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Background: The aim of this prospective study was to investigate if nonpathogenic bacterial 

flora and high concentrations of immunoglobulin A in the oral cavity inhibit colonization with 

methicillin-resistant Staphylococcus aureus (MRSA) in very low birth weight infants.

Methods: We retrospectively analyzed MRSA colonization during hospitalization in 29 preterm 

infants with a birth weight , 1500 g who were admitted to the neonatal intensive care unit at 

Nagano Children’s Hospital. We compared the incidence of MRSA colonization in 12 infants 

who had nonpathogenic bacterial flora and high concentrations of IgA (.2 mg/dL) in the oral 

cavity with 17 infants who did not.

Results: MRSA colonization in infants who had nonpathogenic bacterial flora and high 

concentrations of immunoglobulin A was significantly lower than in other infants (P , 0.01).

Conclusion: These results indicate that nonpathogenic bacterial flora and high concentrations 

of immunoglobulin A in the oral cavity may protect against MRSA colonization in very low 

birth weight infants.

Keywords: nonpathogenic bacterial flora, immunoglobulin A, methicillin-resistant 

Staphylococcus aureus, very low birth weight infants

Introduction
Methicillin-resistant Staphylococcus aureus (MRSA) is considered a nosocomial 

pathogen. However, MRSA infection, especially neonatal toxic shock syndrome, has 

become a large problem in neonates.1 Therefore, it is important to inhibit MRSA spread, 

colonization, and infection within neonatal intensive care units. Although many control 

measures have been introduced, including handwashing, reducing overcrowding, 

increasing nursing staff, and treating staff and carriers with mupirocin, the spread of 

MRSA has not been stopped.2–4 An exponential increase in the isolation rate of MRSA 

is one of the most serious problems in neonatal intensive care units in Japan.5

Nonpathogenic bacterial flora can inhibit colonization with pathogenic bacteria 

in older people.6–9 The birth canal of the mother may play an important role in the 

formation of normal bacterial flora in newborns. Coagulase-negative Staphylococcus 

is usually isolated from the skin of the newborn within a few hours of vaginal birth. 

However, neonates have no detectable normal bacterial flora in their nasal and oral 

cavities during the first several days after birth.10,11 Corynebacterium species eliminate 

MRSA colonization in adult nasal cavities.12 Recently we reported that nonpathogenic 

bacterial flora may inhibit MRSA colonization in newborns.13
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Salivary immunoglobulin A (IgA) secreted by plasma 

cells in the submucosa of the upper respiratory tract 

is a characteristic humoral factor of the local immune 

system. It is thought that synthesis of salivary IgA starts 

in early childhood. Many researchers report a progressive 

increase in salivary IgA levels during the first year of 

life.14,15 Epidemiological studies emphasize the importance 

of salivary IgA in protection against infections in the 

upper respiratory tract.16,17 Pathogenic bacteria, such as 

Streptococcus pyogenes, S. aureus, and enteropathogenic 

Escherichia coli can be opsonized by salivary IgA.18–21 

According to these observations, salivary IgA in neonates 

may interfere with MRSA colonization in the neonatal oral 

cavity. The objective of this study was to determine the role 

of nonpathogenic bacterial flora colonization and IgA levels 

in the oral cavity on later MRSA colonization in very low 

birth weight infants.

Materials and methods
Twenty-nine infants were enrolled in this study. All infants 

underwent oral bacterial sampling and oral saliva IgA 

assays every three days for three months. All infants were 

tube-fed. We compared the rate of MRSA colonization 

in infants who had nonpathogenic bacterial flora and oral 

IgA levels . 2  mg/dL during the first seven days of life 

(Group 1) with the rate of MRSA colonization in other infants 

(Group 2). Parental consent was obtained for all infants to 

participate in the study, which was approved by the hospital 

ethics committee.

Microbiological testing
Infants underwent surveillance cultures from the oral cavity 

with sterile rayon-tip swabs (Seed swab number 2, Eiken 

Kizai, Tokyo, Japan). All swabs were inoculated onto plates 

with 5% sheep blood agar, chocolate agar, modified Dri-

garsky agar, and OPA Staphylococcus agar; all plates were 

purchased from Becton Dickinson, NJ. Plates were incubated 

for 24 hours at 37°C in 5% CO
2
 in air. MRSA was defined as 

S. aureus for which the minimum inhibitory concentration 

of oxacillin was .4 µg/mL.

Collection of saliva  
and measurement of IgA
Samples of whole saliva from infants were collected 

every three days from birth to three months after birth. 

Unstimulated whole saliva was collected from the mouth 

before tube feeding in the morning. Saliva was obtained 

using a sterile cotton swab. Immediately after collection, 

swabs were centrifuged at 3500 g for 10 minutes to obtain 

the saliva, and the saliva samples were kept at -80°C until 

assay. The concentration of IgA was measured by immuno-

turbidimetric assay (N-assay TIA IgA-SH Nittobo, Nittobo, 

Tokyo, Japan).

Statistical analysis
Data are presented as means ± standard deviations or as 

percentages. Outcomes were compared using the Welch’s 

t-test or Fisher’s Exact probability test as appropriate. 

Receiver operating characteristic curves were constructed to 

assess the sensitivity, specificity, and cutoff values of IgA 

to compare their abilities to detect MRSA. For all testing, 

P , 0.05 was considered significant.

Results
The clinical characteristics of the two groups are shown in 

Table 1. Table 2 shows the species of nonpathogenic bacterial 

flora cultured from the oropharynx. Figure 1 shows the cumu-

lative rate of infants with no MRSA colonization. None of 

the infants with colonization of nonpathogenic bacterial flora 

and oral IgA . 2 mg/dL had MRSA colonization later. The 

rate of MRSA colonization was significantly lower in these 

infants than in others (P , 0.01). Determination of oral IgA 

offers comparable sensitivity of 80% and specificity of 61% 

using a cutoff value . 2 mg/dL for MRSA colonization.

Discussion
Uncontrollable spread of MRSA in newborns in neonatal 

intensive care units has been largely attributed to environ-

mental risk factors. In addition, neonatal immune systems 

compromised by prematurity, illness, and invasive procedures 

Table 1 Baseline characteristics of infants

Group 1 
n = 12

Group 2 
n = 17

P value

Gestation (week) 29.9 ± 2.8 30.8 ± 2.8 0.4
Birth weight (g) 993.1 ± 231.7 945.7 ± 276.1 0.62
Agar score at one  
minute

4.4 ± 2.2 4.8 ± 2.4 0.12

Cesarean section 9/12 (75%) 12/17 (70%) 0.79
Antenatal steroid  
exposure

8/12 (67%) 7/17 (41%) 0.18

Premature rupture  
of membranes

8/12 (67%) 7/17 (41%) 0.18

Duration of  
incubation (days)

31.4 ± 23.4 33.8 ± 26.7 0.8

Duration of  
hospitalization (days)

80.2 ± 0.4 89.9 ± 28.8 0.43

Death 0/12 (0%) 0/17 (0%) 1
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play an important role in MRSA colonization. Most nosoco-

mial infections in neonatal intensive care unit patients result 

from person-to-person transmission via the hands of medical 

staff.22 Colonization with MRSA is achieved via a number 

of continuous processes, ie, arrival of bacteria from other 

sources to the newborn and specific attachment of bacteria 

to molecules on epithelial cells on the newborn. Interruption 

of the continuous flow of the colonization process at any 

point is likely to inhibit colonization with MRSA. Current 

methods of prevention of colonization focus either on pre-

venting patient-pathogen contact or on preventing growth of 

the colonized microorganism.

Cultures of the nose, nasopharynx, throat, umbilicus, 

and rectum are usually negative in neonates on admission. 

Infants are colonized by flora delivered from the body of 

the mother and other human contacts. The mother’s birth 

canal may play an important role in the formation of normal 

flora in newborns. Coagulase-negative Staphylococcus is 

usually isolated from a newborn’s skin within a few hours 

of vaginal birth and, simultaneously, from the vagina of the 

mother. Bacteroides fragilis, a fecal flora, can be isolated 

within 48 hours of birth from newborns who are vaginally 

delivered, but few of these bacteria are isolated from new-

borns who are delivered via cesarean section.23 Breast-fed 

infants develop normal bacterial flora by the third day of 

life, with a predominance of Staphylococcus epidermidis 

in the nose and umbilicus, alpha Streptococcus species in 

the throat, and E. coli in the stool.23 In addition, a full-term 

newborn gets normal bacterial flora from the mother’s nipple 

and breast milk during feeding. However, many very low 

birth weight infants are born by cesarean section, separated 

from the mother immediately after birth, and undergo tube 

feeding by a nurse. Therefore, it is difficult for very low birth 

weight infants to acquire normal bacterial flora.

IgA is the principal antibody on all mucosal surfaces and 

in external secretions, including saliva. Salivary IgA plays 

an important role in the defense against viral and bacterial 

infections. Binding of intact IgA to antigens on the bacterial 

cell surface may reduce contact with the gut mucosa and facil-

itate elimination of excess potentially pathogenic substances 

of alimentary, bacterial, or viral origin. Pathogenic bacteria, 

such as S. pyogenes, S. aureus, and enteropathogenic E. coli 

can be opsonized by specific salivary IgA.19–22 According to 

these observations, salivary IgA in neonates interferes with 

bacterial growth in the oral cavity. A controlled clinical study 

of a human IgG preparation for oral use showed that it con-

ferred significant protection against necrotizing enterocolitis 

in low birth weight infants.24 The concentration of salivary 

IgA depends on a number of factors, including age, stress, 

and cortisol levels.25,26 In addition, salivary IgA secretion is 

stimulated by breast feeding and formula feeding.27–31

The present study has a few limitations, including being 

retrospective and including only a small number of cases. 

In addition, we could not determine if the production of 

salivary IgA had an independent effect on resistance to 

colonization. Further prospective studies are needed to clarify 

the potential value of using bacterial flora and salivary IgA to 

inhibit the spread of MRSA in neonatal intensive care units. 

The results of this study suggest that nonpathogenic bacterial 

flora and IgA may play a role in resistance to colonization 

by MRSA.
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Figure 1 Cumulative rate of infants with no methicillin-resistant Staphylococcus aureus 
in Group 1 and Group 2 every three days until 90 days old.  Group 1, infants with 
nonpathogenic bacterial flora and oral salivary IgA . 2 mg/dL (n = 12);  Group 2, 
all other infants (n = 17).

Table 2 Species of nonpathogenic bacterial flora

Staphylococcus epidermidis 67.6 (%)
Staphylococcus aureus (not MRSA) 9.9 (%)
Enterobacteriaceae 9.9 (%)
Corynebacterium 4.2 (%)
Lactobacillus 4.2 (%)
alpha-Streptococcus 2.8 (%)
Others 1.4 (%)
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