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Purpose: To investigate the relationship between retinal nerve fiber layer (RNFL) thickness 

and retinal pigment epithelium alterations in patients with advanced glaucomatous visual field 

defects.

Methods: A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma 

and advanced glaucomatous visual field defects were included in this study. All study partici-

pants underwent a full ophthalmic examination followed by visual field testing with standard 

automated perimetry as well as spectral-domain optical coherence tomography (SD-OCT) for 

peripapillary RNFL thickness and Optos wide-field fundus autofluorescence (FAF) images. 

A pattern grid with corresponding locations between functional visual field sectors and structural 

peripapillary RNFL thickness was aligned to the FAF images at corresponding location. Mean 

FAF intensity (range: 0 = black and 255 = white) of each evaluated sector (superotemporal, 

temporal, inferotemporal, inferonasal, nasal, superonasal) was correlated with the corresponding 

peripapillary RNFL thickness obtained with SD-OCT.

Results: Correlation analyses between sectoral RNFL thickness and standardized FAF inten-

sity in the corresponding topographic retina segments revealed partly significant correlations 

with correlation coefficients ranging between 0.004 and 0.376 and were statistically significant 

in the temporal inferior central field (r = 0.324, P = 0.036) and the nasal field (r = 0.376, 

P = 0.014).

Conclusion: Retinal pigment epithelium abnormalities correlate with corresponding peripapil-

lary RNFL damage, especially in the temporal inferior sector of patients with advanced glau-

comatous visual field defects. A further evaluation of FAF as a potential predictive parameter 

for glaucomatous damage is necessary.

Keywords: glaucoma, fundus autofluorescence, FAF, retinal nerve fiber layer, RNFL, optical 

coherence tomography, OCT, imaging

Introduction
Structural changes in primary open-angle glaucoma (POAG) occur in the optic nerve 

head as well as peripapillary retinal nerve fiber layer (RNFL).1–4 While it has been 

assumed that structural loss of the RNFL anticipates functional visual field loss, the 

relationship between structure and function in glaucoma is not yet fully understood 

and remains the subject of intense research.2,5–9

While a close relationship between RNFL and the retinal pigment epithelium 

(RPE) is a prerequisite for normal vision,10,11 little is known about RPE involvement 

in patients suffering from glaucoma. A previously published study on dogs has shown 

pathologic abnormalities and RPE damage in glaucomatous eyes.12 Few published 

studies on human glaucomatous eyes have shown correlations between peripapillary 
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RPE abnormalities and optic nerve degeneration in glaucoma 

patients.13–15 A recent study has shown that RPE atrophies 

seem to progress over the course of the disease.16

Fundus autofluorescence (FAF) has been used for the 

evaluation of degenerative, inflammatory, and neoplastic 

diseases of the posterior fundus.17–20 The FAF signal is suppos-

edly derived primarily from fluorophores found in lipofuscin 

within the RPE layer – mainly fluorophore N-retinylidene-N-

retinyl ethanolamine (A2E) – and indicates altered structure 

as a result of atrophic changes due to inflammation result-

ing in increased or decreased FAF in the affected areas.21–23 

Open-angle glaucoma (OAG) is generally understood as a 

degenerative disease and remains one of the leading causes 

of blindness in the elderly population.3 POAG is the most 

common subtype of OAG, with glaucoma-typical structural 

as well as functional glaucomatous alterations.2 To date, there 

is only very limited evidence on altered RPE signal intensity 

in glaucoma patients.

The recently developed ultra-wide-field scanning laser oph-

thalmoscope Optomap Panoramic 200Tx (Optos, Dunfermline, 

Fife, Scotland) allows non-mydriatic wide-field imaging and 

provides an additional wide-field FAF detection modality.

The goal of this study was to investigate the relationship 

between RNFL thickness and RPE alterations as detected by 

wide-field FAF in patients suffering from manifest POAG.

Patients and methods
Patients
A consecutive, prospective series of 82 study eyes, mean age 

64 years (range: 35–86 years), with POAG and advanced 

glaucomatous visual field defects was included in this study 

(47 female and 35 male, 42 right and 40 left eyes).

According to the definition of the European Glaucoma 

Society and a previous work by Katz et al,24 a visual field 

defect suspicious for glaucoma is defined as a cluster of 

at least three or more contiguous non-edge points with 

significantly reduced sensitivity (P , 0.05), one of which 

with a significance of at least P , 0.01 on the same side of 

the horizontal meridian in the pattern deviation plot.

All study participants underwent a full ophthalmic 

examination including best-corrected visual acuity (BCVA) 

in decimals obtained with a Snellen projection chart; objec-

tive and subjective refraction; slit-lamp biomicroscopy; 

intraocular pressure measurement with Goldmann applana-

tion tonometry; gonioscopy; and fundus examination by 

indirect ophthalmoscopy.

Each included patient underwent visual field testing 

followed by spectral-domain optical coherence tomography 

(SD-OCT) for peripapillary RNFL thickness and Optos 

wide-field FAF images.

Only eyes suffering from POAG were included, defined 

by a documented history of elevated intraocular pressure, 

characteristic optic nerve head damage, and/or characteristic 

visual field defects. Exclusion criteria were any evidence 

for optic nerve head degeneration derived from any other 

subtype of glaucoma than POAG; opticopathy of any reason 

other than glaucoma; diabetic retinopathy; macular disease; 

posterior uveitis; or retinal surgery.

All research was conducted in accordance with insti-

tutional guidelines and board approval and conformed to 

the tenets of the World Medical Association Declaration 

of Helsinki.

sD-OCT measurements
Conventional predefined circular peripapillary optic nerve 

head (ONH) cross-sectional scans were obtained from 

each included study eye with a Spectralis optical coherence 

tomography device (Heidelberg Engineering, Heidelberg, 

Germany) with an excitation wavelength of 870 nm running 

at a speed of 40,000 A-scans per second. Global and sectoral 

(supero temporal, temporal, inferotemporal, inferonasal, 

nasal, and superonasal) RNFL thickness values in µm were 

calculated with the inbuilt Heidelberg software.

Optomap imaging
Optomap imaging was performed without pupil dilation. 

Optomap imaging consisted of taking several images and sav-

ing the best image of each included eye for grading. The device 

takes one image in approximately 0.25 seconds, thus avoiding 

motion artifacts. Total scanning time was about 3–5 minutes, 

which included patient positioning, and was performed by 

an experienced technician (TM). Basic operation of the 

Optomap for ultra-wide-field composite color fundus images 

involves a scanning laser ophthalmoscope with two laser 

wavelengths scanning at 532 nm (“green laser separation”) and 

633 nm (“red laser separation”). The optical resolution was 

3,900–3,072 pixels, resulting in approximately 17–20 pixels 

per degree. Wide-field FAF images were obtained with an 

excitation wave length of 532 nm, and autofluorescence was 

detected by a broadband detector at 540 to 800 nm.

Quantification of FAF signal  
intensity and correlation  
with peripapillary RNFL thickness
For further analysis, the pattern grid with correspond-

ing locations between functional visual field sectors and 
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structural peripapillary RNFL thickness originally described 

by Garway-Heath et al25 was aligned to the FAF images at 

corresponding locations (Figure 1). FAF brightness with val-

ues ranging between 0 (black) and 255 (white) was obtained 

for each FAF sector (superotemporal peripheral [1], super-

otemporal central [2], temporal central [3], inferotemporal 

central [4], inferotemporal peripheral [5], and nasal [6]; 

Figure 1C and D) using standalone software based on Matlab 

(7.0 R14; Mathworks Inc, Natick, MA, USA), as described 

in our previous works.19,27 Mean FAF intensity of each sector 

was standardized for each included study eye to eliminate 

individual FAF intensity differences due to aging19 and cor-

related with the corresponding peripapillary RNFL thickness 

obtained with SD-OCT.

statistical analysis
Data were collected and analyzed using SPSS software 

(version 19.0; IBM Corporation, Armonk, NY, USA). 

A P-value of , 0.05 was considered statistically significant. 

Univariate parametric analyses were applied.

Results
Eighty-two glaucomatous eyes were included in our prospec-

tive study. Patient characteristics are displayed in Tables 1 

and 2. Mean FAF intensities and mean sectoral peripapillary 

RNFL thickness values for analyzed subfields 1–6 of each 

included study eye can be seen in Table 3. The highest mean 

FAF intensity was observed in the peripheral infero temporal 

sector, while the central superotemporal sector showed the 

lowest mean FAF intensity of all investigated subfields 

(Table 3). Mean RNFL thickness was highest in the peripheral 

inferotemporal sector and lowest in the nasal sector (Table 3). 

Correlation analyses between sectoral RNFL thickness and 

standardized FAF intensity in the corresponding topographic 

retina segments revealed partly significant correlations 

(Table 4). Correlation coefficients ranged between 0.004 
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Figure 1 Structure–function relationship between visual field (A) and peripapillary nerve fiber layer obtained with spectral-domain optical coherence tomography 
(C and D), adapted for corresponding locations of the posterior fundus (D).
Note: The principle of the evaluation is based on the works of Strouthis et al.40
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may be accompanied by corresponding RPE alterations. 

These findings apply especially for the temporal inferior 

and nasal sectors and thus are, at least in part, in agreement 

with results and observations of previously published data 

of structure–function relationships in glaucomatous eyes, 

which suggest the temporal inferior peripapillary region 

in particular to be a predilection site for structural damage 

in glaucoma.38,39

Those studies on evaluated functional visual field abnor-

malities in glaucoma patients correlated the observed func-

tional abnormalities to structural RNFL changes and showed 

the temporal inferior sector, in particular, to be subject to 

structural changes in patients with visual field defects due 

to glaucoma.

Further studies are needed to give a better understanding 

of peripapillary sectors more susceptible to degenerative 

changes than others and to possibly address the question as 

to whether this observation is due to biomechanic or nutritive 

predisposing anatomic circumstances.

Significant correlations between nasal RNFL thickness 

and corresponding FAF intensity in human POAG eyes have 

Table 1 Patient characteristics: age, BCVA, vertical CDR, and 
Us-CCT

Parameter n = 84

Patient characteristics
 Age (years)   64 ± 13
 BCVA (Snellen) 0.78 ± 0.25
 CDr 0.82 ± 0.15
 US-CCT (µm)  541 ± 35

Note: Values are given as mean ± standard deviation.
Abbreviations: BCVA, best-corrected visual acuity; CDR, vertical cup/disc ratio; 
US-CCT, ultrasound-based measurement of central corneal thickness.

Table 2 Age distribution of all included patients

Overall n = 84
Age distribution
Age subgroups (years) n
 31–40 
 41–50 
 51–60 
 61–70 
 71–80

4 
10 
14 
31 
19

 81–90 6

Table 3 Mean FAF intensities and peripapillary RNFL thickness 
values for each analyzed sector (1–6)

FAF intensities 
(0–255)

RNFL thickness 
(μm)

sector
 Superotemporal peripheral (1) 160 ± 27 55.9 ± 15.8
 Superotemporal central (2) 146 ± 24 74.2 ± 23.7
 Temporal central (3) 163 ± 28 78.6 ± 24.5
 Inferotemporal central (4) 165 ± 26 90.3 ± 28.7
 Inferotemporal peripheral (5) 175 ± 29 94.0 ± 33.8
 Nasal (6) 171 ± 28 54.1 ± 15.2

Note: Values are given as mean ± standard deviation.
Abbreviations: FAF, fundus autofluorescence; RNFL, retinal nerve fiber layer.

Table 4 Correlations (Pearson correlation coefficient) between 
FAF intensity and peripapillary RNFL thickness at corresponding 
sectors (1–6)

Correlation between  
sectoral mean FAF intensity  
and RNFL thickness

sector
 Superotemporal peripheral (1) 0.273; P = 0.080
 Superotemporal central (2) 0.114; P = 0.474
 Temporal central (3) 0.004; P = 0.979
 Inferotemporal central (4) 0.324; P = 0.036*
 Inferotemporal peripheral (5) 0.280; P = 0.073
 Nasal (6) 0.376; P = 0.014*

Note: *Values that were statistically significant.
Abbreviations: FAF, fundus autofluorescence; RNFL, retinal nerve fiber layer.

and 0.376 and were statistically significant in the temporal 

inferior central field (r = 0.324, P = 0.036) and the nasal field 

(r = 0.376, P = 0.014).

Discussion
In retinal metabolism, a close symbiotic interac tion 

between neurosensory retina and RPE exists.28 RPE has 

various support functions, including neuroprotection, and 

its damage results in functional alteration of the neurosen-

sory retina, including the RNFL.29–32 Therefore, FAF has 

become a valuable tool in monitoring the development and 

progression of atrophic RPE dysfunction and consecutive 

neurosensory degeneration, such as in age-related macula 

degeneration (AMD).18,19 A close correlation between RPE 

damage measured with FAF intensity and visual deterio-

ration has been de scribed.33–36 In reverse, RNFL damage 

may be associated with RPE dysfunction. However, little 

is known as to whether RNFL damage, which has been 

demonstrated to correlate with visual field function,7,26,37 

is connected with RPE malfunction or degeneration poten-

tially detectable by FAF. Our observations of a certain 

correlation between sectoral RNFL thickness and FAF 

intensity at corresponding locations in glaucomatous eyes 

are in accordance with published studies on dogs and reveal 

a close interaction between RPE and the neurosensory 

retina.12 The results of this study provide early evidence 

that peripapillary RNFL dege neration in glaucoma patients 
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not, to our knowledge, been published so far and remain our 

focus of continuing research.

A limitation of our study is the fact that, due to its cross-

sectional character, we do not have data from over the course 

of glaucoma disease and are not able to predict any of our 

observed developments. Additionally, FAF intensity changes 

during aging,19 so that interindividual comparison of mea-

sured FAF intensity values should be done with caution.

Conclusion
The presented early data from POAG patients shows that, 

at first – and from the structural point of view – a certain 

correlation between FAF, reflecting RPE function, and peri-

papillary RNFL thickness exists. As a next step, it will have 

to be explored whether these findings are in correlation to the 

actual function deficit measured by visual fields and whether 

our observation can be interpreted with regards to a potential 

predictive parameter for glaucomatous damage.

In summary, we were able to correlate RPE abnormali-

ties to corresponding peripapillary RNFL damage especially 

in the temporal inferior sector of patients with manifest 

glaucomatous visual field defects. A further evaluation of 

FAF as a potential predictive parameter for glaucomatous 

damage is necessary.

Disclosure
The authors report no conflicts of interest in this work.
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