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Abstract: Cortical spreading depression (CSD) involves a slowly-propagating depolarization 

wave in the cortex, which can appear in numerous pathophysiological conditions, such as 

migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized 

transiently during the phenomena. CSD is followed by a massive increase in glutamate release 

and by changes in the brain microcirculation. The aim of this study was to investigate the effects 

of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and 

dizocilpine, on CSD and the related blood–brain barrier (BBB) permeability in rats. In intact 

animals, KYNA hardly crosses the BBB but has some positive features as compared with its 

precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized 

to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore 

investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were 

elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms 

were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and 

fluorescent microscopy were used to study the possible changes in the permeability of the BBB. 

The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number 

of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that 

KYNA itself or its derivatives may offer a new approach in the therapy of migraines.

Keywords: blood–brain barrier, cortical spreading depression, glutamate receptors, kynurenic 

acid, kynurenines, NMDAR

Introduction
Cortical spreading depression (CSD), discovered by Leao in 1944, is a slowly-

propagating, transient, negative direct current (DC) shift accompanied by depressed 

neuronal bioelectrical activity. The main event during CSD is the depolarization of a 

critical mass of brain tissue and a massive elevation in glutamate release associated 

with an increase in extracellular potassium ion concentration, water influx into the 

cells, and shrinkage of the extracellular space1–4 There are also changes in immediate 

early genes, neurotransmitters, growth factors, etc.5

Some years ago, it was observed that a high glutamate level reduced the function 

of the blood–brain barrier (BBB) via endothelium-expressed N-methyl-D-aspartate 

receptor (NMDAR)-dependent occludin phosphorylation.6 Moreover, CSD initiates 

disruption of the BBB via a matrix metalloprotease-dependent mechanism.7

Despite intensive research, the exact pathomechanism of migraine and its 

connection with CSD are not completely understood. Various results have indicated 

that CSD is associated with changes in the diameter of blood vessels in the cortical 
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surface,8 while other authors have described it as a 

phenomenon following acute cortical injury, including 

brain ischemia,9 and yet others consider it to be an 

electrophysiological substrate of migraine aura, which may 

induce headache.10,11

In recent years, we have studied the effects of 

L-Kynurenine (KYN) and some derivatives of kynurenic 

acid (KYNA) on different animal models of migraine.12–14 

It was found, for instance, that KYN suppressed CSD 

waves and could mitigate some of the labeling thought to be 

experimental signs of migraine (eg, c-fos immunoreactivity 

and neuronal nitric oxide synthase).12–15 It is widely accepted 

that KYN (the precursor of KYNA) can readily cross the 

BBB, but that KYNA itself, the only known endogenous 

NMDAR antagonist, hardly crosses the BBB at all,16 whereas 

there is evidence that peripherally administered KYNA can 

penetrate the intact BBB.17,18 Furthermore, published data 

indicate that CSD results in a disruption of the BBB.7,19 

Since NMDARs play a decisive role in the generation and 

propagation of CSD,3,20 and data are accumulating which 

suggest that endogenous KYNA may act as a modulator 

at various levels of the pathomechanism of migraine,21 it 

seemed plausible to study the effects on CSD of exogenously 

administered KYNA.

Although little is yet known about the connections 

between migraine, CSD, and changes in BBB permeability, 

such a relationship appears more than probable. Accordingly, 

we have now studied the KCl-induced CSD and changes in 

BBB permeability after the administration of KYNA and, as 

a positive control, dizocilpine (MK-801; a well-known non-

competitive antagonist of NMDARs) in order to elucidate 

whether or not these neuroactive molecules act in parallel 

on CSD and BBB permeability.

Materials and methods
Animals
The National Institutes of Health principles of animal care 

and the protocol for animal care, approved by both the 

Hungarian Health Committee (1998) and the European 

Communities Council Directive (86/609/EEC), were 

strictly followed. Every effort was made to limit the num-

ber of animals and their suffering. Fifteen male Wistar rats 

(270 ± 21 g) (Charles River, Wilmington, MA, USA) were 

used for the electrophysiological portion of this study, 

and an additional 17 for histology. The animals were kept 

under 12-hour light and 12-hour dark conditions and were 

raised with free access to water and food pellets. The room 

temperature was 22°C ± 1°C.

Surgery
All the procedures were carried out under deep nembutal 

anesthesia, achieved with a dose of 60 mg/kg Euthasol® 

(AST Farma, Oudewater, the Netherlands), followed by 

20 mg/kg hourly. A trachea cannula was inserted and the 

head of the animals was fixed in a stereotaxic frame (David 

Kopf Instruments, Tujunga, CA, USA). After exposure of 

the skull, two holes were drilled through the left side of the 

skull under cooling with saline; one hole facilitated DC-

electrocorticogram (DC-ECoG) recording above the primary 

somatosensory cortex (3 mm caudally; 5 mm laterally from 

the bregma) and the other allowed access for the induction 

of CSD (7 mm caudally and 5 mm laterally) (Figure 1). The 

dura mater and arachnoidea were carefully removed from 

the posterior hole.

Electrophysiology
A glass microelectrode filled with 150 mM saline (resistance 

0.8–1.2 MΩ) connected to an Ag/AgCl wire was inserted into 

the cortex to a depth of 1000–1200 µm, corresponding to 

cortical layer V. The control group (n = 5) received 1 mL of 

phosphate buffer (0.2 M, pH = 7.4). The KYNA group (n = 5) 

was treated with 300 mg/kg KYNA (Sigma-Aldrich, St Louis, 

MO, USA) dissolved in 400 µL of 1 M NaOH and 600 µL 

of phosphate buffer. MK-801 (Tocris Bioscience, Bristol, 

UK) was dissolved in phosphate buffer and administered at 

2 mg/kg to the animals in the positive control group (n = 5). 

Figure 1 Explanatory figure relating to the experimental protocol.
Notes: Two holes were drilled through the left side of the skull, one for KCl 
application (1) and the other for direct current-electrocorticogram recording (2). 
The two holes were also drilled in the histological part of this study. The parallel black 
lines represent the location of the analyzed sections. The rectangles on the right side 
of the picture show the sites of the digital images captured after Evans blue staining.
Abbreviation: KCl, potassium chloride.
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All of these drugs were injected intraperitoneally. The 

cortex was allowed to recover for 30 minutes following the 

surgical preparation and treatment. CSD was induced by 

placing a cotton ball (diameter 1 mm) soaked with 1 M KCl 

solution on the cortex through the posterior hole. To keep 

the cotton ball moist, it was impregnated with 5 µL of KCl 

solution every 15 minutes. The DC-ECoG was measured for 

1 hour. Following offline data processing with laboratory-

developed software, four parameters of the CSD waves were 

compared between groups: the numbers of CSD episodes 

per hour, the peak-to-peak amplitude of the waves, the time 

at half-amplitude, and the area of the waves, calculated via 

integration. All of these parameters were measured for all 

waves and then averaged within an animal. The two-sample 

t-test statistical analyses were carried out with Origin 

8.1 software (OriginLab, Northampton, MA, USA).

Histology
For the histological part of the study, the surgical preparation 

and treatment were the same as described above (n = 5 

per group). After the 30-minute recovery, 5 mL/kg of 2% 

Evans blue (EB) dye, dissolved in saline, was administered 

intravenously at 0.1 mL/min. CSD waves were evoked by 

the same method as described above. Two additional animals 

served as sham-operated controls. The sham preparation was 

similar to that for experimental animals except that a saline-

impregnated cotton ball was applied to the cortex. After 1 hour 

induction of CSD by KCl or saline irrigation, the animals were 

perfused with cold saline and fixed with 4% paraformaldehyde 

dissolved in 0.1 M phosphate buffer. The brains were removed 

and postfixed overnight in the same paraformaldehyde solution. 

Sections were cut at a thickness of 20 µm with a vibratome 

(Leica VT 1000S; Leica Microsystems, Wetzlar, Germany). 

Twelve sections were cut in steps of 500 µm from the area of 

CSD initiation, in the rostral direction. The first section was 

situated 6 mm caudally from the bregma. These preparations 

were mounted on 2% gelatine-coated slides and covered with 

Fluoromount (SERVA, Heidelberg, Germany). The slides 

were examined under a fluorescent microscope (Olympus 

BX51; Olympus Corporation, Tokyo, Japan) equipped with 

a DP70 digital imaging system (Olympus Corporation). 

A Texas red filter (532–587 nm excitation wavelength and 

608–683 nm emission wavelength) was used for the detection 

of EB fluorescence. Two 1360 × 1024 red, green, blue color 

model  pictures were captured from each hemisphere of the 

sections (Figure 1). After data collection, the pictures were 

transformed to 8-bit gray-scale images, and the mean intensity 

was calculated via the following equation:
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where I is the intensity of pixels, n is the number of pixels in 

a row and m is the number of pixels in a column. After quan-

tification, the ratio of the intensities of the two hemispheres 

was calculated and plotted (Figure 2). Repeated-measures 

one-way analysis of variance (ANOVA) was carried out 

with Origin 8.1 software.

Results
Electrophysiology
KCl administration to the cortex resulted in CSD waves with 

a frequency of 15 ± 1.1/hour (mean ± standard error of the 

mean). KYNA suppressed the CSD activity significantly 

(9.8/hour ± 0.9/hour; P = 0.0084), while MK-801 administra-

tion completely eliminated the CSD waves (Figure 3A).

Detailed data analysis showed that the application of 1 M 

KCl to the cortex in the control group resulted in CSD waves 

with an amplitude of 21 mV ± 0.3 mV. However, KYNA 

(20.6 mV ± 0.7 mV) did not cause a significant change in the 

amplitude of the CSD waves, and no CSD wave was observed 

following the administration of MK-801 (Figure 3B).

Though KYNA did not induce a significant change in 

the amplitude of the CSD waves, the time at half-amplitude 

was significantly shorter after KYNA administration (from 

24.9 seconds ± 0.7 seconds to 21.7 seconds ± 0.6 seconds; 

P = 0.0014) (Figure 3C). This is because the CSD waves 

became sharper as compared with the controls after drug 

administration (Figure 4).

After integration of the waves, the CSD area in the con-

trol group was 48.3 ± 1.7. The KYNA treatment produced 

a significant decline, to 40.1 ± 2.4 (P = 0.008). MK-801 

completely eliminated the CSD activity (Figure 3D).

Histology
There were no detectable differences between the two hemi-

spheres after 1 hour of saline irrigation in the sham-operated 

control group (n = 2). In all groups, KCl was administered to 

the cortex, as detailed above. In the control and the KYNA-

treated group, massive plasma extravasation was detected 

as intense EB fluorescence within 1000 µm of the site of 

KCl application (Figure 2, 5). The only exception was the 

MK-801 group, where the level of fluorescence (extravasa-

tion) was half that in the control and KYNA groups. However, 

the intensity of fluorescence decreased with increasing 

distance from the site of CSD induction. Fluorescence in 
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the KYNA-treated animals was only reduced to the levels 

observed with MK-801 treatment at ∼1500 µm (Figure 2). 

Repeated-measures one-way ANOVA did not reveal any 

significant difference between the groups.

Discussion
The mechanism of generation of CSD waves, and especially 

those aspects relating to pathological conditions such as 

migraine, brain ischemia, and alterations in the BBB, is not 

yet clear.

A decade ago, it was reported that ischemia and hypoxic 

cortical depolarization are associated with an intense vasospasm 

and vasogenic edema.19 It was later found that neuronal and glial 

depolarization and an increase in extracellular glutamate level 

initiate a cascade that disrupts the BBB in numerous ways.6,7

We have previously investigated the effects of kynure-

nines on different animal models of migraine. In all of the 

studied models, KYN (a precursor of KYNA) and other 

KYNA derivatives proved effective in mitigating the 

stimulation-induced increase in c-fos immunoreactivity in 

the caudal trigeminal nucleus12,13 or nitroglycerine-induced 

neuronal nitric oxide synthase.14

It was recently described that the administration of KYN 

significantly decreases the frequency of CSD, an effect due 

to the increased level of KYNA in the brain.15 Although 

KYN seems to be neuroprotective in many animal models 

of migraine and stroke, it sometimes facilitates pathological 

pathways (our unpublished data).22 This may be caused by the 

metabolization of KYN; it can be converted to excitotoxic 

3-hydroxy-L-kynurenine and quinolinic acid in the brain.23 

Kynurenine aminotransferase converts KYN to KYNA in a 

unidirectional manner, and peripherally administered KYNA 

can therefore not be metabolized to excitotoxic agents.24 

Accordingly, and in light of the fact that CSD increases the 

permeability of the BBB, it appeared worthwhile to inves-

tigate whether systemically administered KYNA influences 

the CSD activity. In parallel with KYNA, we studied the 

effects of MK-801 as a positive control.

The aims of this study were to learn whether or not 

peripherally administered KYNA is able to influence the CSD 

activity, and whether these neuroactive molecules (which 

influence the glutamatergic system) act in parallel on CSD 

and the permeability of the BBB. Our results using these 

molecules were in accordance with earlier observations and 
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Figure 4 Representative cortical spreading depression (CSD) waves recorded in the barrel cortex.
Notes: The uppermost measurement is from a phosphate buffer-treated animal. The CSD wave frequency and the time at half-amplitude were reduced by kynurenic acid 
(KYNA) treatment, as shown by the second registration. Dizocilpine (MK-801) completely blocked the initiation of the waves. Scale bar: 1 minute; 5 mV.
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inferences that glutamate is involved in CSD.25,26 Results of 

this study also implicated elements of the pathophysiology 

of the disorder, including trigeminovascular activation and 

central sensitization.27

The fluorescent dye EB binds to the serum albumin in 

the blood. Under physiological conditions, albumin cannot 

pass through the brain capillaries. The intracellular calcium 

concentration [Ca2+]
i
 demonstrates a laminar difference in the 

response of the pyramidal neurons to CSD.28 Unfortunately, 

the situation concerning the [Ca2+]
i
 in the endothelial cells 

is not known, but in general, the linkage between [Ca2+]
i
, 

nitrous oxide, and the integrity of the BBB is well-based:29,30 

elevated [Ca2+]
i
 and enhanced neuronal nitric oxide synthase 

activation lead to robust vasodilatation and protein extravasa-

tion, when the albumin-EB complex may appear in the brain 

tissue following KCl-induced CSD activity.

Although it cannot be excluded that KCl administration 

itself may result in increased extravasation, the fact that 

KYNA and MK-801 administration resulted in reduced or 

eliminated CSD activity in parallel with decreased extravasa-

tion strongly suggests that the waves of cortical depolariza-

tion and the level of BBB permeability are related.

CSD waves, the typical electrophysiological signs of 

cortical depolarizing waves, disappeared completely after 

MK-801 administration. A similar, but less pronounced 

effect was observed after KYNA administration. The 

changes in the electrical signal of the CSD (ie, the decrease in 

frequency of the DC shifts and the sharpening of the waves) 

were observed at the beginning of recording, but CSD was 

elicited only at the beginning of the DC-ECoG measurement. 

This suggests that peripherally administered KYNA is able 

to cross the intact BBB and change the parameters of the 

waves. In parallel with the electrophysiological results, the 

administration of these NMDAR antagonists resulted in a 

gradually declining level of fluorescence, in accordance with 

increasing distance from the source of the CSD waves (the 

site of KCl application).

The reason for this relatively moderate effect of KYNA, 

as compared with that of MK-801, is probably its increased 

but limited permeability through the BBB. Under physi-

ological conditions, KYNA is barely able to cross the BBB,16 

but our results indicate that, in KCl-treated animals, KYNA 

may pass through the BBB and influence the CSD activity. 

KYNA presumably mitigates the effects of the glutamate 

system. KYNA is not only an endogenous NMDAR blocker, 

but also a noncompetitive inhibitor of the α-7-nicotinic ace-

tylcholine receptor,31,32 and through this mechanism, KYNA 

can decrease glutamate release.33 In this manner, KYNA can 

reduce the pathological glutamate level in the cortex during 

CSD activity and protect the BBB structure.6

Our results suggest that, in the course of CSD-induced 

glutamate release, the permeability of the BBB increases, 

and systemically administered KYNA can therefore reduce 

the consequences of CSD.

Recent findings indicated that kynurenines, and par-

ticularly KYNA, exhibit a strong modulatory potential on 

the neuronal structures in the brainstem, which may play a 

crucial role in the pathogenesis of migraine.34 The present 

data reveal that KYNA may also act in the cortex. These 

results provide an experimental tool by which to understand 

the pathomechanism of migraine. However, further studies 

are needed to clarify the possible role of the kynurenines in 

the therapy of migraine.
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