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Abstract: Telomerase is responsible for maintaining the length of telomeres at the ends of 

chromosomes. Although most somatic cells do not exhibit telomerase activity, it is reactivated in 

approximately 85% of cancers. This simple and attractive phenomenon steers the development 

of anticancer drugs targeting telomeres and telomerase. Recent studies have been revealing 

extratelomeric roles of telomerase in normal tissues, affecting processes that are critical for 

survival and aging of organisms. In this review, we will discuss the current therapeutic strategies 

targeting telomeres and telomerase and evaluate their potential advantages and risks with respect 

to nontelomeric functions.
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Introduction
Telomeres are located at the end of chromosomes (TTAGGG in humans) and vary 

in length across species (eg, 5–15 kb in humans, ∼48 kb in mice). During every cell 

division, telomeres are shortened by 50–200 bp due to the end replication problem.1,2 

Therefore, successive replication leads to progressive shortening of telomeres in most 

somatic cells. Telomerase is a ribonucleoprotein complex comprising two main com-

ponents: the enzymatic protein subunit telomerase reverse transcriptase (TERT) and 

a noncoding telomerase RNA component (TERC).3 Telomerase elongates telomeres 

using TERC as a template, thereby maintaining telomere length during cell division. 

Most somatic cells, however, do not exhibit telomerase activity, and their telomeres 

shorten with successive rounds of cell division, resulting in critically short telomeres 

and leading to cellular senescence and apoptosis.

Considering the immortal and proliferative characteristics of cancer cells, short 

telomeres can have clinical utility in inducing deleterious responses against cancer 

cells, such as senescence and apoptosis. Furthermore, due to the prevalent reactivation 

of telomerase in cancer cells,4 these cells can be eliminated by stimulating immune 

responses specific for TERT in patients. These findings are now being actively applied 

to generate anticancer drugs (Figure 1 and Table 1). Recent advances in this field 

indicate that telomerase regulates a diverse array of physiological functions other than 

telomere elongation and alternative spliced variants of telomerase without reverse 

transcriptase domain are present in normal tissues.5–16 By considering these new dis-

coveries, this review will provide a reinterpretation of the current cancer treatments 

targeting telomeres and telomerase.
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Drugs targeting telomeres
In normal cells, short telomeres and telomere dysfunction 

cause DNA damage responses, resulting in cellular senes-

cence and death through various signals including master 

regulators of DNA damage such as protein kinases ataxia 

telangiectasia mutated (ATM) and ATM and Rad3-related 

(ATR).17,18 Likewise, oligonucleotides mimicking the 3′ 
overhang of telomere sequences (T-oligo) cause DNA 

damage-like responses by inducing a telomere shortening 

signal, which is similar to the phenotype of functional loss of 

telomeric repeat-binding factor 2, a telomeric DNA-binding 

protein.19 T-oligo activates ATM, p53, transcription factor 

E2F1, and p95/NBS1 protein (synthesis phase regulator)20–24 

rather than suppressing telomerase activity. T-oligo induces 

apoptosis in melanoma, breast carcinoma, lymphoma, pros-

tate cancer, and fibrosarcoma cell lines but not in normal 

cells.19,20,25 Histone deacetylase inhibitors promote the effect 

of T-oligo,26 suggesting a functional contribution of histone 

deacetylase to telomeres and/or telomere damage signaling.27 

As T-oligo does not require telomerase reactivation, it can 

efficiently target almost all types of cancer cells including 

Table 1 Drugs targeting telomeres and telomerase

Name Target Mechanism Reference

GRN163(L) TeRC TeRC binding 41
T-oligo Telomere Mimics dysfunctional  

telomere
19

DN-hTeRT TeRT TeRT degradation 77,78
BiBR1532 TeRT enzyme inhibitor  

of TeRT
47

BRACO19 Telomere G-quadruplex  
formation

32,79

RHPS4 Telomere G-quadruplex  
formation

80

Telomestatin Telomere G-quadruplex  
formation

81

i540 HLA-A induction  
of immune response

58

vx-001 HLA-A induction  
of immune response

60,62

Gv1001 Multiple  
HLA classes

induction  
of immune response

67

GRNvAC1 Dendritic  
cell

Vaccination/modified  
TeRT mRNA

68

Abbreviations: DN-hTeRT, dominant negative form of human telomase; HLA-A, 
human leukocyte antigen A; mRNA, messenger RNA; T-oligo, 3′ overhang of 
telomere sequences; TeRC, telomerase RNA component; TeRT, telomerase reverse 
transcriptase.
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Figure 1 Drugs targeting telomeres and telomerase.
Notes: Four strategies for targeting telomerase are depicted. GRN163(L), DN-TeRT, and BiBR1532 directly inhibit telomerase. BRACO19, RHPS4, and telomestatin promote 
G-quadruplex formation at the end of telomeres. T-oligo mimics dysfunctional telomeres causing ATM/ATR-mediated cell cycle arrest and cellular senescence. vaccination with 
peptides derived from TeRT or introduction of TeRT mRNA into dendritic cells activates T and/or B cells, which recognize and eliminate TeRT-expressing cancer cells.
Abbreviations: ATM, ataxia telangiectasia mutated; ATR, ATM and Rad3-related; DN-TeRT, dominant negative form of telomerase; MHC, major histocompatibility 
complex; mRNA, messenger RNA; T-oligo, 3′ overhang of telomere sequences; TeRC, telomerase RNA component; TeRT, telomerase reverse transcriptase.
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telomerase-negative cancer cells that maintain their telomeres 

through alternative lengthening of telomere.28,29

As the folding of a telomere to G-quadruplex (G4) pre-

vents telomerase-induced telomere elongation,30,31 ligands 

that induce and stabilize G4 structures can be used as effec-

tive drugs against telomerase-positive cancer cells. Among 

G4-forming small molecules (Table 1), the well-investigated 

G4 ligand BRACO19 effectively promotes the formation 

of G4 structures at the end of telomeres.32 BRACO19 exhibits 

low cytotoxicity and efficiently inhibits telomere elongation, 

resulting in end-to-end chromosomal fusion.33 It also induces 

tumor regression and shows remarkable antitumor activity 

in vivo.34 However, BRACO19 is not currently available 

for therapeutic trials due to membrane impermeability. In 

addition, it can be secreted from the cell by ATP-binding 

cassette transporter superfamily.35 Therefore, modifications 

that increase its membrane permeability and prevent the 

release of T-oligo might improve the clinical efficacy of 

BRACO19.

Drugs that mimic or accelerate telomere shortening 

may exert toxic side effects in highly proliferative tissues. 

As evidenced by phenotypes of Terc knockout mice in late 

(G5) generations, short telomeres result in increased pro-

grammed cell death (apoptosis) and decreased proliferation 

in reproductive tissues, spleen, and bone marrow.36 Cardiac 

abnormalities similar to human dilated cardiomyopathy and 

impaired wound healing are also observed in these mice.31,32 

Furthermore, short telomeres are carcinogenic, with chro-

mosome end-to-end fusion and aneuploidy apparent in late 

generations.36 As humans have much shorter telomeres than 

mice, prolonged treatment with antitelomere drugs may be 

harmful to normal tissues.

Drugs targeting telomerase
The first generation of Terc and Tert knockout mice are 

developmentally normal, with short telomere-associated 

phenotypes observed only in later generations.36 As knock-

down of Tert or Terc significantly reduces tumor growth,37,38 

telomerase-targeting drugs may be an alternative to drugs 

that target telomeres.

For the elongation of telomere length by telomerase, 

key regions of TERC must be exposed to the surface of 

telomerase. GRN163 and imetelstat as its lipid (palmitate)-

conjugated form (GRN163L) contain a short (13-mer) 

oligonucleotide with N3′– .P5′ thio-phoshoramidate that 

binds to the template region of TERC.39 GRN163L is water 

soluble, shows high thermal and acid stability, and is resistant 

to several nucleases.40–42 It exerts potent inhibitory effects 

on telomerase activity in cancer cells.41 As GRN163L can 

penetrate plasma membranes through its lipid conjugation, 

it does not require additional vehicles for its delivery.39 

Through intranasal or systemic treatment, both GRN163 

and GRN163L can bypass the blood–brain barrier and pref-

erentially affect brain tumor cells with minimum toxicity to 

normal brain tissue.43,44 These studies provide the basis for 

using both GRN163 and GRN163L as potent drugs against 

brain tumors, and both have already reached clinical trial 

stages. Notably, administration of GRN163L reduced the 

features of cancer stem cells that show multidrug resistance, 

self-renewal capacity, differentiation, and high metastatic 

potential.45 As MST312, another type of telomerase inhibitor, 

also exhibits similar effects on cancer stem cells,46 telomerase 

inhibitors may be a prominent candidate targeting cancer 

stem cells as well.

Small molecule inhibitors against telomerase are likely 

good candidates for cancer therapy. BIBR1532, a mixed-type, 

nonnucleosidic inhibitor, is one of the molecules that most 

potently inhibit telomerase activity.47 In germ cell tumor cell 

lines, simultaneous treatment of BIBR1532 with cisplatin 

for 300 population doublings reduces telomere length from 

18.5 kb to 8.9 kb.48 However, BIBR1532 does not increase sen-

sitivity to cisplatin, and more prolonged treatment is required 

to induce the telomere shortening crisis (1.5–4 kb).49

Expression of the dominant negative form of telom-

erase (DN-TERT) causes telomere shortening, apoptosis, 

and regression of tumor formation.50–52 DN-human TERT 

(DN-hTERT) forms heterodimers with wildtype hTERT that 

are exported to the cytosol.53 As cytosolic hTERT is ubiq-

uitinated by several E3 ubiquitin ligases including MKRN1, 

CHIP, and HDM2,54–56 DN-hTERT causes degradation of 

wild-type hTERT protein.53

Telomerase inhibitors only inhibit the enzymatic activity 

of telomerase, therefore, strategies to avoid telomere-

 independent antiapoptotic functions of TERT should 

be considered. Furthermore, because DN-TERT exerts 

similar antiapoptotic activity as hTERT, it may promote the 

survival of cancer cells, especially when wildtype hTERT 

is depleted.10

Immunotherapy for TERT-
expressing tumors
As previously noted, telomerase is frequently activated in 

cancers. As telomerase-expressing cancer cells may present 

epitopes of hTERT through human leukocyte antigen, these 

cells can be eliminated by stimulating the immune system 

with specific vaccines derived from hTERT.
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Vaccines specific for both classes of human leukocyte 

antigen have been developed, and at least 25 peptides are 

known to induce hTERT-specific immune responses.57 For 

example, I540 (ILAKFLHWL) and Vx-001 (9-mer cryp-

tic TERT
572

 peptide) were developed as tumor-associated 

antigens of hTERT to induce cytotoxic T lymphocyte 

responses via human leukocyte antigen-A.58–64 GV1001, a 16 

amino acid-long peptide of hTERT (611–626), is processed 

by antigen presenting cells and induces CD4+ or CD8+ T cell-

specific responses.65–67 Vaccination with autologous dendritic 

cells transfected with hTERT mRNA (GRNVAC1; Geron 

Corporation, Menlo Park, CA, USA) also triggers CD4+ and 

CD8+ T cell responses in mice and humans.68–70 In this case, 

the lysosomal targeting sequence of lysosome-associated 

membrane protein-1 is conjugated to enhance peptide pro-

cessing for antigen presentation.69

Although most somatic cells do not exhibit telomerase 

activity, recent studies indicate that alternative spliced 

forms of TERT, including those deficient for the reverse 

transcriptase domain, are expressed in cancer cells and 

primary tumor tissues, immortalized cells, and even normal 

tissue, regardless of telomerase activity.14–16 The function of 

alternative-spliced forms of TERT has been poorly investi-

gated in somatic cells. Nevertheless, it is clear that alternative 

forms of TERT should exert physiological roles. Considering 

this, overexpression of reverse transcriptase activity-defective 

TERT can prevent p53-induced apoptosis of the neuronal 

cells.11 Therefore, vaccination against TERT may eliminate 

critical cell populations expressing full length TERT or its 

alternative forms, and thus result in unexpected outcomes 

under specific conditions.

Conclusion
Although anticancer strategies targeting telomeres and 

telomerase may be effective, they can also be severely influ-

enced by certain genetic environments. Mutations in p53 

are frequently found (approximately 50%) in human breast 

and colorectal adenocarcinomas,71,72 and inhibition of TERT 

leads to cell cycle arrest, senescence, and apoptosis in a p53-

dependent manner.73,74 In a p53-negative cell line, expression 

of DN-hTERT does not cause apoptosis.75 Restoration of p53, 

however, sensitizes cancer cells to DN-hTERT,75 implying 

that p53 mutant cancers might be resistant to antitelomerase 

drugs. A recent study revealed that reexpression of TERT in 

Tert knockout mice causes aggressive tumor formation and 

bone metastasis, probably through loss of SMAD4.76 This 

finding demonstrates the risk of virtually imperfect cancer 

treatment with antitelomerase drugs, which may possibly 

lead to more aggressive cancers when the patients discon-

tinue treatment. Thus, monitoring SMAD4 mutation status 

may be helpful for antitelomerase drug therapy. Based on 

the patient’s genotype, additional chemotherapeutics could 

be coprescribed with telomerase inhibitors. Thus, the clini-

cal application of drugs targeting telomeres and telomerase 

should be accompanied with, or preceded by, genetic moni-

toring of the patients.

In spite of their promise, more detailed analyses are 

required to confirm the safety of anticancer drugs targeting 

telomeres and telomerase. Prior to clinical trials, the poten-

tial risks of the treatments should be evaluated at the level 

of the entire organism, as accumulating evidence indicates 

that telomerase has functions other than regulating telomere 

elongation. In addition, as exemplified by p53 mutations, 

genetic modifiers affecting clinical outcomes should be 

prescreened. Moreover, the creation and use of novel mouse 

models in preclinical studies is essential for the develop-

ment of anticancer drug strategies that are both effective 

and safe.
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