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Abstract: The 118A.G single nucleotide polymorphism (SNP) in the µ-opioid receptor 

(OPRM1) gene has been the most described variant in pharmacogenetic studies regarding 

opioid drugs. Despite evidence for an altered biological function encoded by this variant, this 

knowledge is not yet utilized clinically. The aim of the present review was to collect and discuss 

the available information on the 118A.G SNP in the OPRM1 gene, at the molecular level and 

in its clinical manifestations. In vitro biochemical and molecular assays have shown that the 

variant receptor has higher binding affinity for β-endorphins, that it has altered signal trans-

duction cascade, and that it has a lower expression compared with wild-type OPRM1. Studies 

using animal models for 118A.G have revealed a double effect of the variant receptor, with 

an apparent gain of function with respect to the response to endogenous opioids but a loss of 

function with exogenous administered opioid drugs. Although patients with this variant have 

shown a lower pain threshold and a higher drug consumption in order to achieve the analgesic 

effect, clinical experiences have demonstrated that patients carrying the variant allele are not 

affected by the increased opioid consumption in terms of side effects.
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Introduction
Opioid analgesics are widely used for the treatment of moderate–severe acute and 

chronic pain in the clinic. However, the occurrence of opioid-related side effects, 

such as respiratory depression, nausea, vomiting, constipation, and sedation may limit 

the dosing and affect effectiveness of opioid treatment. This may lead to poor patient 

compliance, discontinuation of therapy, drug underdosing, and inadequate analgesia. 

In contrast, prolonged use of opioids, as in the case of chronic pain treatment, may 

also lead to tolerance and adverse effects, such as hyperalgesia and addiction, which 

may limit their effectiveness.1,2

The analgesic efficacy of opioids varies greatly among individuals, leading to a 

scenario where some patients either receive inadequate therapy or experience severe side 

effects at standard doses.3 Similarly, interindividual variability concerning the develop-

ment of tolerance and addiction following a chronic treatment may be hypothesized, as 

was suggested in human healthy volunteers in controlled experimental settings in the 

mid-1990s.4 For these reasons, it is important to understand the factors underlying this 

variability in response to opioids – in order to predict the clinical outcome and, thus, 

to personalize therapy for the individual patient.

Individual differences in opioid consumption may be caused by nongenetic 

(ie, gender, age, ethnic origin, hepatic and/or renal function, and emotional status) 
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and genetic factors.5–9 Genetic variations, such as single 

nucleotide polymorphisms (SNPs), in genes involved in the 

pharmacodynamics and pharmacokinetics of opioids may 

lead to interindividual differences in response to opioid 

treatment.10 These genes can encode metabolic enzymes, 

drug transporters, receptors, or intracellular targets, such as 

transcription factors.

Among the genes involved in the pharmacodynamics 

of opioids, the µ-opioid receptor gene (OPRM1) has been 

investigated in different pharmacogenetic studies. OPRM1 

codes for the µ-opioid receptor, which is the main target of 

both endogenous and clinically relevant opioids, such as 

morphine and fentanyl. The general aim of this review was to 

collect and organize the available information on the OPRM1 

118A.G SNP, trying to correlate the predicted changes in 

the receptor protein with its activity at the molecular level 

and to better understand the relationship between the latter 

and clinical manifestations.

Molecular consequences  
of the 118A.G polymorphism  
(in vitro studies)
Effect of 118A.G on mechanisms related 
to an acute exposure to an opioid
The µ-opioid receptor belongs to the rhodopsin family of 

the G protein-coupled receptors (GPCRs) and consists of 

an extracellular N-terminus, seven transmembrane helices, 

three extra- and intracellular loops, and an intracellular 

C-terminus. The human OPRM1 is located on chromosome 

6q24-q25 and spans over 200 Kb, with at least 9 exons and 

19 different splice variants under the control of multiple 

promoters, and comprises more than a hundred SNPs.11,12 In 

particular, 118A.G (SNP database [dbSNP] Accession No 

rs1799971) has been the most studied variant in the phar-

macogenetic research on opioid drugs. This SNP is located 

in the exon 1 of the gene and consists of the substitution of 

an adenine (A) with a guanine (G) that in turn, causes the 

amino acid exchange at position 40 of the µ-opioid receptor 

protein from asparagine to aspartic acid (N40D), leading to 

the loss of a N-glycosylation site in the extracellular region 

of the receptor.13 The variant allele (118G) has a frequency 

of 27%–48% in Asians, 11%–17% among Caucasians, 

2.2% in African Americans, and 0.8% in sub-Saharan 

Africans (dbSNP Short Genetic Variations database of the 

American National Center for Biotechnology Information; 

NCBI, Bethesda, MD, USA , Accessed Dec 1, 2012), thus, 

it is carried sufficiently often to be clinically interesting 

for opioid therapy. Despite the fact that many authors have 

provided evidence for a biological function of this variant 

(summarized below), a recent meta-analysis showed that 

OPRM1 118A.G has little clinical relevance.14 The reasons 

for the discrepancy between functional experimental and 

clinical observational studies are not yet understood.

The receptor can be activated by both endogenous ligands, 

such as β-endorphins (the peptide derived from the  precursor 

pro-opiomelanocortin), and opioid drugs (ie,  morphine, fen-

tanyl, and methadone). The acute agonist binding results in a 

conformational change of the receptor that triggers the G protein 

(particularly the pertussis toxin-sensitive G
i
/G

o
 proteins) 

activation/inactivation cycle. Hence, the signal transduction 

pathway includes the inhibition of adenylyl cyclase activity, a 

reduction in the voltage-gated calcium channel opening, and 

the stimulation of G protein-activated inwardly rectifying potas-

sium channels, and finally results in a reduction of membrane 

potential, neuronal excitability, and neurotransmitter release.15 

This inhibitory action on neurons, when located in the pain-

processing circuits of the central nervous system, is responsible 

for the analgesic effects of opioids.

Few studies have evaluated the molecular consequences 

of the 118A.G polymorphism on the binding affinity of 

µ-opioid receptors and on µ-opioid receptor-evoked signal 

transduction pathways using in vitro methods. Using  Syrian 

hamster adenovirus-12-induced tumor (AV-12) cells stably 

expressing the human µ-opioid receptor variants, Bond et al16 

first showed that the 118A.G SNP affects the binding prop-

erty of the µ-opioid receptor. Particularly, the variant receptor 

showed a threefold higher binding  affinity for β-endorphins 

than the wild-type receptor (coded by the 118A allele), 

whereas it showed an unaltered binding affinity for methi-

onine (Met)- and leucine (Leu) enkephalin (small endogenous 

opioid agonists), endomorphin-1 and -2 (selective endogenous 

µ-opioid receptor agonists), the µ-selective synthetic agonist 

[D-ala2,MePhe4,Gly-ol5]-enkephalin (DAMGO), dynorphin 

A (the endogenous ligand for k-opioid receptors, which also 

has some affinity for µ-opioid receptors), morphine, fentanyl, 

methadone, and naloxone (an opioid antagonist). Moreover, 

using Xenopus oocytes injected with in vitro–transcribed 

messenger (m)RNAs for the 118A or the 118G alleles, the 

authors showed that β-endorphins were three times more 

potent in agonist-induced activation of G protein-coupled 

potassium channels at the variant receptor compared with the 

wild-type.16 These observations are particularly intriguing, 

since they suggest that the 118G allele is associated to an 
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increased sensitivity of µ-opioid receptors to the endogenous 

opioids. Hence, this gain of function for the 118G allele may 

be related to an interindividual variability in sensitivity to 

pain rather than to the interindividual variability in analgesic 

response to opioid drugs. Beyond analgesic therapy, this gain 

of function of the 118G allele may also affect the rewarding 

properties of nicotine and alcohol, which are mediated by the 

activation of the endogenous opioid system.17 Other in vitro 

studies did not confirm the results by Bond et al. In fact, in 

other studies of both COS (monkey kidney–derived) and 

HEK293 (human 293 embryonic kidney) cells, no differences 

in β-endorphin-binding activity between the variant and the 

wild-type receptors were detected.18,19

Studies evaluating the effects of the 118A.G SNP 

on the intracellular signaling cascades triggered by exog-

enous opioids binding to µ-opioid receptors have shown 

 conflicting results. Both DAMGO and morphine were two-

fold more potent in inhibiting calcium channel currents in 

sympathetic neurons transfected with the 118G allele than 

in neurons expressing the wild-type receptors.20 However, 

in two different cell lines (HEK293 and AV-12 cells), stable 

expression of the 118G variant was associated to decreased 

agonist-mediated cyclic adenosine monophosphate (cAMP) 

signaling (and the half-maximal effective concentration 

[EC
50

]) for morphine, methadone, and DAMGO, but not 

for β-endorphin.21 These results suggest that the cellular 

environment may influence the phenotype associated with 

the variant receptor. More recently, in a study on human 

postmortem brain tissue, it was shown that the variant 

receptor is coupled to less efficient DAMGO-induced 

receptor signaling in the secondary somatosensory area, a 

pain-relevant brain region.22 Therefore, concerning exog-

enous opioids, these latter results show a loss of function 

of the variant receptor, probably resulting in reduced opioid 

drug effects.

Altogether, the results discussed above suggest that the 

variant receptor is associated with a decreased effect of 

exogenous opioids, while increasing the effect of endogenous 

 opioids. Hence, carriers of the 118G allele should have an 

higher threshold to pain (due to increased sensitivity to 

endogenous opioids) but they may require increased µ-opioid 

drug doses in order to get analgesic effect and, subsequently, 

they may also be at risk for opioid-related side effects. On 

the other hand, the altered receptor sensitivity to endogenous/

exogenous agonists should also be evaluated, considering 

that the expression of the receptor can be conditioned by the 

genotype (see below).

In conclusion, the 118A.G SNP has biological conse-

quences at the molecular level that are strictly dependent on 

the experimental settings and opioid agonist used.

Effect of 118A.G on µ-opioid  
receptor desensitization
In the case of acute (minutes to hours) exposure to an opioid, 

desensitization of the µ-opioid receptors occurs, probably 

involving phosphorylation of the receptor and subsequent 

uncoupling of the receptor from its G protein, followed by 

internalization of the receptor.15 It has been suggested that 

the desensitization and internalization of µ-opioid receptors 

may play a role in the initiation of chronic tolerance.23

The OPRM1 118G variant seems to affect neither desen-

sitization nor internalization of the µ-opioid receptor. In fact, 

it was shown that after prolonged treatment with either mor-

phine, morphine-6-glucuronide (M6G) (an active metabolite 

of morphine with greater analgesic potency but reduced 

potency in inducing respiratory depression than morphine), 

or β-endorphin, both the variant and the wild-type recep-

tors showed similar desensitization and resensitization time 

courses.19 Moreover, both the variant and wild-type recep-

tors showed a robust internalization following DAMGO and 

β-endorphin administration, which was not observed when 

using morphine or M6G.19

Therefore, it can be concluded that interindividual differ-

ences in the occurrence of opioid-related tolerance are not 

explained (from a mechanistic point of view) by an effect of 

118A.G on agonist-induced µ-opioid receptor endocytosis, 

desensitization, and resensitization.

Effect of 118A.G on mechanisms  
related to chronic exposure to opioids
The sustained administration of an opioid (days to weeks) 

leads to a progressive loss of the drug effect. This toler-

ance refers to a decrease in the apparent effectiveness of 

a drug with continuous or repeated agonist administration. 

 Tolerance is surmountable with higher doses of the opioid 

and is reversible over time but, contrary to desensitization, it 

disappears over several weeks following the removal of the 

agonist, thus suggesting the existence of long-term adaptive 

mechanisms. During the state of tolerance, dependence is 

usually observed. Dependence represents a state of adap-

tation showed by receptor/drug class-specific withdrawal 

syndrome due to drug abstinence or the administration of an 

antagonist (ie, naloxone). As far as the cellular  mechanisms 
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underlying the state of tolerance and dependence, study 

results have been controversial. The main hypothesis 

concerns the adaptive counter-regulatory cellular change 

that occurs following chronic opioid exposure, namely the 

rebound increase in cellular cAMP levels produced by both 

upregulation and the increased activation of adenylyl cyclase. 

This takes place in the neurons of different brain areas, 

including those processing physical symptoms of withdrawal 

and reward (ie, the ventral tegmental area, locus coeruleus, 

and nucleus accumbens).23 This upregulation of the cAMP 

pathway observed after chronic morphine treatment triggers 

other intracellular adaptations, including the activation of 

cAMP-dependent protein kinase (PKA), increased levels 

of phosphorylated extracellular signal regulated kinase 

(ERK), and phosphorylation of the transcription factor, 

cAMP response element-binding protein (CREB), at serine 

(Ser)133.24–26 Altogether, such adaptive counter-regulatory 

changes impinge upon synaptic activity, altering its response 

to signaling and inducing a cell excitatory state (due to 

increased cation current through activation of PKA) and 

increased neurotransmitter release when the opioid treatment 

is discontinued. The final result is the occurrence of physi-

cal dependence to opioids, due to the sustained activation 

of bulbospinal pathways that increases the excitability of 

spinal dorsal horn pain transmission. The unpleasant feel-

ing related to withdrawal may lead to a behavioral pattern 

characterized by compulsive drug seeking and drug taking 

(addiction).27 Indeed, increased CREB activity, together with 

changes in other transcription factors, has been hypothesized 

to induce changes in neuronal and synaptic morphology in 

the rewarding circuits of the brain, and these changes may 

be important for addiction.28,29

Given the role of cAMP, PKA, ERK, and CREB in the 

development of chronic opioid-related tolerance, depen-

dence, and addiction, a recent study evaluated the effect of 

118A.G SNP on these signaling molecules.30 In this paper, 

murine neuroblastoma Neuro 2 A cells stably transfected with 

cDNA containing the 118G variant did not show the upregu-

lation of PKA activity and showed a differential response of 

ERK phosphorylation compared with cells transfected with 

the 118A variant, following chronic treatment (6 days) with 

1 µM morphine. Hence, the 118A.G SNP may genetically 

determine patient sensitivity to tolerance and dependence.

Effect of 118A.G on the levels  
of expressed receptor
Different studies have evaluated the effect of polymorphism 

on the expression of OPRM1 and on the levels of µ-opioid 

receptor, using in vitro, ex vivo, and in silico methods. One 

analysis of 87 human brain tissue samples derived from 

autopsies, associated to in vitro experiments on Chinese 

hamster ovary (CHO) cells, showed that the amount of 

messenger (m)RNA transcribed from the 118G allele was 

twofold lower compared with the mRNA derived from the 

118A allele. In addition, the levels of variant protein were 

tenfold lower compared with those of the wild-type receptor.31 

Moreover, a lower cell-surface receptor binding site avail-

ability (B
max

) (measured with [3H]-DAMGO) was observed 

in both HEK293 and AV-12 cell lines stably expressing the 

118G variant compared with cells expressing the 118A 

receptor.19,21 These effects on the expression of OPRM1 are 

particularly interesting. If the distribution and extension of 

the changes on OPRM1 expression differed at various ana-

tomical sites, a variable loss of function of the 118G allele 

would occur. In turn, this might differently affect individual 

sensitivity to pain, opioid efficacy, and opioid-related side 

effects and reward, depending upon the brain area and the 

peripheral tissue involved. In this regard, a recent in vivo 

study using 11C-carfentanil positron emission tomography 

(PET) in smokers suggests that the decreased levels of 

µ-opioid receptor protein associated to the 118G allele may 

not be extended to the whole brain.32 The authors showed 

that smokers who were heterozygous for the 118G allele 

had lower levels of µ-opioid receptor availability compared 

with those who were homozygous for the 118A allele, in 

the amygdala, thalamus, and anterior cingulated cortex, but 

not in the striatum. Interestingly, these findings may partly 

explain the reduced nicotine reward, withdrawal, and relapse 

risk associated with the 118A.G polymorphism.33

As for the mechanisms underlying the effects of the 

118A.G SNP on gene expression and levels of the receptor 

protein, this may be explained in different ways. Since the 

118A.G SNP is not located in the gene promoter but in the 

coding region, the effects on gene expression may be due 

to another functional SNP that is in strong linkage disequi-

librium with 118A.G. However, genotype and haplotype 

studies have failed to recognize any known SNP of sufficient 

frequency in linkage disequilibrium with 118A.G that may 

regulate gene expression.34,35 One in silico study showed 

that the substitution of the A with a G in position 118 of 

the OPRM1 gene was predicted to abolish three transcrip-

tion factor binding sites while creating a novel exon splice 

enhancer as well as p53 and a zinc finger protein binding sites, 

thus suggesting a possible direct effect of 118A.G on gene 

expression and on the processing of heterogeneous nuclear 

RNA into mature mRNA.36 The effects of the 118A.G 
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SNP on the level of OPRM1 mRNA may also be explained 

by a genetic–epigenetic interaction, as shown by a recent 

interesting paper.37 In fact, the substitution of an A with a 

G at gene position +118 introduces a new –C–phosphate–

G– (CpG)-methylation site at position +117, which leads 

to an enhanced methylation of OPRM1 (at this site and 

downstream) and, in turn, this leads to a decreased gene 

 expression.37 Altered levels of mRNA and receptor protein 

may be explained by the effects of the 118G on mRNA turn-

over, but this seems not be the case. After transcription into 

CHO cells of a complementary (c)DNA representing only 

the coding region of the OPRM1 and inhibition of transcrip-

tion with actinomycin D, the mRNA turnover was the same 

for 118A and 118G variants.31 Using mfold software, which 

predicts mRNA secondary structure for different sequences, 

it was shown that the 118G variant demonstrated altered 

folding compared with other permutations that could affect 

mRNA stability.38 Finally, it has been hypothesized that the 

118G variant may affect OPRM1 gene expression in addi-

tion to mRNA translation or posttranslational processing or 

turnover of the µ-opioid receptor protein.31 A recent paper 

described a role of the 118A.G SNP in posttranslational 

mechanisms.13 It suggested that N-glycosylation may affect 

receptor expression, since it plays an important role in cor-

rect folding of receptors in the endoplasmic reticulum and, 

hence, their sorting from the endoplasmic reticulum to the 

plasma membrane. It was shown that in CHO cells stably 

expressing the human µ-opioid receptor, the variant receptor 

had lower relative molecular mass than the wild-type one, 

which may be explained by a differential glycosylation status 

between the two receptors. Pulse-chain experiments on these 

cells revealed that the two expressed receptors have different 

protein stability, since the half-life of the mature form of the 

variant receptor (almost 12 hours) was shorter than that of 

the wild-type receptor (almost 28 hours).13

Summary of in vitro evidence
The 118A.G SNP has biological consequences at the 

molecular level, this being alteration of µ-opioid receptor 

binding affinity for β-endorphins, alteration in the signal 

transduction pathway downstream to µ-opioid receptors, 

and alteration of the levels of µ-opioid receptor mRNA and 

protein (Figure 1, Table 1). These effects have been strictly 

dependent on the experimental settings and opioid agonist 

used, which may explain the conflicting results.

Altogether, the OPRM1 118A.G SNP affects mecha-

nisms related to individual sensitivity to pain, opioid  efficacy, 

and opioid-related side effects, tolerance, dependence and 

reward. Particularly, carriers of the 118G allele should require 

increased µ-opioid drug doses in order to get analgesic 

effects, and once the analgesic effect is reached, they should 

show opioid-related side effects. Patients carrying the 118G 

allele may show either an unaltered or a higher sensitivity 

to pain compared with patients homozygous for the 118A 

allele, depending upon the individual endogenous opioid 

tone. In fact, the 118G allele has been associated both to low 

Preclinical settings Clinical settings
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Figure 1 Consequences of OPRM1 118A.G SNP.
Abbreviations: mRNA, messenger RNA; SNP, single nucleotide polymorphism.
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levels of µ-opioid receptors and to increased sensitivity to 

endogenous opioids. It has thus been related to two effects 

that may compensate each other.

Animal models for OPRM1 118A.G
Given the discrepant in vitro findings concerning the molecu-

lar consequences of 118A.G, a nonhuman primate ortho-

logue model has been described and two different transgenic 

mouse models have been created for this SNP. Animal models 

may be particularly useful, to describe the SNP-related phe-

notypes following the administration of opioid drugs, and 

subsequently, to investigate the SNP-related biochemical 

and molecular changes by means of ex vivo experiments. 

In this regard, in vivo studies may describe phenotypes, 

which are the final result of compensatory mechanisms at 

molecular level.

Nonhuman primate orthologue model
Rhesus monkeys are currently studied because of their 

physiological similarity to humans and are used in order to 

model a wide variety of human behaviors and neurobiological 

disorders. Moreover, they are also used as a model system of 

choice as preclinical platforms for both drug discovery and 

validation studies. A conserved polymorphism in the rhesus 

macaque consisting of a substitution of a cytosine (C) with 

a G at position 77 and resulting in a substitution of an argi-

nine with a proline in the orthologue µ-opioid receptor has 

been suggested to be comparable with the human 118A.G 

SNP.39 In fact, both the 77C.G and 118A.G SNPs cause an 

amino acid change in the same region (N-terminal arm) of the 

orthologue µ-opioid receptors. However, unlike the human 

118A.G SNP, the 77C.G SNP does not affect the N-linked 

glycosylation sites of the rhesus monkey µ-opioid receptor.39 

Monkeys carrying the 77G allele show physiological mea-

sures (stress response) as well as behavioral measures (pre-

dilection towards alcohol consumption) similar to humans 

carrying the 118G allele.39,40 Interestingly, the expression of 

77G-containing rhesus monkey µ-opioid receptor clones in 

HEK293 cells was found to be related to a ∼3.5-fold increase 

of µ-opioid receptor affinity for β-endorphin but not for 

exogenous opioid ligands, similar to the data found in vitro 

by Bond et al concerning 118A.G SNP.16,39

Transgenic mouse models
Because of the high homology of the nucleotide (86.9%) 

and the amino acid sequences (92.3%) between mouse 

and human OPRM1 gene and µ-opioid receptor protein, 

respectively, Mague et al41 created a knockin mouse model 
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in which a point mutation (112A.G) (equivalent to the 

human 118A.G variant) has been inserted in the mouse 

µ-opioid receptor gene. The 112A.G variant leads to the 

substitution of an asparagine with aspartic acid at position 

38 of the amino acid sequence of the mouse receptor pro-

tein and causes the elimination of a N-glycosylation site, 

similarly to that in human 118A.G SNP. In these mice, 

behavioral assays and ex vivo molecular and biochemical 

experiments showed that mice homozygous for the 112G 

allele had a normal sensitivity to pain but showed a lower 

analgesic effect of subcutaneous morphine (1.0–2.0 mg/Kg) 

than mice homozygous for the 112 A allele.13,41,42 Both geno-

types showed the same tolerance after a twice daily injection 

of morphine for 7 days. A sex × genotype interaction was 

evident in the behavioral responses associated to hedonia, 

with female mice homozygous for the 112G allele showing 

a reduction in both the rewarding properties of morphine and 

in the aversive components of naloxone-precipitated mor-

phine withdrawal. These results are particularly intriguing 

since they suggest sex-dependent effects of 118A.G SNP 

on morphine-related behavior that are so far unexplored in 

clinical studies.41 Concerning the biochemical and molecu-

lar experiments on tissues derived from 112A.G mice, the 

presence of the 112G allele was shown to lead to a reduction 

in µ-opioid receptor gene expression and µ-opioid recep-

tor protein levels in a brain region-specific manner (ie, the 

periaqueductal gray, hypothalamus, ventral tegmental area, 

and cortex were involved but not the hippocampus), though 

there were no alterations in µ-opioid receptor affinity for 

either β-endorphin or exogenous ligands such as morphine 

and naloxone.41,42

Recently, two transgenic mouse lines with humanized 

mouse genes for the µ-opioid receptor were created.43 In these 

mice, the first exon of the mouse µ-opioid receptor gene has 

been replaced by the corresponding human sequence car-

rying either the 118A or 118G allele. These mouse models, 

first characterized in the context of studies on alcoholism, 

share a specific neurochemical pattern with humans: both 

mice and humans carrying the 118G allele show an increase 

in dopamine release in the striatum (a brain area important 

for reward) in response to alcohol. In the case of alcohol 

administration, the µ-opioid receptor activation in the ventral 

tegmental area suppresses the activity of inhibitory gamma-

aminobutyric acid (GABA)ergic interneurons, resulting in 

the disinhibition of dopamine neurons and increased dop-

amine release from their terminals in the ventral striatum.44 

Increased striatal dopamine release is important for both 

alcohol and opioid drug reward, in rodents and in humans.45–47 

Hence, it is possible that both humanized transgenic mice 

and humans carrying the 118G allele may be more prone 

to  alcohol and opioid abuse; this hypothesis should be 

explored in appropriate experimental and clinical settings. 

 Interestingly, the effects of the 118G allele on striatal dop-

amine release were not explained by altered affinity, signal-

ing, or density of the µ-opioid receptors.43 Consequently, the 

authors hypothesized an alternative mechanism, ie, the loss 

of a glycosylation site, induced by the 118G allele, may alter 

the proper µ-opioid receptor oligomerization, which is critical 

for receptor trafficking.43 Hence, the 118G allele may have 

molecular consequences yet unexplored, and it is possible 

that other factors may concur in the 118G-related increase 

in striatal dopamine release in vivo.

Another study analyzing the same mouse model showed 

that morphine-mediated analgesia (on a hotplate assay) was 

significantly reduced in 118G homozygous humanized mice 

compared with 118A homozygous ones.48 Interestingly, sen-

sory neurons isolated from 118G homozygous humanized 

mice showed a fivefold reduced potency of morphine, but 

not of fentanyl, in inhibiting voltage-gated calcium channels 

downstream to µ-opioid receptors compared with neurons 

isolated from 118A homozygous mice, despite the fact that 

the biophysical parameters (cell size, current density, and 

peak current amplitude potential) were the same in both 

group of neurons.48

Summary of in vivo evidence
The experiments on animal models show a gain of function 

of the 118G allele concerning responses mediated by the 

endogenous opioid system and confirm the loss of function 

of the 118G allele in the case of morphine administration, 

as suggested by in vitro studies (Table 2). However, there is 

no consensus on the underlying mechanisms of these effects. 

The theory of an exclusive 118G-related decrease in both 

OPRM1 expression and µ-opioid receptor protein levels may 

not explain such dual effect of the 118G allele.

While there are many in vitro and clinical studies (see 

the following section, “Observed association/clinical con-

sequences of the 118A.G SNP”) concerning the 118A.G 

SNP, only few data are available from animal models. The 

need to use transgenic mice has probably limited the number 

of available studies. Moreover, a further full characteriza-

tion of the model is needed to determine whether the mice 

expressing the variants of the human OPRM1 118A.G SNP 

do compensate by modifying the expression of other murine 

receptors. On the other hand, such animal models could help 

to clarify whether the expression of the variants of a single 
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opiate receptor subtype has relevant consequences on anal-

gesia, rewarding systems, smooth muscle contractions, etc.

Observed association/clinical 
consequences of the 118A.G SNP
118A.G SNP and interindividual 
sensitivity to pain
The putative effects of the 118A.G SNP on interindividual 

variability in physical pain threshold are interesting, as they 

may affect analgesic request, thus contributing to variability 

in opioid consumption. Individual differences in sensitivity 

to pain have been examined in healthy subjects in experi-

mental pain settings. The 118G allele has been associated to 

higher heat pain ratings and to lower pain tolerance threshold 

following electrical stimulation among healthy women but 

also to a decreased responsiveness to nociceptive stimuli in 

a cohort of healthy male and female patients.49–51 Moreover, 

the 118G allele has also been related to a higher pressure 

pain threshold, although this last association was not con-

firmed in another study.49,52 Interesting, for the purpose of 

this review, are studies that have coupled data obtained in 

experimental pain protocols with clinical observations on the 

same patients upon surgery. Fukuda et al53 first analyzed the 

effect of the 118A.G SNP on both pain sensitivity and the 

analgesic effect of fentanyl in experimental pain settings (cold 

pressor-induced pain test), and following orofacial cosmetic 

surgery (mandibular sagittal split ramus osteotomy), they also 

evaluated the effect of the SNP on the efficacy of fentanyl 

delivered by patient controlled analgesia (PCA) in the same 

cohort of Japanese subjects. The authors showed that carri-

ers of the 118G allele had a lower basal pain threshold and 

were more resistant to fentanyl effect during the experimental 

pain test. However, the authors failed to show an associa-

tion of the SNP with postoperative fentanyl consumption. 

Interestingly, in another study with similar design, the same 

authors confirmed the associations previously observed 

during the cold pressor-induced pain test, but this time, 

they also showed an association between the presence of 

the 118G allele and higher fentanyl consumption in the first 

postoperative 24 hours.54 The discrepancy between the two 

subsequent studies may be due to the nonhomogeneity of the 

two cohorts (the second cohort showed a higher frequency 

of 118G carriers than the first one) and to differences in the 

type of nociceptive inputs (if the postoperative pain is not 

high, it is more difficult to find differences in opioids con-

sumption). However, other genetic and nongenetic factors 

probably contributed to such discrepancy.
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Altogether, these results obtained in experimental pain 

settings indicate that the 118G allele is related to a lower 

threshold of pain perception.

118A.G SNP and analgesic  
effect of opioid drugs
Most of the pharmacogenetic studies have evaluated the effect 

of 118A.G SNP on opioid consumption (doses) and/or pain 

control (assessed using different scales) during opioid treat-

ment, in patients suffering from acute postoperative pain. 

However, these studies have given rise to conflicting results. 

Analyzing 120 Taiwanese patients following total knee arthro-

plasty, Chou et al55 showed that homozygous 118G patients 

consumed significantly more morphine (40.4 ± 22 mg) by 

PCA during the first 48 hours postoperatively compared with 

heterozygous (25.6 ± 11.7 mg) and homozygous patients for 

the 118A allele (25.3 ± 15.5 mg). The PCA device records the 

number of opioid doses demanded (number of times patients 

press the button in order to achieve better analgesia), and 

the pump is set with a lockout period within two different 

administered boluses of drug to avoid overdose.  Interestingly, 

118GG patients demanded more doses than 118AA and 

118AG patients. There were no significant differences in 

perceived pain (measured on the visual analogue scale 

[VAS]) during opioid treatment among the three genotype 

groups.55 In order to exclude sex-related differences in mor-

phine analgesia, in a similar study design, the same authors 

analyzed a cohort of 80 Taiwanese women and showed that 

homozygous 118G patients consumed significantly more 

morphine (33 ± 10 mg) by PCA in the first 24 hours follow-

ing total abdominal hysterectomy compared with homozy-

gous 118A patients (27 ± 10 mg).56 Similarly, an analysis of 

588 female obstetric Chinese patients showed that 118GG 

subjects consumed more morphine by PCA (mean 9.4 mg; 

95% confidence interval, 7.3–11.5 mg) than 118AG (mean 

8.0 mg; 95% confidence interval, 6.9–9.1 mg) and 118AA 

ones (mean 5.9 mg; 95% confidence interval, 5.1–6.8 mg) 

and had a worse control of pain than the other two groups 

(as measured on VAS), following 24 hours from cesarean 

delivery.57 Hence, this study revealed a dose-dependent effect 

of the 118G allele, with each additional copy increasing 

the total need for morphine, despite physiological changes 

due to advanced stage pregnancy. However, the extension 

of the study to obstetric Malays and Indian patients did not 

confirm the effects of the 118G allele observed in the Chi-

nese patients (despite that the 118G allele frequency in the 

study was higher in the Malay and Indian than in Chinese 

patients), further strengthening the concept that ethnicity is 

an important factor in pharmacogenetic studies.58  Analyzing 

a cohort of 74 patients with mixed ethnicity (White and 

Black subjects), no statistical significant association was 

observed between 118A.G SNP and morphine doses by 

PCA during the 24-hour postoperative (colorectal surgery) 

period, probably because of a lack of statistical power of the 

study.59 Moreover, another study evaluating the analgesic 

requirement with oral morphine following cesarean delivery 

failed to show any effect of the 118A.G SNP.60

As for fentanyl administration by PCA for acute postop-

erative pain, Fukuda et al53,54 showed both the absence and 

the presence of an association between the 118G allele and 

higher analgesic consumption in two subsequent studies on 

male and female Japanese patients, as described above (see 

the section “118A.G SNP and interindividual  sensitivity to 

pain”). Moreover, a correlation between 118A.G genotypes 

and fentanyl consumption by PCA in the first 24 hours fol-

lowing surgery (homozygotes for 118G patients consumed 

more than did either heterozygous or homozygous for 118A) 

was observed in two different cohorts of Chinese gynecologic 

patients.50,61 In the case of fentanyl administration as a bolus 

injection following laparoscopic abdominal surgery, Chinese 

patients carrying the 118GG and 118AG genotypes had sig-

nificantly less control of pain (higher VAS pain scores) than 

carriers of the 118AA genotype.62 The SNP was also associ-

ated to intrathecal fentanyl effective dose in half of patients 

(ED
50

) for labor analgesia, but in this case, women carrying 

the G allele were more sensitive to the opioid, requiring less 

analgesic drug.63 Moreover, another study failed to show a 

correlation of the SNP with analgesic effect (duration) of 

intrathecal fentanyl for labor analgesia.60

The 118G allele seems related to reduced analgesic 

effect of oxycodone, as measured during single electrical 

nerve stimulation (experimental pain).64 However one study 

evaluated the effect of 118A.G on analgesic efficacy of 

oxycodone in Caucasian patients affected by acute post-

operative pain, and in this case, the authors showed lack of 

association.65

Also, in the case of opioid administration in order to 

treat chronic pain, studies have given conflicting results. 

Klepstad et al66 showed that oncologic Caucasian patients 

(mainly males) who were homozygous for the 118G 

allele required significantly higher oral morphine doses 

(225 ± 143 mg/24 h) compared with either heterozygous 

(66 ± 50 mg/24 h) or homozygous patients for the 118A 

allele (97 ± 89 mg/24 h). In the homozygous patients, the 

serum concentrations of morphine and its metabolites, M6G 

and morphine-3-glucuronide (M3G), were significantly 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

341

Consequences of the OPRM1 118A.G SNP 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Pain Research:2013:6

higher than in other patients. Hence, the authors concluded 

that the loss of morphine efficacy may have been partly 

explained by the loss of analgesic contribution from M6G. 

In this regard, the 118G allele reduced the potency of M6G, 

assessed by pupil constriction in humans.67 However, the 

genetic variability in M6G efficacy is expected to contribute 

to the analgesic effect of morphine only during chronic 

morphine administration (as in the case of chronic pain treat-

ment), since this metabolite is slowly transported through 

the blood–brain barrier and subsequently, has little effect 

after short-term exposure.68 Another study of oncologic Cau-

casian patients failed to report an association between the 

118A.G SNP and variation in response to chronic morphine 

treatment.69 In this study, all patients had been treated with 

morphine as the first-line choice to control cancer-related 

pain, and those patients who had not tolerated the opioid 

(because of high pain scores at the Brief Pain Inventory 

[BPI] or side effects) were switched to  oxycodone. There 

was no difference in the genotype or allelic frequencies 

for the 118A.G SNP between patients who had tolerated 

morphine and those who had switched. Janicki et al70 showed 

that the 118G allele may also alter the analgesic response 

to opioids (oxycodone, morphine, methadone, and fentanyl) 

in chronic noncancer pain patients. Finally, in a multicenter 

study, Lötsch et al71 evaluated the influence of the OPRM1 

118A.G SNP on the analgesic efficacy of various opioids 

in a cohort of 352 patients on therapy for chronic pain of dif-

ferent origins. The authors observed a small dose-dependent 

effect for the 118G allele in reducing the daily control of 

pain (assessed on an 11-point numerical rating scale) dur-

ing chronic opioid therapy, although also in this case, there 

could have been a bias in the selection of patients (different 

types of pain pathophysiology that could justify different 

response to opioids).

The comparison of all the described clinical studies is 

difficult, since they differ for the choice of the opioid used, 

the outcomes selected and the rating scale used to measure 

them, the characteristics of the cohorts analyzed (number 

of patients, ethnicity, gender, age, pathology, type of pain, 

and type of surgery), and the design of the study. Moreover, 

some studies have internal bias due to nonadherence of the 

genotype distribution to Hardy–Weinberg equilibrium or 

inadequate statistical power. All together, the majority of 

these clinical trials suggest a loss of function of the 118G 

allele concerning the analgesic effects of opioid drugs, in 

line with the data obtained by preclinical studies. A recent 

meta-analysis showed a weak association between 118GG 

genotype and increased opioid dosage requirements.14

Haplotypes containing the 118A.G SNP  
and analgesic effect of opioid drugs
Beyond the evaluation of the 118A.G SNP alone, the 

association among SNPs within the OPRM1 may be par-

ticularly interesting for the pharmacogenetic analysis of 

opioid treatment. Four substantial linkage disequilibrium 

blocks represented by 118A.G and four other tag SNPs 

(IVS2+G691C – rs2075572; IVS3+G5953A – rs599548; 

IVS3+A8449G – rs9384179; TAA+A2109G in 3′UTR) have 

been identified in human OPRM1. After having analyzed 

the influence of 118A.G alone, Hayashida et al72 evaluated 

whether the haplotypes created by the combination of these 

five tag SNPs could influence the epidural opioid (morphine 

or fentanyl) requirement, following major abdominal surgery 

in a cohort of 138 adult Japanese patients. The authors found 

that patients who were homozygous for the 118G allele 

required more analgesics during the first 24 hours postop-

eratively compared with heterozygous and homozygous 

patients for the 118A allele. Moreover, they found the exis-

tence of one 118G allele-containing haplotype, which was 

the most common haplotype (frequency of 44.6% ± 2.9%) 

in the population analyzed. Interestingly, the patients car-

rying this haplotype required more opioids in order to get 

the same analgesic effect compared with patients carrying 

the other existing haplotypes. The paper by Hayashida et al 

is particularly important, since it showed that haplotypes 

of OPRM1 gene polymorphisms were more significantly 

associated with analgesic requirements than the 118A>G 

SNP alone.

Combined effects of 118A.G in OPRM1  
and 1947G.A in COMT with respect  
to analgesic effect of opioid drugs
Genetic variants in catechol-O-methyltransferase (COMT) 

may contribute to the interindividual variability in pain 

sensitivity since COMT enzymes metabolize neurotransmit-

ters, such as dopamine and noradrenalin, that are involved 

in the control of pain signaling.73 In particular, the COMT 

1947G.A SNP (rs4680), coding for a substitution of a 

valine (Val) with a Met in position 158 of the amino acid 

sequence (Val158Met), results in three- to fourfold reduced 

enzyme activity and has been associated with several pain 

phenotypes.74,75 PET studies showed that homozygous car-

riers of the COMT 1947A allele (low enzymatic activity) 

had increased µ-opioid receptor density in different brain 

regions.75 Some authors evaluated the effects of the asso-

ciation between the OPRM1 118A.G SNP and the COMT 

1947G.A SNP on opioid request.76 A study on  oncologic 
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Caucasian patients showed that carriers of 1947GG and 

1947AG genotypes (COMT) required 63% and 23%, 

respectively, higher morphine doses compared with carri-

ers of the 1947AA genotype. Homozygous patients for the 

OPRM1 118G allele required a 93% higher morphine dose 

compared with those who were homozygous for the 118A 

allele.76 Interestingly, in the same study, the combination of 

118A and 118G alleles in OPRM1 with 1947G and 1947A 

alleles in COMT showed that carriers of both 118AA and 

1947AA genotypes required the lowest morphine dose 

(mean = 87 mg/24 h; 95% confidence interval, 57–116 mg) 

to achieve adequate analgesic effect, whereas those carrying 

neither 118AA nor 1947AA genotypes needed the highest 

opioid dose (mean = 147 mg/24 h; 95% confidence interval, 

100–180 mg).

Association between 118A.G SNP  
and opioid-related side effects
The studies described above simultaneously evaluated the 

effect of 118A.G SNP on the analgesic efficacy of opioids 

and on the occurrence of opioid-related side effects. This 

paragraph will particularly focus on nausea/vomiting and 

respiratory depression, which are the most important and 

studied clinical side effects in pharmacogenetic trials and the 

primary cause of opioid poisoning.14,77 At the end of the 

paragraph, gastrointestinal side effects will be discussed (for 

other opioid-related side effects, see Table 3).

As for nausea and vomiting, studies have given incon-

sistent results. In fact, some studies have reported a lack 

of association, in the case of acute postoperative pain 

treatment with morphine, oxycodone, and fentanyl, and in 

the case of chronic administration of morphine and other 

opioids.50,55,56,59,61,65,66,71 Others showed a “protective” effect 

of the 118GG genotype, the 118G allele, and the combina-

tion of 118AG (OPRM1) and 1947GA (COMT) genotypes 

on the occurrence of nausea and vomiting during postopera-

tive morphine PCA.57,58,78 These contradictory results may be 

due to differences in the rating scales used to evaluate side 

effects among all the studies. Anyway, a recent meta-analysis 

confirmed the weak protective effect of the 118GG genotype 

against the occurrence of nausea.14

As for respiratory depression, following a bolus injection 

of fentanyl in the postoperative period, Chinese patients car-

rying the 118GG and 118AG genotypes had significantly less 

control of pain (higher VAS pain scores) but showed the same 

opioid effect on respiratory function compared to carriers 

of the 118AA genotype.62 A loss of analgesic effect due to 

the presence of the 118G allele but unmodified capability to 

induce respiratory depression was also observed following 

M6G administration in healthy volunteers during an experi-

mental pain setting.79 However, a few pharmacogenetic 

studies showed that carriers of the 118G allele, even those 

receiving higher opioid doses, were not more prone to severe 

respiratory depression.55,57,66

Opioids have important effects upon all aspects of gastro-

intestinal function, and it has been estimated that 40%–95% 

of patients treated with opioids develop constipation.1 Inter-

estingly, only two of the clinical studies described above 

considered the effects of 118A.G on constipation, showing 

lack of association.66,71

Association between 118A.G SNP  
and opioid-related dependence  
and rewarding property
Different studies have evaluated the 118A.G SNP as can-

didate for a genetic contribution to the risk of dependence 

on and the rewarding property of substances involving the 

activation of the endogenous opioid system, such as nicotine 

and alcohol.80–84 Altogether these trials have shown conflicting 

results. In fact, the 118G allele has been reported as either a 

risk or a protective factor for substance dependence, whereas 

some studies showed the lack of association.

As for opioid-related dependence, the majority of studies 

evaluated the effects of the 118A.G SNP on heroin depen-

dence. Heroin is a semisynthetic compound that directly 

activates µ-opioid receptors when metabolized to morphine 

in the body. Here too, studies have shown conflicting results 

in the case of association between the 118G allele and heroin 

dependence, showing positive associations (in Swedish, 

in Chinese, and in Indian subjects), negative associations 

(in Hispanics and in Asians), or no associations (in Chinese 

subjects).16,30,85–90

Moreover, two meta-analyses showed lack of association 

between the 118A.G SNP and opioid dependence.89,91

Summary of clinical evidence
Determining the appropriate dose and achieving adequate 

analgesia without inducing adverse effects would be the break-

through in the context of pain therapy.  Pharmacogenetics 

may help in achieving this final purpose. As for pharma-

cogenetic studies evaluating the 118A.G SNP, the results 

obtained by some clinical trials (as summarized in Table 3) 

have suggested that patients carrying the 118G allele may 

be more sensitive to pain and that they may require higher 

opioid doses to get the analgesic response of the drug com-

pared with carriers of the 118A allele. Despite the increased 
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opioid consumption, nausea, vomiting, and constipation did 

not vary between carriers of the 118G allele and carriers of 

the 118A allele in many studies.55,56,59,61,65,66 Some studies 

of acute pain patients even showed that within the range 

of opioid doses leading to the adequate control of pain 

(VAS , 4 or numeric rating scale score , 4), the presence 

of the 118G allele was protective against gastrointestinal side 

effects.57,58,78 Although side effects were not systematically 

listed in all the analyzed studies, the available data show 

that within the range of opioid doses leading to the adequate 

control of pain (VAS , 4 in acute pain studies or average 

BPI pain scores , 4 in chronic pain studies), the 118G allele 

was not associated with the occurrence of severe respiratory 

depression.55,57,66 As for other opioid-related side effects (see 

Table 3), some studies evaluated the effects of 118A>G on 

the occurrence of pruritus, either showing a lack of associa-

tion, or the protective effect of the 118G allele.55,57,58,60,63,69 

Interestingly, Kolesnikov et al78 showed that carriers of the 

118G allele reported significantly lower levels of sedation 

(evaluated by Edmonton Symptom Assessment Scale) 

compared with 118A homozygous patients. Moreover, the 

influence of the 118A.G SNP on the development of opioid 

dependence is still unclear. In order to draw final conclu-

sions, future clinical studies should particularly investigate 

the influence of this SNP on opioid-related side effects. To 

date, the analysis of 118A.G SNP alone seems to have a 

poor clinical (predictive) utility.

Conclusion
The description of 118G-related phenotypes during clini-

cal studies has revealed that the 118A.G SNP does not 

have the same influence on all opioid effects (Table 4). In 

fact, at standard opioid doses, carriers of the 118G allele 

do not show analgesic effects of the opioids, whereas they 

do show the same opioid-induced respiratory depression 

as carriers of the 118A allele. At increased doses, carriers 

of 118G allele show clinically adequate control of pain, 

but they are not more at risk of gastrointestinal side effects 

and severe respiratory depression than carriers of the 118A 

allele (Figure 1). In this regard, studies of the µ-opioid 

receptor gene in homozygous and heterozygous knockout 

mice suggest the existence of a functional µ-opioid receptor 

“reserve” that varies among the different neuronal popula-

tions controlling distinct opioid-related effects.92 Since the 

118G allele results in decreased µ-opioid receptor levels, it 

may differentially affect opioid functions and drug response 

in the various target organs. In regard to the complexity 

of the scenario, the µ-opioid receptor-mediated functions 

depend upon the agonist used, and the same ligand can 

trigger  different intracellular signaling pathways, depend-

ing upon the neuronal population considered.93 The 118G 

allele may affect signaling pathways that are specific for 

some µ-opioid receptor agonists and that are located in 

specific neuronal circuits. Moreover, due to the existence 

of different opioid receptor subtypes, the loss of function 

of the variant µ-opioid receptors might not be particularly 

relevant to a certain final phenotype, or it may unbalance the 

relation between various opioid receptor-mediated events. 

Finally, mechanisms beyond the opioid system may occur 

and counterbalance the loss of function of variant µ-opioid 

receptors in specific neuronal circuits in vivo.

As for genetic factors underlying the interindividual 

variability in analgesic responses, the clinical phenotypes 

may be the final result of the simultaneous interaction of 

genetic variants in genes related to receptors, transport-

ers, and metabolizing enzymes of opioids, as shown by 

Table 4 Concluding summary

• The 118A.G single nucleotide polymorphism (SNP) in OPRM1 results 
in amino acidic substitution at position 40 from asparagine to aspartic 
acid (N40D) that probably causes the loss of a N-glycosylation site 
in the extracellular region of the receptor. The 118G allele has a 
frequency of 27%-48% in Asians, of 11%-17% among Caucasians, of 
2.2% in African-Americans and of 0.8% in Sub-Saharan Africans.

• In vitro experiments show that the variant receptors are associated 
to higher binding affinity and potency of the endogenous ligand 
β-endorphin, but, conversely, to lower potency of exogenous opioid 
ligands (i.e. morphine). The variant receptor was also less expressed 
than the wild-type.

• In vivo studies confirmed the higher binding affinity of the variant 
receptor for endogenous ligands and a lower potency of exogenous 
opioids observed in vitro. Transgenic mice carrying the variant allele 
show a lower analgesic effect of morphine compared to the wild-
type.

• Studies on humans show that the effect of 118A.G SNP on 
interindividual sensitivity to pain and analgesic response to opioid is 
slight and not always confirmed. Despite patients carrying the 118G 
allele may require higher opioid doses to get the analgesic response of 
the drug compared to carriers of the 118 A allele they are not more 
at risk of opioid-related side effects. To date the analysis of 118A.G 
SNP alone seems to have a poor clinical (predictive) utility.

• Description of 118G-related phenotypes during clinical studies 
reveals that the 118A.G SNP has not the same influence on all opioid 
effects. The characteristics of variant µ-opioid receptors controlling 
gastrointestinal, respiratory and other opioid-related effects should 
be explored in future preclinical studies.

• Pain is a complex experience: the interaction of multiple genes, 
each with a small individual effect, in addition to emotional and 
environmental factors may influence opioid efficacy in clinical 
settings. Evaluation of the combined effects of OPRM1 118A.G 
and SNPs in other pain-related genes, as well as studies of 118A.G 
containing haplotypes emerge as intriguing tools in pharmacogenetics 
of opioids.
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Bianchi et al94 in a particular case report. Consistent with 

a polygenic model for the complex phenotypes of pain-

related traits, 118A.G may also interact with genetic 

variants in genes related to the physiological control of 

the pain signal, as in the case of the SNPs in COMT.76

Another interesting point to consider is whether the 

118A.G SNP, in addition to altering the analgesic response 

to opioids, may also alter opioid-induced  hyperalgesia. 

 Different reviews underscored the importance of the problem 

of hyperalgesia, examining preclinical and clinical models, 

but no data were provided regarding the role of the 118A.G 

SNP in this.95,96 As for the clinical data, it has been suggested 

that endogenous opioid-mediated hyperalgesia (ie, stress-

induced hyperalgesia) and the 118A.G SNP may contribute 

to pain symptoms in a particular condition that is recovery 

after sexual assault.97

This complexity strongly limits the predictive value of the 

118A.G polymorphisms in the individual patient and has 

prevented its recommendation as a clinical tool for prescrib-

ing opioid drugs in pain therapy.98
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