inhibits HIF-1α knockout from enhancing H/R-induced apoptosis and ROS 
production, reverses the decline in mitochondrial autophagy during injury,37 and protects mitochondrial structure. The 
loss of BNIP3 leads to the accumulation of abnormal mitochondria,38 aggravates the damage of mitochondrial structure, 
significantly reduces mitochondrial autophagy, and thus promotes apoptosis.39 FOXO3 is a member of the Fox 
O transcription factor family, regulating cell survival, apoptosis, autophagy, oxidative stress and inflammatory 
response.40,41 It is a key transcription factor involved in pro-inflammatory cytokine induced chondrocyte metabolic 
disorders, and overexpression prevents IL-1β or TNF-α induced inflammation in various cell types.42,43 FOXO3 regulates 
apoptosis of chondrocytes44 and maintains meniscus and cartilage homeostasis,27,45 which may play an important role in 
the development of KOA. FOXO3 knockout mice resulted in more severe and earlier age-related OA-like changes at 18 
months, and the primary cause appeared to be a decrease in protective genes (autophagy, antioxidants).27 Previous 
research found that FoxO1 can activate mitochondrial autophagy by activating the downstream target gene BNIP3.46 

FOXO3 increases the expression of BNIP3 by binding to the upstream promoter region of BNIP3, thereby regulating 
mitochondrial function and integrity.47 In order to verify the expression of these autophagy related genes in KOA, we 
took clinical normal cartilage and KOA cartilage for qPCR verification, and the results showed that FOXO3 and BNIP3 
were down-regulated in KOA cartilage, and the verification results were consistent with the above analysis. BNIP3 and 
FOXO3 were identified as biomarkers for the diagnosis of KOA, which may provide new insights into the pathogenesis 
of KOA.

The immune system plays a very important role in the development of osteoarthritis. Immune cell infiltration mediates the 
autoimmune response of osteoarthritis, induces the secretion of chemokines, pro-inflammatory cytokines and proteases, and 
thus disturbs the immune balance to accelerate cartilage erosion.48–50 To find specific diagnostic markers and analyze the 
infiltration pattern of KOA immune cells is of great significance for improving the prognosis of KOA patients. The results 
showed that naive B cells, M0 Macrophages and M2 Macrophages differ significantly between KOA and normal samples. The 
proportion of naive B cells, T cells CD8 and follicular helpers T-cells in the articular cartilage tissue of KOA patients was less. 
The memory resting T-cell CD4, M0 Macrophages and M2 Macrophages accounted for a larger proportion. Correlation 
analysis between BNIP3 and FOXO3 showed that BNIP3 and FOXO3 were negatively correlated with memory resting T-cell 
CD4, M0 Macrophages and M2 Macrophages. BNIP3 was positively correlated with T-cell CD8 and FOXO3 was positively 
correlated with B cells naive. M0 Macrophage was stimulated by interferon IFN-γ and lipopolysaccharide LPS to obtain M1- 
type macrophages and secrete a large number of pro-inflammatory factors. M0 Macrophage was stimulated by interleukin4 
(IL-4) to obtain M2-type macrophages, which had anti-inflammatory and tissue repair effects.51 We speculate that BNIP3 and 
FOXO3 affect T-cell CD4 memory resting, M0 Macrophages and M2 Macrophages, and thus participate in the occurrence and 
progression of KOA. Previous studies have found that the inflammation of KOA is characterized by immune cell infiltration 
and cytokine secretion, but different from the inflammation of RA, the content of macrophages, T cells and B cells in the 
synovium of patients is higher than that of healthy patients but lower than that of RA patients.52 End-stage KOA articular- 
derived T cells polarize into CD3 + CD4 + CD8-T cell subsets, increasing the polarization of CD4 + T cells towards activated 
Th1 cells and cytokine secretion, thereby increasing local inflammation.53 The specific effects of these differentially expressed 
chemokines on immune infiltration of KOA remain to be further studied.

Conclusion
In this study, we found that BNIP3 and FOXO3 were diagnostic biomarkers of KOA. We also found that naive B cells, 
M0 Macrophages, and M2 Macrophages may play a key role in the occurrence and development of KOA, and further 
exploration of these immune cells may determine the target of KOA immunotherapy. However, our study also has certain 
limitations, most of the current studies remain theoretical, and the relationship between key genes and immune 
infiltration as well as their role in the development of KOA needs further research. In order to achieve the ultimate 
goal of KOA treatment, further clinical verification is needed.
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