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Abstract: Targeted therapies for cancer bring the hope of specific treatment, providing high 

efficacy and in some cases lower toxicity than conventional treatment. Although targeted thera-

peutics have helped immensely in the treatment of several cancers, like chronic myelogenous 

leukemia, colon cancer, and breast cancer, the benefit of these agents in the treatment of lung 

cancer remains limited, in part due to the development of drug resistance. In this review, we 

discuss the mechanisms of drug resistance and the current strategies used to treat lung cancer. 

A better understanding of these drug-resistance mechanisms could potentially benefit from 

the development of a more robust personalized medicine approach for the treatment of lung 

cancer.
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Introduction
Lung cancer is the leading cause of cancer-related deaths in the US, with a mortal-

ity rate that is nearly twice as large as its closest follower in both men (prostate) 

and women (breast).1 Based on histology, lung cancers are classified into two major 

classes: small-cell lung cancer (SCLC), comprising 15% of cases, and non-small-

cell lung cancer (NSCLC), which comprise 85% of cases. While cigarette smokers 

constitute the main population at risk for developing lung cancer, the fastest-growing 

demographic  currently is in nonsmoking women between the ages of 30 and 50.2,3 

Unfortunately, due to the unavailability of early diagnostic tools, disease in two-thirds 

of these patients is not diagnosed until a later stage, leaving surgery as a nonviable 

course of action. Despite decades of research, the treatment options for lung cancer 

patients remain insufficient, either to provide a cure or even an appreciable survival 

benefit. The average 5-year survival rate has not improved greatly over the last 40 years, 

being cited currently at a mere 17%,4 and highlighting the need for improved or novel 

therapeutic options.

The first major advancement in the treatment of lung cancer, however, came with 

the introduction of platinum-based chemotherapeutics, specifically cisplatin and 

carboplatin. The therapeutic use of platinum-based chemotherapies together with 

other agents such as gemcitabine, docetaxel, vinorelbine, and pemetrexed increased 

the 5-year survival rate from 5% to 14%.5 However, even with various combinations of 

these drugs, it soon became clear that the usefulness of chemotherapy in the treatment 

of lung cancer had reached its limit. Despite this shortcoming, chemotherapy was still 

the best course of action until the approach to cancer treatment changed drastically 

with the observation of “oncogene addiction.” This phenomenon describes when the 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
25

R E V i E W

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/PGPM.S26058

P
ha

rm
ac

og
en

om
ic

s 
an

d 
P

er
so

na
liz

ed
 M

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

mailto:robert.winn@ucdenver.edu
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/PGPM.S26058


Pharmacogenomics and Personalized Medicine 2013:6

loss of even a single mutated protein of which the cells have 

come to rely on can induce massive cell death and prevent 

disease progression.6 This new idea of targeting specific 

proteins opened the possibility of honing treatments, specific 

to the diseased cells, lessening the deleterious side effects 

of traditional treatments. This new therapeutic direction, 

initially championed with the development of imatinib,7 an 

Abelson murine leukemia viral oncogene homolog 1 kinase 

inhibitor, created a new frontier in the battle against many 

types of cancer. To date, a few of these targetable mutations 

have been identified in lung cancer. Some therapies designed 

to exploit these mutations have shown promise, both as 

single-line treatments and in combination with the standard 

platinum-based chemotherapies. In this context, receptor 

tyrosine kinase inhibitors (TKIs), which target epidermal 

growth factor receptor (EGFR) and anaplastic lymphoma 

kinase (ALK), have shown great promise in tailoring treat-

ments to common kinase mutations found in NSCLC.

Unfortunately, despite the advances provided by these 

drugs, even the “addicted” cancers have a high incidence 

of relapse due to the development of resistance, limiting the 

“success” of these drugs in prolonging the median survival 

times by only a few months. Therefore, the need for focused 

research to identify new drugs and/or testing the existing 

drug combinations to mitigate drug-resistance mechanisms 

is critical to any future success in the field of lung cancer 

therapy. In this review, we highlight the current targeted 

therapies in use, as well as those under development for the 

treatment of NSCLC. In addition, we describe the mecha-

nisms by which these therapies work, as well as why they 

also frequently fail.

Current strategies used to treat 
lung cancer
Receptor tyrosine kinase inhibitors  
in current clinical use
Epidermal growth-factor receptor
EGFR is a receptor tyrosine kinase that is expressed in 60% of 

NSCLC. The binding of growth-factor ligands to EGFR initi-

ates cell-signaling events activating the Phosphatidylinositide 

3-kinase (PI3K)/Akt (involved in survival signaling) and the 

mitogen-activated protein kinases (MAPKs/ERK, involved in 

proliferation) pathways.8 The desire to inhibit the proliferative 

activity of EGFR in cancers led to the development of TKIs 

specific to EGFR. These TKIs function by binding to the 

adenosine triphosphate (ATP) pocket of the kinase, thereby 

preventing the receptor from activating its downstream-

signaling cascades. In the case of NSCLC, two such drugs 

gained US Food and Drug Administration approval in 2004: 

gefitinib9 and erlotinib.10 However, in trials performed just 

after being put on the market, gefitinib showed no survival 

advantage, showing a median survival of 5.6 months for 

gefitinib and 5.1 months on placebo (with a hazard ratio [HR] 

of 0.89).11 By comparison, erlotinib only improved median 

progression-free survival by 0.4 months compared to placebo 

(HR = 0.61), and overall survival only improved by 2 months.12 

In the following years, response to gefitinib was found to occur 

in only about 10% of cases in North American and European 

unselected populations (with slightly higher response rates 

in female Asian nonsmokers with adenocarcinoma), which 

corresponded with the presence of an activating mutation, 

but not with expression levels of EGFR. Thus far, the muta-

tions correlating with TKI sensitivity are encoded within the 

tyrosine kinase domain of EGFR: in exons 18, 19, or 21, and 

often close to the ATP-binding pocket, gefitinib’s target site. 

An extremely common mutation is on lysine 858, which is 

usually mutated to either arginine (41% of EGFR-activating 

mutations13), or more rarely to a methionine. Other identified 

mutations include the G719C substitution and several other 

deletion mutations, occurring between codons 746–750, 

747–749, 747–751, 747–753, and 752–759, all of which were 

observed to be heterozygous.14–17 Erlotinib is believed to have 

similar efficacy to gefitinib, though this might be due to a 

lack of direct comparison in trials to highlight differences.18 

Additionally, it has been shown that the type of mutation, in 

many cases, dictates the degree of sensitivity to treatment.19 

Unfortunately, despite any initial response in slowing disease 

progression, patients with EGFR-mutant NSCLC will develop 

progression of disease on TKI therapy after 10–16 months, 

resulting in these drugs only improving the median survival 

time by several weeks.20–22 This is the major drawback with 

existing therapy, which has driven research to further explore 

the mechanisms of acquired resistance.

Resistance to EGFR TKis
The molecular mechanisms in acquiring resistance to EGFR 

TKIs are numerous. Often a secondary mutation, substitut-

ing threonine with a methionine at position 790 results in 

an increased affinity for ATP.23 This increases competition 

for binding, rendering the drugs ineffective.24 This mutation 

is seen in about 50% of cases with acquired resistance.25,26 

Several other similar mutations in the kinase domain have 

been shown to cause resistance, including D761Y, L747S, 

and T854A.27 Another mechanism is via the amplifica-

tion of another receptor that signals to similar downstream 

 mediators like that of EGFR. A fairly common example is the 
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upregulation of Met, which can also activate the downstream 

PI3K/Akt pathway without requiring EGFR.28–30 Along simi-

lar lines, the upregulation of the ligand hepatocyte growth 

factor can increase Met activity. While these mechanisms 

are common, a number of cases have been observed where 

resistance appears through alternative means. These include 

the downregulation of repressors, such as phosphatase and 

tensin homologue, or even activation of completely different 

pathways, such as turning on the nuclear factor kappa-light-

chain enhancer of activated B cells transcription factor.27,31 

An additional mechanism for the development of resistance 

is via the epithelial–mesenchymal transition (EMT).32 This 

describes alterations in a cell where it loses the adherence-

junction protein E-cadherin, becomes more mesenchymal 

in morphology, and with increased motility. While EMT is 

a natural event during development, its aberrant occurrence 

makes it an important mediator of cell invasion and metastasis. 

Additionally, cells that have undergone EMT also show 

development of drug resistance to TKIs.32 Specifically, a more 

recent work has identified an E-cadherin repressor, Slug, as 

a critical mediator of EMT and as a mediator of resistance to 

gefitinib in NSCLC cell lines.33,34 Therefore, inhibition of Slug 

might as well represent a possible mechanism for resensitiza-

tion of TKI resistant EGFR-mediated cancers.

While these mechanisms describe acquired resistance, 

cancer cells can also develop resistance to a drug without 

ever being exposed to it. Recently it has been observed that a 

polymorphism in BCL2-like 11, a proapoptotic protein, inhib-

its normal cell-death mechanisms and provides an intrinsic 

resistance to TKI therapy even in the presence of an activating 

mutation.35 Another typical example of de novo resistance is 

the mutation of Kirsten rat sarcoma viral oncogene homolog 

(KRAS). As previously stated, EGFR signaling could take 

two paths: the first being the PI3K/Akt pathway that supports 

survival, and the other being the MAPK/ERK pathway, which 

supports  proliferation. KRAS, a key component of both of 

these pathways, is mutated in ∼30% of NSCLC. Furthermore, 

cancers with this mutation do not respond to either gefitinib 

or erlotinib.36 In fact, the utility of KRAS mutations as a 

biomarker for predicting resistance to TKI therapy was also 

investigated.37 It has been shown that mutations in EGFR and 

KRAS are usually mutually exclusive,25,38–40 making KRAS an 

independent therapeutic target. While direct attempts of drug-

ging KRAS via farnesyl transferase inhibitors failed to show 

efficacy in NSCLC,41 treatment of adenocarcinomas, which 

are also KRAS-driven in mouse models, with the combination 

of a PI3K inhibitor (NVP-BEZ235) and an MAPK kinase 

inhibitor (ARRY-142886) showed some promise.42 Indeed, 

a very recent study using docetaxel in combination with 

either placebo or selumetinib (AZD6244, ARRY-142866) in 

patients with a KRAS mutation showed a 3.2 month increase 

in progression free survival (HR = 0.58).43 This study provides 

some hope that targeting the MAPK pathway may also be an 

effective treatment for KRAS-mutant lung cancer patients 

in the future.

While TKIs inactivate receptor activity by binding to 

the intracellular kinase domain, another drug, cetuximab, a 

monoclonal antibody, inactivates EGFR activity by binding 

to the extracellular domain of EGFR. Cetuximab has been 

commonly used in the treatment of metastatic colorectal 

cancer,44 and while it is not currently FDA-approved for 

single-line treatment in lung cancer, early phase II trials 

showed a 1-month improvement of median survival time 

when combined with cisplatin and/or vinorelbine in NSCLC 

(HR = 0.71).45 In a phase III trial, cetuximab was able to 

increase overall survival by 1.2 months (HR = 0.871).46 

However, a recent study combining cetuximab, carboplatin, 

and paclitaxel closed due to excessive high-grade toxicity 

events.47 Another trial compared the effects of cetuximab and 

radiotherapy in combination with either cisplatin and vinorel-

bine, or cisplatin and etoposide, and found a progression-free 

survival rate at 57% and 43% for each arm, respectively.48 

Despite the fact that the median survival time in several 

studies only increased by a few months,49 the addition of 

cetuximab to certain combinations of conventional chemo-

therapy has been generally well tolerated, and continues to 

be investigated for use as a first-line treatment option for 

advanced cases of NSCLC.50

Anaplastic lymphoma kinase
Identified as a transforming mutation in 2007,51 the ALK 

fusion protein is a result of a chromosomal inversion, which 

commonly results in a fusion with echinoderm microtu-

bule-associated protein-like 4 (EML4). Initially observed 

in 6.7% of Japanese patients, this mutation appears even 

less frequently in Koreans, African Americans, and North 

Americans (a mere 3%). Early studies found that in a frac-

tion of the cases with mutations in ALK4, ALK inhibitors 

may serve as a potential therapy.52 An early phase I trial 

of crizotinib not only showed extremely mild toxicity in 

treated patients but also a response rate of 57% and 6-month 

progression-free survival in 72% of their patients.53 Indeed, 

the ALK/Met inhibitor crizotinib was conceived, tested, 

and finally approved by the FDA for use in NSCLC in only 

4 years, and continues to show impressive results in clini-

cal trials.54–56 This success story is extremely encouraging,  
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especially compared with the early studies showing lack of 

efficacy with the EGFR TKIs. It is also important to highlight 

that in the case of gefitinib and erlotinib, the early studies that 

often failed to show response were evaluated in unselected 

populations. The phase I trial described for crizotinib show-

ing exceedingly impressive results, and receiving partial 

credit for the extremely fast approval of the drug, specifically 

screened on their test population. Starting with 1500 patients, 

they narrowed down their cohort to the 82 people who actu-

ally possessed an ALK rearrangement, which resulted in a 

real demonstration of the drug’s efficacy, and highlights the 

need for analysis of each and every patient.

In addition to fusing with ELM4, ALK has been shown to 

fuse with KIF5B,57 KLC1, and is suspected to fuse with TFG, 

though the TFG-TRK-fused gene fusion partner still requires 

confirmation.58 While the effects of different fusion partners 

remain to be identified, all fusions result in the activation of 

ALK kinase activity.

Resistance to ALK TKis
Similar to the cancers with EGFR mutations, acquired resis-

tance (as well as an unfortunate side effect of hypogonadism 

and slight risk of hepatotoxicity59,60) is also a problem for 

patients with ALK4 mutations treated with crizotinib. A wide 

range of secondary mutations in the kinase domain, similar 

to the T790M mutations in EGFR, has been identified.61 

These include mutations such as L1196M, S1206Y, G1202R, 

G1269A, D1203N, C1156Y, and L1152R.62–64 It is hypoth-

esized that due to the fact that ALK kinase is activated by a 

translocation and not by a mutation within the gene, the larger 

range of mutations identified in the kinase domain might not 

affect its function.64 Alternative mechanisms of resistance 

include an increase in copy number and the activation of 

different pathways via receptor tyrosine kinase activation, 

such as Kit and EGFR.62,63

There are a few strategies being employed to counteract 

resistance. Inhibitors directed against heat-shock protein 90 

(HSP90), which forms a chaperone complex with EML4–

ALK, are effective in interrupting the fusion protein’s 

function. Early in vitro work and clinical trials have shown 

promise for HSP90 inhibition in treating lung cancers with 

this genotype.65,66 Very recently, a phase II trial was con-

ducted for the HSP90 inhibitor AUY922 in several different 

mutation classes of NSCLC. Though the trial is ongoing, 25% 

of the ALK mutated patients have shown a partial response 

to treatment, though responders seem to be restricted to the 

patients with no prior treatment with crizotinib.67 However, 

its efficacy in cases that have already developed resistance 

to targeted ALK inhibitors remains to be conclusively 

shown.64,68 Also, there are several different kinds of ALK 

fusion proteins, some of which have de novo resistance 

to crizotinib. This, in addition to the prospect of regaining 

sensitivity after the development of crizotinib resistance, has 

sparked the development of several other ALK inhibitors 

targeting different sites on the kinase. Early results show 

that in some cases (for example the L1196M, F1174L, or 

G1269S mutations) an alternative ALK inhibitor may able 

to produce/reproduce sensitivity in NSCLC.64,69

Strategies in development for lung 
cancer treatment
In the search for more effective treatment for lung cancer, 

several genes and cellular processes were probed to  identify 

drug targets. These include EGFR and ALK signaling, 

vascular endothelial growth factor (VEGF) receptors 

(ie, receptor tyrosine kinases involved in angiogenesis), 

matrix  metalloproteases (which are implicated in  metastasis), 

and insulin-like growth-factor receptors (IGFRs).41 In 

the following section, we describe the mechanisms and 

their therapeutic targets that are still under investigation 

(summarized in Table 1).

Angiogenesis inhibitors
The ability of a cancer to develop its own blood supply through 

angiogenesis is an incredibly important process, and desig-

nated as one of the “hallmarks” of cancer.70 Without angio-

genesis, a tumor could not grow larger than a few millimeters, 

making it an attractive target for therapeutic gain.71 Several 

angiogenesis inhibitors, including SU5416 and thalidomide, 

have already failed in clinical trials, due to an unacceptable 

risk or pure lack of benefit.41,72,73 However, a recombinant 

humanized monoclonal antibody against the VEGF receptor, 

called bevacizumab, showed some promise, and has been 

included in phase II and III trials for various metastatic cancers 

in the last decade,58,74,75 specifically for metastatic NSCLC 

since 2005.76,77 Several studies have seen increased overall 

survival times when combined with chemotherapy, though 

these studies did not account for any additional lines of therapy 

that may have contributed to the health of the patients.78 While 

high toxicity occurred in squamous carcinomas, adenocarci-

nomas tended to respond with minimal adverse side affects.78 

A recent phase II single-arm trial found that a combination of 

bevacizumab and platinum-based chemotherapy followed by 

maintenance therapy was able to extend progression-free sur-

vival to 7.1 months, and median survival time to 17.1 months 

in 85% of the patients.79 While this is still an improvement 
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over the existing therapies, a major disadvantage is that this 

therapy does not seem to render any benefit to patients over 

the age of 65 years, which is the main demographic group 

for lung cancer.1,80,81 However, recent studies have shown that 

in a small cohort of non-squamous NSCLC selected patients 

(at an average age of 65 years), bevacizumab in addition to 

docetaxel as a second-line or above therapy was able to pro-

duce a median progression-free survival time of 7.9 months 

and control disease in 95% of the patients.82 This warrants 

further investigation as to the usefulness of bevacizumab 

in this age-group. Along a parallel path, several other TKIs 

directed against angiogenesis, such as sunitinib, sorafenib, and 

linifanib, are also in clinical trials. While they are intended to 

inhibit VEGF, they are nonspecific, and therefore could also 

inhibit other kinases, such as platelet-derived growth factor 

receptor and Kit.83 Early phase II trials showed some positive 

activity against recurrent NSCLC, though the benefit gained 

by these agents was only in the order of months.84,85 A recent 

phase II trial tested the addition of linifanib or placebo to a 

combination of carboplatin and paclitaxel therapy for non-

squamous NSCLC. At lower doses of linifanib, progression-

free survival was improved by 2.9 months (HR = 0.51); 

however, overall survival was not greatly improved.86 This is 

contradictory to a phase III trial of sorafenib, which seemed to 

show no benefit.87 However, a recurrent explanation provided 

in the literature for the failure of the trials is due to the lack 

of patient selection by biomarkers that would respond well 

to anti-VEGF agents.88,89

Histone deacetylase inhibitor
Recently there has been some investigation into drugs that 

can inhibit histone deacetylases (HDACs) as therapeutics. 

HDACs are responsible for removing acetyl groups 

from histones. This helps to condense chromatin, and in 

the case of cancer often shuts down crucial genes involved 

in proliferative regulation.90,91 In a phase I trial, treating a 

small cohort (n = 19) with an HDAC inhibitor, vorinos-

tat, produced response in 53% of patients, compared to 

the 20%–30% response rate of chemotherapy. Following 

up with in vitro testing of the effects of vorinostat with 

carboplatin and paclitaxel showed a synergistic benefit.91 

Another in vitro study found that the effects of vorinos-

tat on cancer cells could be due in part to its effects on 

telomerases, a protein required to maintain the immortal-

ity of cells.92 While it is still too early to tell how quickly 

resistance might be acquired, and the mechanisms thereof, 

the results of future phase II and III trials are eagerly 

awaited.

insulin-like growth-factor 1 receptor 
inhibitor (iGF-1R)
IGF-1R is yet another TKI that can initiate proliferative as 

well as antiapoptotic signaling in the cell. The finding that 

IGF-1R is overexpressed in a wide range of cancers made 

it an interesting target.93 A drug designed to inhibit IGF-IR, 

IMC-A12 (later called cixutumumab [CIX]), is a human 

monoclonal antibody, which was identified to have tumor-

suppressive potential.94 It is thought that IGF-1R is centrally 

placed in several different survival signaling mechanisms, 

which leads to increased resistance to cytotoxic agents. These 

include the Akt/PI3K pathway, and activation of p38 and 

Rad51, which increase DNA-damage repair.94 CIX began 

early clinical trials by being combined with chemotherapy 

as a method to regain sensitivity to chemotherapy.95 Of these 

trials, those specifically aimed at NSCLC were phase I or 

II trials using CIX in various combinations with erlotinib, 

cetuximab, and chemotherapy. However, no reports were 

found to have noteworthy success. A recent phase I/II trial 

Table 1 Summary of the current therapies, their targets, and their function

Drug Class Target Pathway

Gefitinib, erlotinib Tyrosine kinase inhibitor EGFR Pi3K/Akt – survival 
MAPK – proliferation

Cetuximab Monoclonal antibody EGFR Pi3K – survival 
MAPK – proliferation

Crizotinib Tyrosine kinase inhibitor ALK MAPK – proliferation
Bevacizumab Monoclonal antibody VEGF Angiogenesis
Sunitinib, sorafenib Tyrosine kinase inhibitor VEGF Angiogenesis
Vorinostat Small molecule inhibitor Histone deacetylase Epigenetic silencing
Cixutumumab Tyrosine kinase inhibitor iGF-1R Pi3K/Akt, DNA damage
Figitumumab Monoclonal antibody iGF-1R Pi3K/Akt, DNA damage
Celecoxib Small molecule inhibitor COX-2 EGFR signaling – Pi3K/Akt – MAPK

Abbreviations: EGFR, epidermal growth factor receptor; VEGF, vascular endothelial growth factor; iGF, insulin-like growth factor; Pi3K, phosphatidylinositide 3-kinase; 
MAPK, mitogen-activated protein kinase; COX-2, Cyclooxygenase-2.
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also suggested that the combination of CIX with erlotinib in 

nonselected patients had high toxicity and little benefit.96

Despite the seeming failure of CIX, a slew of other 

IGF-1R inhibitors have been developed.97 Another IGF-1R 

monoclonal antibody – CP-751871, better known as 

figitumumab – was able to increase objective response by 

12% and progression-free survival by 1 month (HR = 0.46) 

when combined with carboplatin and paclitaxel in a recent 

phase II study. Of note, it seemed that those with squamous 

cell lung cancer were particularly responsive.98 Despite early 

optimism, phase III trials were discontinued due to lack of 

benefit. However, the search for biomarkers to identify the 

appropriate patient population began. Currently, it is thought 

that circulating levels of IGF-1 might be useful in identifying 

possible beneficiaries of figitumumab treatment.99

Cyclooxygenase-2 inhibitor
Cyclooxygenase 2 (COX-2) is a member of the COX family 

of enzymes that are involved in the production of prostaglan-

din H
2
 (PGH

2
). In NSCLC, the expression of COX-2 has been 

highly correlated with increased survivin, an antiapoptotic 

factor,100 and COX-2 has been found to be overexpressed in 

∼90% of NSCLC patient samples.101 Once COX-2 produces 

PGH
2
, PGH

2
 can then be converted to PGE

2
. Increased PGE

2
 

levels lead to increased EGFR signaling, which in turn 

promotes survival and proliferation. Elevated PGE
2
 levels 

have been correlated with neoplastic lung tissues,102 mak-

ing COX-2 and its signaling pathway an attractive target 

for therapy. Early phase II studies found that in unselected 

patients, the use of celecoxib, a COX-2 inhibitor, did not ren-

der any benefit; however, a possible biomarker for response 

was identified.103 Unfortunately, there does not seem to be 

a large body of evidence that celecoxib could be useful in 

the treatment of NSCLC, but studies have been conducted 

looking at its use as a cancer preventative, rather than a cure. 

One study found that celecoxib given to former smokers not 

only showed a decrease in biomarkers of early carcinogenesis 

but also showed a reduction in lung nodules.104

While the inhibition of PGH
2
 is desired in order to 

decrease PHE
2
 levels, PGH

2
 can alternatively be made into 

prostacyclin (PGI
2
), if PGI

2
 synthase is present. Unlike 

PGE
2
, PGI

2
 has actually been shown to have a tumor-

suppressive function. PGI
2
 synthase, however, is downregu-

lated in many NSCLCs, resulting in low levels of PGI
2
.105 

Recent studies have investigated the possible use of PGI
2
 

as a chemoprevention strategy, finding that in mouse mod-

els increasing PGI
2
 (alone and with gefitinib in moderate 

doses) prevented tumorigenesis.106,107 Additionally, studies 

in mouse models found that the activation of peroxisome 

proliferator-activated receptor gamma (PPARγ) was in part 

responsible for the tumor-suppressive phenotype of PGI
2
.108 

PPARγ is a potent transcription factor, which has roles in 

suppressing inflammatory and immune responses,109 as well 

as directing the differentiation of adipocytes. Low PPARγ 

in NSCLC has also been correlated with poor prognosis.110 

Additionally, a large trial looking at patients across ten 

Veterans Affairs medical centers compared patients using 

thiazolidinediones (which are ligands for PPARγ activation) 

to those who were not on the drug. The investigators found 

that those individuals taking thiazolidinediones had a 33% 

reduced risk for lung cancer, highlighting PPARγ as a pos-

sible target warranting further investigation for clinical 

application.111

As previously mentioned, the prevalence of the EGFR 

and ALK mutations that are currently targetable by therapy 

can account for only a small percentage of NSCLC patients, 

and current treatments are only useful for a short period of 

time due to resistance. The concept of reversing resistance 

(sensitization) has driven an appreciable amount of research 

in this area. For example, there have been studies showing 

that a combination of erlotinib with cetuximab can induce 

apoptosis in formerly TKI-resistant cells in vitro.112

In general, the idea of combinatorial therapeutics is 

becoming more popular. Though EGFR treatments, as 

previously discussed, are looking at combinatorial-targeted 

inhibition, Src, the first discovered oncogene, and its down-

stream effects also closely mirror that of many of the receptor 

tyrosine kinases. To that end, a recent study attempting to 

concomitantly target Src and EGFR has shown some promis-

ing initial results. In a small trial, the inhibition of Src with 

different doses of dasatinib (all combined with erlotinib) 

in patients with lung cancer (50% adenocarcinoma, 21% 

squamous cell histology, 29% NSCLC) was seen to have a 

favorable response in 29 of 34 patients treated, as evinced by 

a disease-control rate (partial response plus stable disease) 

of 62% of patients, with a median progression-free survival 

time of 2.7 months and an overall survival time of 5.6 months 

(ranging from 4.9 to 12.2 months). This trial also determined 

that dasatinib may be combined safely with erlotinib for 

treatment.113

However, even combinatorial treatments might not be 

effective for all cases. Given the propensity of cancer to 

develop resistant cells, the next logical step in preventing 

relapse would be to target multiple pathways, or rather attack-

ing cancer as a heterogeneous body. Perhaps targeting the 

primary and common resistance mechanisms simultaneously 
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could improve the treatments. A recent study did just this, 

adding a c-Met inhibitor, tivantinib, to erlotinib. Though it 

was a small phase I trial, and further studies are being con-

ducted, all 13 of their patients were able to achieve either a 

partial response or stable disease.114 Several examples in the 

literature describe cases where two distinct driving mecha-

nisms have been found in clonal populations within the same 

cancer, also suggesting that combination therapy might be 

the best approach to treatment.52,64 Combination of erlotinib 

and the VEGF inhibitor sorafenib has shown early promise 

in phase II trials.115 Conversely, combination of erlotinib with 

another VEGF inhibitor, sunitinib, did not have any effect 

in a phase III trial.116 In several of these cases, the clonal 

populations of cells with different driving mutations, and 

those with new mutations, gained resistance, and tended to 

fall into categories for which targeted therapies already exist 

in NSCLC (Figure 1). For example, a patient who develops 

lung cancer with an ALK fusion protein and treated with cri-

zotinib may have their lung tumors shrink, but subsequently 

develop a resistant population of cells, via EGFR mutations. 

In that case, since crizotinib would no longer be effective 

for this patient, treatment with gefitinib or erlotinib might 

be beneficial. Another example would be a case where the 

lung cancer driven by an EGFR mutation develops resis-

tance to therapy by the upregulation of Met. In that case, the 

cancer may now be sensitive to a subsequent treatment with 

crizotinib.28,29,64 Given the advances in personalized medicine 

via genetic and biomarker screening, we may be much more 

effective at treating these various scenarios.

Future directions for the treatment 
of lung cancer
While the kinase pathways have been the major focus of 

therapeutic development, recently a small body of literature 

is suggestive of an important role for the Wnt-signaling path-

way in lung cancer. The common conversation about Wnt 

signaling references the canonical pathway, where binding of 

a Wnt ligand to a Frizzled receptor results in stabilization of 

β-catenin. Normally important as a structural protein, when 

β-catenin is allowed to persist in the cytosol, it translocates 

into the nucleus, where it stimulates not only the genes 

associated with increased proliferation and motility but also 

factors that are native to stem cells. While this transcriptional 

program is very important during development, improper 

activation in adult tissues contributes to oncogenesis.117–119 

Therefore, attempts to use this pathway as a target for thera-

peutic gain have all been focused on inhibiting canonical 

signaling.120,121 Interestingly, recent studies have identified a 

possible benefit in NSCLC, not from inhibiting Wnt signal-

ing, but from restoring its function.

Specifically, Wnt 7a, when paired with the receptor 

Frizzled 9, activates a β-catenin independent (noncanonical) 

signaling pathway. This leads to a cascade of events includ-

ing the activation of c-Jun N-terminal kinase signaling,122 

Sprouty-4 (a TKI),122,123 and the stabilization of PPARγ.117,123 

Intriguingly, Wnt 7a is lost in a high percentage of NSCLC. 

In fact, a staggering 85% of patient tissue samples and 

88% of dysplastic lesions have lost Wnt 7a, possibly via 

DNA  methylation-mediated gene silencing.124 Moreover, 

it was also observed that the reconstitution of this nonca-

nonical Wnt-signaling pathway displayed significant tumor-

 suppressive effects.122 These factors make this pathway an 

exciting prospect not only for its possible efficacy in treat-

ment but also for its widespread applicability.

However, it is a challenge to purify recombinant Wnt 7a 

that can be used in therapy. Interestingly, it has been shown 

that a PGI
2
 analogue125 can mimic many of the effects of 

Wnt 7a in the context of Frizzled 9. Recent studies have also 

shown that the addition of prostacyclin to lung cancer cell 

lines that have retained Wnt 7a receptor Frizzled 9 results in 

decreased proliferation, inhibition of anchorage-independent 

growth,126 and significantly decreases lung cancer growth in 

vitro.123,126

While the Wnt pathway presents an exciting new path to 

investigate, we must also continue to find new and  different 

ALK-ELM4 fusion

+ crizotinib

+ gefitinib or erlotinib
New mutation

develops

EGFR mutation

Relapse

Figure 1 A hypothetical line of treatment based on the availability of a range of 
targeted therapies.
Notes: An initial tumor is treated with its appropriate therapy. Upon resistance via 
mutations or clonal selection, the cancer can be sensitized with a different drug. This 
process of personalized medicine might not cure the disease, but rather keeps the 
disease under constant submission.
Abbreviations: ALK, anaplastic lymphoma kinase; ELM4, echinoderm microtubule-
associated protein-like 4; EGFR, epidermal growth factor receptor.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

31

Molecular targeted therapy and personalized medicine in NSCLC

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Pharmacogenomics and Personalized Medicine 2013:6

targets in the treatment of lung cancer. New methods are 

currently in development to assist in the screening of indi-

vidual patients for important mutations, which may help 

identify which therapy would be effective for them.127,128 

Additionally, steps have been taken towards identifying 

novel mutations that still require therapeutic development 

via whole-genome analysis methods. Recent studies in SCLC 

have analyzed the genomes, transcriptomes, and exomes of 

SCLC samples, either alone or paired to normal tissues. By 

looking at the entire cancer rather than just the mutations that 

have been previously reported, several trends emerged and 

pointed towards new targets.129,130 This method has also been 

applied to NCSLCs, specifically of the squamous histology 

type. Of the 178 lung squamous cell carcinomas that were 

characterized, eleven genes among hundreds of alterations 

in gene copy number, gene rearrangements, and mutations 

were recurrently mutated. While these include some of the 

obvious suspects, such as TP53, alternate pathways were also 

found to be commonly mutated, including proteins impor-

tant for cellular differentiation and oxidative stress.131 If the 

goal of achieving truly personalized medicine requires that 

we screen each and every patient in order to ascertain their 

therapeutic needs, we then also need to prepare therapies for 

any number of possible mutant genotypes so that once the 

problem is identified, we can be equipped to treat it.

Discussion
Lung cancer remains the leading cause of cancer deaths in 

the United States. While there have been a number of drugs 

approved for use, they have suffered from limited applica-

bility and an incredibly high rate of acquired resistance. At 

the current rate, real advancement in the treatment of lung 

cancer may still be years or even decades away. That being 

said, several themes have emerged in the literature. First, 

there is a significant need for the advancement of personal-

ized medicine. The power of targeted therapies is clear when 

applied to those individuals harboring the specific mutations 

for which the drug was designed to treat. However, the success 

of many of these targeted therapies has often been confounded 

by the design of the trials. The low prevalence of mutations 

that are specifically targeted by drugs result in trials that 

mask efficacy in large and unselected populations of patients. 

This highlights the need for a more personalized approach to 

therapy. The identification of biomarkers is progressing, but 

will do little good if the information is not translated to the 

clinical trial arena, allowing drugs to be tested against their 

intended population. The perfect example of this was previ-

ously described in the cases of gefitinib and crizotinib. The 

selection of patients via the use of biomarkers and individual-

ized analysis can mean the difference between a null result 

and the clear demonstration of a medicine’s potential.

Secondly, there is no magic bullet for any of these subsets 

of cancers. Where one mutation may dominate, other popula-

tions will rise or adapt upon selection by drugs. While there 

may not be a single cure for lung cancer, there could be a way 

to either cycle treatment or combine drugs in such a way as 

to keep the cancer cells under constant submission. This also 

requires that attention be paid to the patient on an individual 

basis, as the mechanisms of resistance are many, and proper 

treatment relies on the ability to determine which resistance 

mechanism has been employed. Based on the adaptive nature 

of lung cancer, one must constantly be vigilant in looking for 

alternative mechanisms to target this disease, and the need to 

develop more robust personalized approaches for the treat-

ment of lung cancer has never been greater.
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