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Abstract: Oncolytic viruses are emerging as a potential new way of treating cancers. 

They are selectively replication-competent viruses that propagate only in actively dividing 

tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence 

of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have 

undergone clinical trials worldwide to date, and they have demonstrated an excellent 

safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, 

talimogene laherparepvec (T-Vec [OncoVexGM-CSF]), is almost complete, with extremely 

positive early results reported. Intuitively, therapeutically beneficial interactions between 

oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus 

requires actively dividing cells for maximum replication efficiency and most anticancer 

agents are cytotoxic or cytostatic. However, combinations of such agents display a range of 

responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhance-

ment of antitumor activity. When synergistic interactions in cancer cell killing are observed, 

chemotherapy dose reductions that achieve the same overall efficacy may be possible, 

resulting in a valuable reduction of adverse side effects. Therefore, the combination of an 

oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved 

therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs 

merits further investigation, both preclinically and in the clinic. Numerous publications 

report such studies of oncolytic HSV in combination with other drugs, and we review their 

findings here. Viral interactions with cellular hosts are complex and frequently involve 

intracellular signaling networks, thus creating diverse opportunities for synergistic or addi-

tive combinations with many anticancer drugs. We discuss potential mechanisms that may 

lead to synergistic interactions.
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Introduction
Using viruses to treat cancer is not a new idea. For more than 100 years there have 

been clinical observations that cancer patients who contracted viral infections would 

enter periods of remission.1 During the 1950s and 1960s, there was considerable 

activity using wild-type viruses as anticancer treatments, but many of these trials 

were limited by the toxicity of the wild-type virus (for a historical perspective 

see Kelly and Russell1). Progress has only recently been possible as advances in 

virology and molecular biology have allowed either the identification of naturally 

occurring viruses with intrinsic tumor selectivity or by genetically engineering 

oncolytic viruses.
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Oncolytic herpes simplex virus (oHSV)
Oncolytic herpes viruses are attenuated, replication competent, 

herpes simplex type 1 viruses that selectively infect, replicate 

within, and lyse cancer cells. One of the first reports of an 

oncolytic virus being used for cancer therapy was in the early 

1990s when Martuza et al2 showed that a replication competent 

thymidine kinase negative herpes simplex virus (HSV)-1 mutant 

effectively prolonged survival of nude mice bearing intracranial 

glioma. Since then, numerous oHSVs have been described, most 

of which have deletions in either RL1, UL39, or both.

ICP34.5, the protein product of the γ34.5 gene, is a spe-

cific determinant of neurovirulence. It plays a key role by 

facilitating escape from a major host defense mechanism 

involving the protein kinase R-mediated innate immune 

response pathway by directly interacting with protein phos-

phatase 1α to dephosphorylate eIF2α (Figure 1).

In contrast, oncolytic HSV, which lacks functional 

ICP34.5 protein, cannot dephosphorylate eIF2α. Thus, infec-

tion with an ICP34.5 null virus causes the host cell to shut 

down protein synthesis, hence, preventing the virus from 

replicating in normal cells. Cancer cells, however, in the 

course of transforming to malignant cells have impaired anti-

viral mechanisms that permit unimpeded viral replication.3

UL39 is the HSV gene encoding for the large subunit of 

ribonucleotide reductase (RR), the main rate limiting enzyme for 

viral DNA synthesis and replication, controlling the nucleotide 

substrate pool by regulating the conversion of ribonucleotides 

to deoxyribonucleotides. HSV RR is required for growth in 

nondividing cells but not in rapidly dividing cells, in which there 

is ample cellular RR for the virus to utilize. Oncolytic HSV with 

a defective UL39 gene exclusively replicates in and lyses rapidly 

dividing cancer cells, as such cells provide sufficient levels of 

RR activity4 (for comprehensive review of oHSV see Cassady 

and Parker,5 Manservigi et al,6 and Varghese and Rabkin7).

Modified (armed and targeted) oHSV
The concept of using viral vectors to deliver therapeutic genes 

to tumors is well established. Many studies have evaluated 

both the oncolytic and antitumor activity, and the antitumor 

immune response of oncolytic viruses engineered to express 

either immunostimulatory genes or therapeutic genes, includ-

ing those that can activate prodrugs.
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Figure 1 HSV-1 can overcome normal cells protective block in protein synthesis: 1. HSV-1 enters the host cell and begins replication. 2. Complementary RNA anneal to 
produce dsRNA. 3. PKR binds dsRNA, dimerizes resulting in activation and autophosphorylation. 4. Phosphorylated PKR selectively phosphorylates elF2α. 5. Phosphorylated 
elF2α causes the host cell to shutdown translation thereby preventing viral replication. 6. HSV produced iCP34.5 which forms a protein complex with PP1α. 7. The iCP34.5 
PP1α complex dephosphorylates elF2α so the viral replication (8) can continue unchecked.
Abbreviations: HSV, herpes simplex virus; PKR, protein kinase R; eiF2α, eukaryotic initiation factor 2; PP1α, protein phosphatase 1 alpha; iCP, infected cell polypepetide; 
P, phosphorylation.
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The therapeutic efficacy of oncolytic HSV vectors encom-

passes two modes of action: direct oncolysis by the virus 

itself and indirect induction of an antitumor response. By 

arming viruses with genes that encode for immunomodula-

tory proteins such as IL(interleukin)-12,8-10 IL-2,11 soluble 

B7.1-Ig,12 or granulocyte macrophage colony-stimulating 

factor (GM-CSF)13–16 to help promote the antitumor immune 

response, the modified viruses are more efficacious.

Virus-directed enzyme prodrug therapy systems have also 

been utilized with oncolytic HSV. There are numerous reports 

of viruses that have been modified to code for enzymes that 

catalyze prodrugs into active substrates, such as HSV1yCD, a 

modified HSV coding for the yeast cytosine deaminase (CD) 

enzyme. HSV1yCD converts the nontoxic 5-fluorocytosine 

into fluorouracil (5-FU), a highly toxic chemotherapeutic 

agent,17 rRp450 carrying rat cytochrome P450 (CYP2B1) 

(which converts cyclophosphamide into the alkylating toxin 

phosphoramide mustard),18 and nitroreductase, which con-

verts the prodrug CB1954 to an active alkylating agent.19 

The extensive field of oncolytic HSV vectors modified for 

enhanced efficacy is beyond the scope of this review; the 

major approaches are detailed here but reviewed in greater 

detail by Varghese and Rabkin.7

Table 1 lists the principal oHSV in clinical development. 

At least six different oHSV have undergone clinical trials 

worldwide to date. oHSV have demonstrated excellent safety 

profiles and, in numerous studies, signals of efficacy. The 

first Phase III trial with an oHSV, talimogene laherparepvec 

(T-Vec [OncoVexGM-CSF]) has almost been completed. Ini-

tial extremely encouraging findings of the trial have been 

reported, with T-Vec demonstrating a statistically significant 

improvement in durable response rate.20

Oncolytic viruses in combination  
with chemotherapy
The use of many chemotherapeutic agents is limited by 

severe dose limiting toxicities and the emergence of resistant 

disease.21 In comparison, the mode of action of oncolytic 

viruses (lytic infection) means that cancer cells are unlikely 

to become resistant to them. Furthermore, oncolytic viruses 

have a high therapeutic index (ie, the comparison of the 

amount of a therapeutic agent that causes the therapeutic 

Table 1 Oncolytic HSVs in clinical trials

HSV strain Genetic modification Stage/clinical indication Results References

OncoVex  
GM-CSF (T-Vec)

Deletion in both copies of  
iCP34.5 + iCP47 disruption

Phase i/ii and iii melanoma 

Head and neck cancer 
Advanced metastatic melanoma

evidence of virus replication  
in injected and adjacent uninjected  
tumors (head and neck). Regression  
of injected and uninjected tumors in  
late stage melanoma. 
Ongoing

13,20,97,98 

71
R7020 (NV1020) Deletion of one copy of  

iCP34.5 + tk under iCP4  
promoter control + deletion  
in UL24, 55, and 56

Phase i and ii colorectal cancer  
liver metastases

in Phase ii disease stabilization in  
40%–45% of cases.

99–102

G207 Deletion in both copies of  
iCP34.5 + disruption of UL39

Phase i, iB, and ii recurrent brain  
cancer (glioma, astrocytoma, and  
glioblastomas)

well tolerated. evidence of viral  
replication and radiographic and  
neuropathological signs of  
antitumor activity.

103–109

HSV1716 Deletion in both copies of  
iCP34.5

Glioma Phase i 
Melanoma 
HNSCC 

Non-CNS solid tumors 
Malignant pleural mesothelioma

well tolerated, no toxicity. in  
Phase i/ii (recurrent glioblastomas)  
three out of 12 patients showed  
disease stabilization. No toxicity  
in melanoma or HNSCC. evidence  
of viral replication in tumors. 
Ongoing Phase i 
Ongoing Phase i/iia

110–114,129,130

HF10 Spontaneous generation  
of HSV-1 variant

Pancreatic cancer 
Recurrent breast cancer 
Bladder cancer 
HNSCC

115–122

rRp-450 iCP6 deleted and expresses  
prodrug enzyme for  
cyclophosphamide (ratCYP2B1)

Phase i liver metastases and  
primary liver tumors

Ongoing 131

Abbreviations: HSV, herpes simplex virus; iCP, infected cell polypepetide; tk, thymidine kinase; UL, unique long; HNSCC, head and neck squamous cell carcinoma; CNS, 
central nervous system.
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effect, to the amount that causes toxicity) with very limited 

toxicities. Table 2 summarizes the potential advantages of 

oncolytic virotherapy.

Viral infection initiates many complex host defense path-

ways;22 however, viruses have coevolved equally complex coun-

termeasures to circumvent these activities.23,24 Many of these 

countermeasures are retained by their oncolytic variants (Table 3 

outlines the main cellular and viral pathways activated upon viral 

infection). As chemotherapeutic and targeted anticancer agents 

target key cellular processes that also involve complex intracel-

lular signaling networks, there are extensive opportunities for 

antagonistic and synergistic interactions with oncolytic viruses, 

and these need to be explored and understood as the clinical 

acceptance of oncolytic HSV looks increasingly likely.25

Combining these two very different modalities in order to 

increase cancer cell killing is a rational approach. The clinical 

implications of this combination therapy are not limited to 

enhanced efficacy. The dose reduction index, the most relevant 

clinical parameter derived by Chou and Talalay analysis,26 reveals 

the potential for significant dose reductions without compromis-

ing tumor cell kill. Reducing the dose of drugs such as chemo-

therapeutics would minimize the toxicity and may allow patients 

to remain on an otherwise intolerable regime, or increase their 

quality of life whilst still receiving treatment for their disease.

Since the initial groundbreaking studies by Toyoizumi et al27 

with HSV1716 and four standard chemotherapeutic drugs, 

methotrexate, cisplatin, mitomycin C, and doxorubicin, there 

have been many reports of the increased efficacy of oHSV 

in combination with a wide range of existing and potentially 

new anticancer drugs. Tables 4–8 present the wide variety 

of different combinations that have been examined, and 

also summarize the results. The aim of this review is not to 

discuss the individual results presented in these tables, but 

to attempt a mechanistic overview that relates to their find-

ings. Crucially, there are a number of reasons why oncolytic 

virus therapy in combination with chemotherapeutic agents, 

or other anticancer treatments, will be beneficial. Firstly, the 

mode of action of oncolytic viruses is completely different 

from chemotherapeutics and they are not, therefore, in direct 

competition. Secondly, oncolytic cell killing is independent 

of the many genomic alterations that lead to drug-resistant 

tumors and so may be effective even in drug-resistant cells.

The most widely used method of studying drug/drug (or 

virus/drug) interactions between two modalities in vitro is 

using the methods of Chou and Talalay.26,28 This type of analysis 

is one of the few available that identifies beneficial interactions 

based on an extrapolated equation. The possibility of predicting 

a false positive is minimized as the analysis takes into account 

both the potency (the IC
50

 [half the maximal inhibitory con-

centration] or the LD
50

 [median lethal dose]) and the slope of 

the dose effect curves (m-value) in the precise analysis of two 

therapeutic combinations. The method defines the expected 

additive effect of two (or more) agents and quantifies synergy 

or antagonism by way of how different the measured effect is 

from the expected additive effect. The equations are detailed 

elsewhere.26,28,29 Interpretation of the combination index (CI) 

values are defined as: CI =1 indicates an additive effect; a CI 

of ,1 indicates synergy; and a CI .1 indicates antagonism. 

Synergy is the working together of two agents to produce a 

result greater than the sum of their individual effects, while 

antagonism is less than that of an additive effect.

Table 3 Main cellular and viral pathways activated upon viral 
infection

Name of  
HSV-1 protein

Pathway

Vhs inhibits iRF3 and NF-kB 
inhibits iFN-induced STAT1 nuclear accumulation 
and phosphorylation 
inhibits eiF2α phosphorylation

iCP34.5 Downregulates MHC class ii cell surface expression 
inhibits eiF2α phosphorylation

iCP0 inhibits iRF3/iRF7 to repress iSG production 
Disrupts ND10 domains 
Degrades TLR adaptor proteins MyD88 and Mal

iCP27 inhibits iRF3 and NF-kB 
inhibits iFN-induced STAT1 nuclear accumulation 
inhibits eiF2α phosphorylation

US11 Prevents eiF2α activation via an interaction with PKR
US3 Controls TLR3 RNA levels

Abbreviations: HSV-1, herpes simplex virus 1; iCP, infected cell polypepetide; iRF3, 
interferon regulatory factor 3; iRF7, interferon regulatory factor 7; NF-κB, nuclear 
factort kappa light chain enhancer of activated B cells; iFN, interferon; STAT1, signal 
transducer and activators of transcription 1; eiF2α, eukaryotic initiation factor 2; 
Vhs, virion host shutoff protein; MHC, major histocompatibility complex; ND10, 
nuclear domain 10; TLR, toll like receptor; MyD88, myeloid differentiation primary 
gene (88); Mal, myelin and lymphocyte protein; iSG, interferon stimulated gene; 
RNA, ribonucleic acid.

Table 2 Advantages of oncolytic virotherapy

Feature Advantage

Replicates within tumor cells to  
increase viral dose

Amplification leads to oncolysis in 
cells beyond those initially infected 
increases therapeutic index

Replicates only within tumor cells Minimal toxicity to normal tissues
Can be used safely with other  
cancer treatments and may have  
synergistic effect

Increased efficacy of combined 
treatment

Can also be engineered or armed  
to carry a wide variety of transgenes  
to enhance the therapeutic effect  
such as prodrugs or inducers of  
immunological response

Dual effect of viral oncolysis and 
the added effect of the prodrug or 
immune stimulator

Some evidence that oHSV are  
capable of targeting and  
eliminating cancer stem cells

eliminates the population of 
cells that are often resistant to 
chemotherapy and radiotherapy

Abbreviation: oHSV, oncolytic herpes simplex virus.
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Table 4 Oncolytic viruses and chemotherapeutic agent

oHSV Drug Cell line Cancer type In vitro In vivo Reference

HSV1716 Cisplatin UM_SCC 
14CUM-SCC 22A 
UM-SCC 22B

HNSCC 
HNSCC 
HNSCC

Additive 
Additive 
Additive

ND 
ND 
ND

114

HSV1716 Cisplatin, 
doxorubicin, 
mitomycin C,  
methotrexate

NCi-H460 NSCLC Additive ND 27

NV1066 Cisplatin H-2452, H-Meso, 
H-2373, H-28 
JMN, Meso-9 
MSTO-211H 
VAMT, 
H-2052 
Meso-10

MPM Synergistic 
Synergistic 
Synergistic 
Synergistic 
Additive 
Additive 
Additive

ND 
ND 
ND 
ND 
ND 
ND 
ND

41

G207 Cisplatin SCC-25/CP 
Sq20B 
UMscc-38

HNSCC No effect 
ND 
ND

ND 
No effect 
Additive to synergistic

123

G47Δ Cisplatin LNCaP Prostate cancer Antagonistic ND 89
OncoVex- 
GALV/CD

Cisplatin eJ 
T24 
TCCSUP-G 

Bladder transitional  
carcinoma

Antagonistic 
Antagonistic 
Antagonistic

ND 
ND 
ND

65

rRp450  
(CYP2B1)

Cyclophosphamide Rh30 Alveolar  
rhabdomyosarcoma

ND enhanced 54

G47Δ Doxorubicin LNCaP Prostate cancer Antagonistic ND 89
G207 Doxorubicin KAT4 

DRO90-1
Anaplastic thyroid  
cancer

Additive 
Additive

enhanced 
ND

87

G47Δ Docetaxol LNCaP 
DU145

Prostate cancer Synergistic 
Synergistic

enhanced 
ND

89

G207 erlotinib STS26T MPNST Additive Not enhanced 94
G47Δ etoposide LNCaP Prostate cancer Antagonistic ND 89
G207 Fluorodeoxyuridine HCT8 Colon cancer Synergistic ND 42
G207 5-fluorouracil KiGB-5 (murine) 

MKN45 (human)

Gallbladder 

Gastric cancer

enhanced 

enhanced (viral  
replication)

enhanced  
(Syrian hamster) 
enhanced (SCiD mouse)

44

NV1020 5-fluorouracil HT29 
wiDr 
HCT116 
CT-26

Colon cancer 
Colon 
Colon 
Colon

enhanced 
enhanced 
enhanced 
ND

ND 
ND 
ND 
enhanced

45

NV1066 5-fluorouracil Hs 700T 
PANC-1 and PaCa-2

Pancreatic cancer 
Pancreatic cancer

Synergistic 
Synergistic

ND 
ND

39

OncoVex- 
GALV/CD

5-fluorouracil A549, H460 
CAPAN-1, MiA PACA-2,  
BXPC-3 
HCT-116, HT-29, Sw620 
9L LacZ (rat)

Lung cancer 
Pancreatic cancer 
 
Colon cancer 
Gliosarcoma

enhanced 
enhanced 
 
enhanced 
ND

ND 
ND 
 
ND 
enhanced

124

NV1066 Gemcitabine Hs 700T 
PANC-1 and PaCa-2

Pancreatic cancer 
Pancreatic cancer

Synergistic 
Synergistic

ND 
ND

39

R3616 
hrR3

Gemcitabine CAPAN1 and PaCa-2 
Sw1990

Pancreatic cancer 
Pancreatic cancer

ND 
ND

enhanced both cell lines 
Not enhanced

64

OncoVex- 
GALV/CD

Gemcitabine eJ 
T24 
TCCSUP-G 
KU19-9

Bladder transitional  
carcinoma

Antagonistic 
Synergistic  
Antagonistic 
Antagonistic

ND
ND
ND 
ND

65

HF10 Gemcitabine CT26 Murine colorectal  
model

Antagonistic if given 
together Synergistic if 
GeM is pretreatment

enhanced effect in both  
injected tumor and  
distal tumor

88

(Continued)
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Table 4 (Continued)

oHSV Drug Cell line Cancer type In vitro In vivo Reference

NV1020 irinotecan (SN38) HT29 and wiDr 
HCT-116

Colon cancer enhanced 
enhanced

ND 
ND

45

MGH2 irinotecan (SN38) Gli36ΔeGFR  
U87ΔeGFR 
U251 
T98G

Glioma enhanced 
enhanced 
enhanced 
enhanced

enhanced 
ND 
ND 
ND

59

G207 Mitomycin C OCUM-2MD3 
MKN-45-P

Gastric cancer Synergistic 
Synergistic

enhanced 
ND

36

NV1066 Mitomycin C KU19-19 
SKUB

Bladder transitional  
carcinoma

Synergistic 
Synergistic

ND 
ND

126

OncoVex-
GALV/CD

Mitomycin C eJ 
T24 
TCCSUP-G 
KU19-9

Bladder transitional  
carcinoma

Synergistic 
Synergistic 
ND
Synergistic

ND 
ND 
ND 
ND

65

NV1020 Oxaliplatin HT29 and wiDr 
HCT-116

Colon cancer 
Colon cancer

enhanced 
enhanced

ND 
ND

45

G207 Paclitaxel KAT4 
DRO90-1

Anaplastic thyroid  
cancer

Synergistic 
Synergistic

enhanced 
ND

87

NV1023 Paclitaxel KAT4 
DRO90-1

Anaplastic thyroid  
cancer

Synergistic 
Additive

ND 
ND

87

G47Δ Paclitaxel LNCaP 
DU145

Prostate cancer Synergistic 
Synergistic

ND 
ND

89

MGH2 Paclitaxel MDA-MB-435S Mammary carcinoma ND enhanced 127
G207 Temozolomide U87 

U87-dnp53 
U373 
T98 

U87MGMT

Malignant glioma Synergistic 
Synergistic 
Synergistic 
Synergistic (with  
O6-benzylguanine) 
Synergistic (with  
O6-benzylguanine)

enhanced 
ND 
ND 
ND 

ND

128

G47Δ Temozolomide GBM13 
BT74 

U87MG 
T98 
GBM4 
GBM6 

GBM8

Glioma stem cells 
(TMZ resistant/ 
MGMT+ve) 
 
Glioma 
Glioma 
Glioma stem cells 
(TMZ sensitive/ 
MGMT-ve)

No synergy 
No synergy 

No synergy 
No synergy 
Synergistic 
Synergistic 
 
Synergistic 

ND  
Not enhanced (enhanced  
in the presence  
of + O6-benzylguanine) 
ND 
ND 
ND
ND 
 
enhanced

37

G207 Vincristine KFR 
KF-RMS-1

Rhabdomyosarcoma enhanced 
enhanced

enhanced 
enhanced

90

NV1042 Vinblastine CwR22 
PC3

Prostate Synergistic 
Synergistic

enhanced 
ND

78

Abbreviations: MPM, malignant pleural mesothelioma; oHSV, oncolytic herpes simplex virus; TMZ, temozolomide; HNSCC, head and neck squamous cell carcinoma; ND, 
not done; MPNST, malignant peripheral nerve sheath tumor; GeM, gemcitabine; MGMT, methylguanine DNA ethyltransferase.

Table 5 Oncolytic viruses and mTOR inhibitors

oHSV Drug Cell line Cancer type In vitro In vivo Reference

Baco-1 Rapamycin HepG2 
HuH-7 
MDA-MB-231 
eC9706 
MCF-7 
HeLa

HCC 
HCC 
Breast cancer 
esophageal 
Breast cancer 
Cervical

No effect 
No effect 
No effect 
Additive 
Additive 
Additive

ND 
ND 
ND 
Additive 
ND 
ND

46

MG18L BeZ235 GBM4 
GBM8 
GBM13 
BT74

Glioma stem cells No effect 
No effect 
Synergistic 
No effect

ND 
ND 
ND 
ND

85

Abbreviations: oHSV, oncolytic herpes simplex virus; HCC, hepatocellular carcinoma; ND, not done.
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Chou and Talalay26 analysis can also be used effectively 

in vivo, but it is more common practice, as reported in the 

literature, to look for differences in tumor growth between 

treatment groups and to use analysis of variance or t-tests 

to determine if the differences (often either tumor volume 

or length of survival) between groups are significant. 

 Information on synergy and/or enhanced efficacy of combi-

nations will also come from clinical studies. Most patients 

that take part in new cancer therapy trials have already had, 

or are currently being treated with, the standard treatment 

for their particular disease, and it will be interesting to see if 

any group treated with oHSV and another agent respond bet-

ter or worse than predicted. There are a number of different 

ways in which an oHSV in combination with an anticancer 

drug can be synergistic and these are discussed below.

Compounds that increase the 
replicative capacity of the virus
Oncolytic HSV have selective replication competence in 

cancer cells and, by increasing the replicative capacity of 

the virus within those cells, the number of progeny viruses 

produced during a cycle of infection could be increased 

(Figure 2).

Differentiating inducing agent hexamethylene bisacet-

amide (HMBA) has been shown to improve viral yield, with 

up to a 10,000-fold increase in vitro for an ICP34.5 null virus, 

R849, at low MOI (multiplicity of infection). HSV immediate 

early gene expression (Figure 4 shows the basic HSV replica-

tion cycle) was also increased with HMBA.30 Mice treated 

with both HMBA and R849 virus had significantly smaller 

tumor burden and survived longer than either virus or HMBA 

treatment alone, with increased levels of HSV transcripts of 

immediate early, early, and late genes in the combination 

treatment group. This suggests HMBA may increase and/

or activate cellular proteins such as transcription factors, 

which act to improve viral yield. HMBA is a drug that was 

thought to have some potential as a stand-alone anticancer 

agent; however, the level of drug required for such anticancer 

activity could not be achieved in patients.31 In the study with 

oHSV, a much lower dose of drug was able to be used; one 

which could easily be achieved in patients and potentially 

would act as a promoting agent for oncolytic therapy.

Table 6 Oncolytic viruses and Pi3K inhibitors

oHSV Drug Cell line Cancer type In vitro In vivo Reference

R7041 LY294002 U87 Glioma Synergistic enhanced 86
MG18L LY294002 GBM4 

GBM8 
GBM13 
BT74 
U87 
T98G

Glioma stem cells 

Glioma

Synergistic 
No effect 
Synergistic 
Synergistic 
Synergistic 
Synergistic

ND 
ND 
ND 
enhanced 
ND 
ND

85

MG18L GDC-0941 GBM4 
GBM8 
GBM13 
BT74 
U87 
T98G

Glioma stem cells 

Glioma 
Glioma

Synergistic 
No effect 
No effect 
Synergistic 
Synergistic 
Synergistic

ND 
ND 
ND 
ND 
ND 
ND

85

Abbreviations: oHSV, oncolytic herpes simplex virus; ND, not done; Pi3K, phosphatidylinositide 3-kinases.

Table 7 Oncolytic viruses and HDAC inhibitors

oHSV Drug Cell line Cancer type In vitro In vivo Reference

G47Δ Trichostatin A U87 
T98 
Sw480 
HeLa 
MCF-7

Glioma 

Colon cancer 
Cervical cancer 
Breast cancer

Synergistic 
Synergistic 
Synergistic 
Synergistic 
Additive

enhanced 
ND 
enhanced 
ND 
ND

65

R849 Trichostatin A SAS 
Ca9-22 
HSC

Oral SCC enhanced
ND
ND

ND
ND
ND

132

rQNestin34.5 Valproic acid U251 
U87Δ eGFR

Glioma ND 
ND

ND 
enhanced

133

Abbreviations: oHSV, oncolytic herpes simplex virus; SCC, squamous cell carcinoma; ND,  not done; HDAC, histone deacetylase.
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Another mechanism for increasing viral yields may be 

to temporarily block apoptosis. Upon viral infection, one 

of the cellular host responses is to induce apoptosis in 

infected cells and in cells surrounding infected cells (Fig-

ure 3) in order to limit the ability of the virus to replicate 

and spread. Therefore, by blocking apoptosis temporar-

ily, there is the potential for improving the propagation 

of viral progeny, maximizing the lateral spread of virus 

and increasing tumor destruction. Wood and Shillitoe32 

reported on increased viral replication in the presence of 

zVAD-fmk; a pan caspase inhibitor that has previously been 

shown to prevent HSV-1-induced apoptosis.33 The authors 

showed that the inhibitor increased levels of replication 

in an ICP34.5 null mutant back to the levels of wild type 

HSV-1. Stanziale et al34 also reported increased apoptosis 

in cells that neighbored NV1066-infected cells and could 

mitigate this effect with treatment with an inhibitor of apop-

tosis: N-acetylcysteine. This suggests that the increased 

viral yield seen with the caspase inhibitors is likely to be 

due to neighboring noninfected but alarmed cells being 

prevented from initiating apoptosis and, therefore, become 

lytically infected with virus.32,34 Eisenberg et al35 reported 

that hyperthermia potentiates oncolytic viral killing. 

After hyperthermic insult, the heat shock protein Hsp72 

is upregulated, which inhibits cellular apoptosis, thereby 

allowing increased viral replication and, in turn, enhanced 

tumor kill. This finding has great potential as, in a clinical 

setting, the application of heat is likely to be noninvasive 

and relatively toxicity free.

Compounds that increase cell  
permissiveness to oHSV
Many chemotherapeutic drugs are DNA damaging agents 

and, following exposure to such agents, cells upregulate their 

DNA damage repair pathways. Such upregulation appears to 

be beneficial for oncolytic viral replication; mitomycin C,36 

Table 8 Oncolytic viruses and others

oHSV Drug Cell line Cancer type In vitro In vivo Reference

OncdSyn Thalidomide 4T1 Breast ND enhanced 134
R849 Hexamethylene 

bisacetamide
Ca9-22 
SAS 
F1

Oral SCC enhanced 
enhanced 
enhanced

ND
ND
enhanced

30

Abbreviations: oHSV, oncolytic herpes simplex virus; SCC, squamous cell carcinoma; ND,  not done.

A

B

C

Cancer cell Virus replicates

Virus does not replicate

Healthy normal cell

Cancer cell Virus replicates

Figure 2 increasing replicative capacity of the virus: (A) in normal cells the virus does not replicate. (B) in a cancer cell the virus replicates, lyses the cell and produces viral 
progeny that go on to infect further cancer cells. (C) in the presence of certain drugs the virus can produce more viral progeny. Upon lysis more progeny virus are released – 
potentially increasing the number of cells that can be infected.
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temozolomide,37,38 and 5FU39 have all been shown to increase 

oncolytic HSV replication.

Growth arrest and DNA damage-inducible protein 

GADD34 is induced by stressful growth arrest conditions and 

treatment with DNA-damaging agents. The carboxyl terminal 

of GADD34 bears significant homology with the virulence 

factor ICP34.5, which is deleted in some oHSV, eg, HSV1716, 

NV1066, R3613, and T-Vec (Table 1). Previous studies40 have 

Cancer cell Virus replicates

Cancer cell Virus replicates

Progeny virus fail to replicate

Oncolysis – viral spread and
release of tumor antigens

Infected cell
produces

interferons
which induce an

antiviral state
in neighboring

cells

Drug inhibits
IFN response

Figure 3 Anti-viral host response mediated by iFN (interferon) induces apoptosis of surrounding cells. By using drug to block innate antiviral defence mechanism the infected 
cell will not signal other nearby cells to ‘warn’ them about the virus, hence viral replication will occur.

Envelope
proteins

Tegument

Capsid

Virus uncoats and
capsid
transported to
nucleus

Nuclear membrane

Immediate Early → Early → Late

DNA

HSV1716

Figure 4 Herpes simplex virus (HSV) replication cycle HSV-1 is a double stranded DNA virus which encodes for around 100 transcripts and contains three main structural 
components. The central capsid (or nucleocapsid) contains the viral DNA. This is surrounded by an envelope. The tegument is located between the envelope and the capsid. 
HSV enters the host cell at either the cell surface or via pH dependent endocytosis through a process involving envelope glycoproteins. The tegument proteins are released 
into the cell and the capsid is transported to the nucleus where viral DNA is released into the nucleus. There are three classes of viral genes that are transcribed and 
translated in a specific order: Immediate Early (IE) genes, which encode for proteins that promote expression of viral genes and also have a role in innate immune invasion, 
early (e) are responsible for the replication of viral DNA and lastly Late (L) genes which include capsid, tegument and envelope proteins.
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shown that the carboxyl terminus of GADD34 can substitute 

for ICP34.5 in preventing premature shutoff of protein synthe-

sis, and ICP34.5 null mutants can use the host cell GADD34 

protein for viral replication. Thus, the presence of GADD34 in 

tumor cells following treatment with a DNA damaging agent 

would increase the number of cells permissive to oHSV infec-

tion and increase the viral spread through the tumor. Indeed, 

when GADD34 small interfering RNAs (siRNAs) were added 

to block GADD34 expression after treatment with a DNA 

damaging agent (cisplatin), the previously observed synergy 

with the oHSV NV1066 and cisplatin was abolished.41

Another potential mechanism for synergy with some 

oHSV is upregulation of cellular RR by DNA-damaging che-

motherapeutic agents.42 High throughput screening has been 

reported to identify small-molecule compounds that augment 

the replication of HSV G47Δ,43 and, of the 2,460 compounds 

screened, six compounds were identified and subsequently 

validated for enhanced G47Δ replication. Two of these com-

pounds, dipyridamole and dilazep, interfered with nucleotide 

metabolism by potently and directly inhibiting the equilibra-

tive nucleoside transporter-1 and were dependent on HSV 

mutations in ICP6, the large subunit of RR. Equilibrative 

nucleoside transporter-1 antagonists are thought to augment 

oHSV replication in tumor cells by increasing cellular RR 

activity.43 As oHSV with UL39 deletions can only replicate 

in cells with active cellular RR, increasing cellular RR will 

improve viral replication.

Nakano et al44 reported an upregulation in RR in tumors 

mediated by 5FU that augmented the therapeutic effect of 

G207. 5FU was also found to be synergistic both in vitro and 

in vivo with oHSV NV1020 (an oHSV with intact ICP6),45 

suggesting the effects of 5FU are not limited to upregulation 

of RR. The authors speculated that the synergy was in part 

due to the cells being sensitized to 5FU as the virus caused 

the cells to arrest in S phase of the cell cycle. They further 

speculated that the reduction in viral progeny could be due 

to the immune IFN (interferon)-γ response as well as the 

5FU-induced upregulation of cell death via molecules such 

as TRAIL (TNF [tumor necrosis factor] related apoptosis-

inducing ligand) and Fas ligand.

Rapamycin markedly increased the yield and dissemination 

of oHSV in semipermissive tumor cells both in vitro and in 

vivo but had no additional effect in cell lines that are permis-

sive to the ICP34.5 null mutant oHSV Baco1.46 The reason 

behind the observation is still unclear; however, inhibitors of 

the mTOR (mammalian target of rapamycin) signaling pathway 

increase permissiveness of resistant tumor cells to oncolytic 

myxoma virus,47 vesicular stomatitis virus,48 adenovirus,49 

and cytomegalovirus,50 suggesting that the mTOR signaling 

pathway has an important role to play in virotherapy.

Compounds that modulate  
the immune system
The immune response to oncolytic viral therapy is an essen-

tial factor determining the success of oHSV as an antitumor 

agent; it can be a hindrance if it causes premature viral 

clearance, or could be seen as a positive, with the virally 

infected tumor becoming a target for clearance by the 

immune system.

The immune response to viral infection is beyond the 

scope of this review, but for an excellent insight into this 

field see Paludan et al.22 Briefly, the immune reaction to a 

viral infection (oncolytic or otherwise) is a multipronged 

response. Very quickly upon infection, the innate immune 

response recruits natural killer (NK) cells, macrophages, and 

neutrophils to the site of infection and mediates a nonspecific 

viral clearance. NK cells appear to be an important player 

in the response to viral infection; patients with naturally 

occurring NK cell deficiencies (despite there being numerous 

different mutations that cause such deficiencies) have severe 

and recurrent herpes virus infections.51 NK cells, activated 

by macrophages secreting IL-12, mediate the lysis of virally 

infected cells by releasing cytotoxic granules containing lytic 

enzymes and by binding to apoptosis-inducing receptors on 

the infected cell. In addition, NK cells secrete IFN-γ, which 

activates further macrophages and, consequently, orchestrates 

the downstream adaptive immune response.

The oncolytic HSV rQNestin34.5 (ICP34.5 expression 

controlled by the nestin promoter) has been shown to induce 

a rapid recruitment of NK cells to orthotopic human glioblas-

toma xenografts with subsequent killing of the oHSV-infected 

xenograft cells by activated macrophages. Depletion of NK 

cells improved the oHSV efficacy in these glioblastoma 

models, further indicating the importance of the NK cells.52 

Previous studies have demonstrated that inhibition of the 

innate immune response using cyclophosphamide53–56 or mac-

rophage depletion57 enhances oHSV replication and efficacy. 

An oHSV variant, rRp450, with deleted ICP6 and incorpo-

rated cytochromeP450 transgene for direct cyclophosph-

amide activation has been described, and the virus enhances 

the antitumor effects of cyclophosphamide.18,54,58,59

Another key event in the immune response to viral infec-

tion is the secretion of IFN-γ (for an extensive review see 

Roizman40 and Bazan-Peregrino et al60). The cytokine IFN-γ, 

or type II interferon, is critical for innate and adaptive immune 

response to viral infection, partly from its ability to inhibit 
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viral replication directly, but, more importantly, also from its 

immunostimulatory and immunomodulatory effects. IFN-γ 

is produced predominantly by NK cells as part of the innate 

immune response, and by cluster of differentiation (CD)4+ T 

helper (Th)1 and CD8 cytotoxic T lymphocyte (CTL) effector 

cells once antigen-specific immunity develops.

Histone deacetylase inhibitors (HDIs) are a class of com-

pounds that appear to benefit HSV oncolysis, possibly via 

suppression of innate immune responses. Histone deacety-

lases (HDACs) have pleiotropic effects on cells through 

deacetylation of proteins, including histones, which then alter 

the epigenome and transcription profiles. Numerous HDACs 

have been targeted for drug discovery for cancer therapies, 

either for use as a single agent or in combination with che-

motherapeutic agents. Pretreatment with the HDI valproic 

acid was shown to enhance the oncolytic virus MGH2 and 

rQNestin34.5 replication and spread in tumors, and extended 

the survival of mice bearing intracerebral tumors.52,61 The 

authors attributed the synergy between HDIs and oHSV to 

inhibition of type I interferon responses that would usually 

restrict viral gene expression and replication.

Drugs that cause downregulation of the innate immune 

response can be synergistic with oncolytic viruses but there 

is also evidence of the immune response enhancing tumor 

clearance.62 Benencia et al63 reported that oHSV therapy 

was less effective in murine metastatic melanoma models 

lacking NK and T cell subsets. Similarly, HSV1716-induced 

expression of IFN-γ inducible chemokines was accompanied 

by a significant increase in the number of NK and CD8+ 

cells in the tumor microenvironment in a syngeneic ovarian 

carcinoma model.59,63

Synergy has also been reported with oHSV and com-

pounds that increase IFN-γ production.64 The authors found 

that pretreating tumor cells with gemcitabine before oHSV 

significantly reduced tumor growth in vivo. Pretreatment 

was necessary as the drug itself induces early termination 

of DNA synthesis, which prevents replication of oncolytic 

viruses.39,64–66 Gemcitabine selectively kills myeloid-derived 

suppressor cells, which inhibit IFN-γ production by CD8+ 

cells. So, when myeloid-derived suppressor cells themselves 

are killed, CD8+ T cells will secrete higher levels of IFN-γ, 

thus directing more T cells to tumor sites, which results in an 

improved antitumor response. In addition, IFN-γ can change 

the tumor microenvironment in terms of macrophages pheno-

type. Macrophages are classified as m1 (classically activated) 

or m2 (alternatively activated). During tumor progression 

there is a switch from m1- to m2-like phenotype that is 

believed to allow the tumor cells to avoid the immune system. 

Higher levels of IFN-γ can change the macrophage phenotype 

back to m1, resulting in the cancer cells being more likely to 

be tagged for destruction by the immune system.64

Recently, a number of immunotherapeutic agents have 

been approved as cancer treatments. Ipilimumab, a monoclo-

nal antibody that blocks the CTL-associated antigen 4 recep-

tor, which would normally inhibit cytotoxic T lymphocyte, 

for example, is approved for use in advance metastatic 

melanoma.67,68 It is by blocking the CTL-associated antigen 

4 receptor that CTLs are activated and can recognize and 

destroy cancer cells. As the presence of an oncolytic virus 

within a tumor will make the tumor more antigenic, there is 

good reason to think that the combination of oncolytic virus 

and immunotherapy will be synergistic and, indeed, there 

are many reports of improved efficacy of oHSV engineered 

to express genes that make immunomodulatory proteins 

including IL-12, IL-24, IL-4, RANTES (Regulated on Acti-

vation, Normal T cell Expressed and Secreted), CD80, and 

IFNα.68  Granulocyte-macrophage colony-stimulating factor, 

which generates an antitumor response by the recruitment 

and differentiation of activating dendritic cells in the tumor 

microenvironment, has been inserted successfully into 

T-Vec,69,70 and a clinical study investigating T-Vec in combi-

nation with ipilimumab is underway,71 with primary results 

expected in summer 2016.

Immunomodulatory drugs highlight the complexities of 

potential interactions between oHSV and anticancer agents, 

with synergy reported with drugs that inhibit or upregulate 

the immune system. It is likely that drugs that inhibit the very 

early innate immune response will allow the virus longer to 

enter cells and undergo initial viral replication, increasing the 

spread of the virus. Drugs that act by boosting later immune 

responses, such as upregulating T cells, mean that the infected 

tumor cells and potentially uninfected neighboring tumor cells 

are more likely to be targeted for destruction by the immune 

system. It will be interesting to see if downregulating innate 

immunity by HDIs, for example, and upregulating T cells by 

gemcitabine, would result in further synergistic effects when 

combined with an oncolytic virus. To date, no triple combina-

tions have been reported in the literature, probably due to the 

increasing complexity of such experiments.

Compounds that alter the tumor  
microenvironment
Angiogenesis is the formation of new blood vessels and, as 

tumors need blood vessels to grow and spread, inhibitors of 

angiogenesis, which prevent the formation of new blood ves-

sels, could potentially prevent or slow the growth or spread 
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of tumors. Unlike chemotherapeutic agents, angiogenesis 

inhibitors will not kill cancer cells directly but instead prevent 

tumors from growing, so potentially, in order to completely 

eradicate a tumor, an antiangiogenic drug would have to be 

given in combination with a modality that kills cancer cells, 

such as an oncolytic virus.

Vascular endothelial growth factor (VEGF) is a key com-

ponent in tumor angiogenesis and is overexpressed in many 

human tumors. It has numerous effects on tumor vasculature 

such as increased vasodilation and permeabilization, and 

inhibitors of VEGF, such as Avastin®, sorafenib, and suni-

tinib, appear to “normalize” tumor vasculature, potentially 

enhancing localization of systemic oncolytic virus. ICP34.5 

null oHSV infectivity and cytotoxicity were diminished under 

hypoxic conditions (when the cells are deprived of oxygen) 

in several glioblastoma xenolines, which are cell lines main-

tained by xenograft passage.69 Normalization of the blood 

vessels by antiangiogenic agents may reduce hypoxia within 

the tumor microenvironment and potentially improve oHSV 

replication. However, other studies have shown improved 

oHSV replication in hypoxic conditions.70–73 Bevacizumab 

(Avastin®), a monoclonal antibody against VEGF A, had no 

effect on the spread or replication of oHSV in vitro. However, 

in vivo, in several studies using different xenograft models,74,75 

groups of mice receiving the dual therapy of both oHSV and 

Avastin® had tumors that were significantly smaller than 

tumors from either treatment alone. Results from these stud-

ies indicated that Avastin® improved replication and spread of 

the oHSV within the xenograft microenvironment. Although 

cytotoxic in vitro, in some xenograft models rRp450 had only 

mild antitumor effects.76 The host inflammatory response to 

rRp450 therapy was found to induce an acute neutrophil infil-

trate, a relative decrease of intratumoral macrophages, and a 

myeloid cell-dependent upregulation of host-derived VEGF. 

Bevacizumab and r84 (which selectively inhibit binding to 

VEGF receptor 2 but not VEGF receptor 1) enhanced the 

antitumor effects of rRp450 therapy, in part due to decreased 

angiogenesis. However, although neither bevacizumab nor 

r84 increased virus production or affected neutrophil infil-

tration, both partially mitigated virus-induced depletion of 

macrophages. Therefore, the enhancement in efficacy with 

the combination of oHSV therapy and anti-VEGF antibodies 

appears to be in part due to modulation of host inflammatory 

reaction to virus.

Vinblastine, a microtubule disrupting agent that has 

been shown to inhibit angiogenesis in humans77 and, in 

combination with the oHSV NV1042, showed increased anti-

tumor and antiangiogenic effects in vivo in prostate cancer 

models,78 provides further evidence that the combination of 

an antiangiogenic agent and an oncolytic virus may have 

clinical benefit. However, to the best of our knowledge, there 

are no preclinical published studies of oHSV in combina-

tion with small molecule VEGF receptor inhibitors such as 

sorafenib or sunitinib.

HSV DNA replication occurs in discrete compartments 

in the nucleus that assemble as prereplicative sites with 

viral DNA and the HSV DNA binding protein ICP8. HSV 

DNA polymerase and cellular factors are then recruited to 

these compartments for use in viral replication. The DNA 

damage and repair pathways repair the damage to the cancer 

cell DNA caused by treatment with DNA-damaging drugs 

such as temozolomide (TMZ). However, in the presence 

of oHSV infection, key components of these pathways are 

sequestered into discrete compartments for use in viral rep-

lication, hence are not available to repair the damage caused 

by drugs. Thus, the damage, in terms of number of cancer 

cells killed by a specific amount of drug, is greater in the 

presence of oHSV.37

Cellular kinases play a key role in the regulation of 

signaling events that govern multiple pathways affecting 

growth, proliferation, migration, and angiogenesis. These 

include PI3K (phosphatidylinositide 3-kinases)-Akt-mTOR 

and mitogen-activated protein kinases pathways, which are 

often mutated in cancer cells to support unchecked cellular 

replication. Inhibition of these pathways could potentially 

reduce tumor growth, and this is reflected in the inten-

sive drug development looking for PI3K-Akt-mTOR and 

mitogen-activated protein kinases inhibitors. For example, 

80% of glioblastomas are having genetic alterations in the 

PI3K-Akt-mTOR pathways and there are at least 10 different 

inhibitors in development.79 However, due to the high level 

of redundancy and cross regulatory feedback loops, mono-

therapy may be unlikely to have significant clinical efficacy;80 

for example, rapamycin only reduces mTOR activity for 

12 hours before another kinase substitutes and reengages the 

mTOR network.81 Furthermore, such inhibitors are likely to 

be cytostatic: they will stop the cancer cells from growing 

or dividing but will not eradicate them.

The PI3K-Akt-mTOR pathway is also important in viral 

replication (for a full review see Terada et al61 and Buchkovich 

et al82). Upon infection, viruses frequently activate this 

pathway to benefit from the survival signaling associated 

with Akt activation. One of the downstream effectors of 

activated Akt is the mTOR kinase, a component of the mTOR 

complexes (mTORC) 1 and 2. Activated mTORC1 is crucial 

for the maintenance of cap-dependent translation which is 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Oncolytic Virotherapy 2013:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

69

oHSV in combination with anti-cancer treatments

required by most mammalian DNA viruses and many RNA 

viruses. mTORC2 is less well understood, but is thought to 

have roles in Akt phosphorylation and the organization of 

the actin cytoskeleton. It would therefore seem reasonable 

to assume that inhibitors that block the function of mTOR or 

PI3K would not only block translation of cellular proteins but 

would drastically reduce the ability of viruses to replicate by 

virtue of stopping their cap-dependent translation. Theoreti-

cally, PI3K and mTOR inhibitors would be antagonistic if 

used in combination with oncolytic viruses. The literature, 

however, reveals diverse results that vary depending on the 

specific virus, the specific inhibitor, and the status of the 

cells used.

Breitbach et al83 found that compounds such as rapamy-

cin, which blocks the activation of mTOR, and PD098059, 

which blocks the activation of MAP (mitogen-activated 

protein) kinase, did not affect the ability of oHSV R3616 

to replicate in pancreatic tumor cells. Treatment with the 

inhibitor LY294002, which inhibits the PI3K pathway, pre-

vented the replication of R3616. Similarly, synergy was not 

observed between LY294002 and the ICP34.5 null oHSV, 

but was observed with oHSV mutants with a Us3 mutation.84 

The gene product of Us3 protects virus-infected cells from 

apoptosis; a cellular pathway that is often dysfunctional in 

tumors. Thus, Us3 mutants, whose replication would be 

inhibited by apoptosis in normal cells, would be selective 

for tumor cells, and the combination treatment of LY294002 

and Us3-null oHSV is synergistic due to enhanced apoptosis 

in the combination treated cells.85

Compounds that affect  
the cell cycle
Strong synergy between oHSV and trichostatin A (an HDAC 

inhibitor) was observed in a wide range of cancer and prolif-

erating endothelial cell lines but not in normal prostate or qui-

escent epithelial cells.86 Unlike other HDIs, the synergy was 

seen regardless of the dosing sequence of the oHSV (G47Δ) 

or trichostatin A. The synergy was attributed to reduced cyclin 

D1 expression in cells that normally have a high level of cyclin 

D (ie, cancer cells). The combination also inhibited secretion 

of the angiogenic factor VEGF, which correlated with the 

decreased vascularity within the tumor in vivo.

Another combination that appears to affect the cell cycle 

occurs between the oHSV G207 and paclitaxel. Paclitaxel 

is an approved cancer therapy that stabilizes microtubules 

and, as a result, interferes with the normal breakdown of 

microtubules during cell division. In the presence of pacli-

taxel, chromosomes are unable to achieve metaphase spindle 

configuration. This inability to form the correct formation 

blocks the progression of mitosis which in turn triggers 

apoptosis or the cell to revert to the G phase of the cell cycle 

without dividing. Despite the G207/paclitaxel combination 

being synergistic, oncolysis or viral replication was not 

increased.87 The authors concluded that they differentially 

affected cell cycle progression, either by the cells arresting 

in G1 (virus-mediated) or mitosis (paclitaxel-mediated), 

a combination that served to increase apoptosis further. 

Paclitaxel also showed synergy with other oHSV, HF10, 

and G47Δ, both in vitro and in vivo.88,89 The oHSV HF10 

has been studied alone and in combination with paclitaxel in 

colon cancer models.88 In vivo, the combination of HF10 and 

paclitaxel prolonged survival of mice bearing carcinomatous 

dissemination of CT26 tumors compared with the control 

groups. G47Δ also synergized with paclitaxel and the closely 

related docetaxel to enhance the in vitro killing of LNCap and 

DU145 prostate cancer cells.89 Docetaxel-induced accumula-

tion of the phosphospecific mitotic markers op18/stathmin 

or histone H3 was significantly reduced by G47Δ, and this 

correlated with enhanced apoptosis and required active virus 

replication. Another microtubule inhibitor, vincristine, was 

also shown to be synergistic with oHSV in rhabdomyosar-

coma xenografts.90

Cheema et al91 reported synergy with etoposide, an inhibi-

tor of topoisomerase II, and oHSV G47Δ in glioma stem cell 

xenografts. Gutermann et al45 found synergy with SN38 (the 

active metabolite of irinotecan, a topoisomerase I inhibitor) 

and NV1020 in a panel of human colon carcinoma cell lines 

in vitro. Synergy with irinotecan and MGH2 (an oHSV with 

UL39 and -γ34.5 deletions) was also reported in glioma, both 

in vitro and in vivo.59

Other compounds where synergy  
and/or enhancement is seen  
but the mechanism is unclear
Although not using an oHSV, Heo et al92 reported on the 

first clinical signs of positive interactions between onco-

lytic virotherapy and standard of care drugs with JX-594 

(an oncolytic pox virus) and sorafenib, a small molecule 

inhibitor of the signaling oncoprotein B-raf and VEGF 

receptor, which is licensed as a treatment for hepatocellular 

carcinoma. The authors reported that a number of patients 

treated with JX-594 and then sorafenib up to 8 weeks 

later had objective tumor responses (ie, tumor shrinkage) 

compared to zero in 15 untreated patients matched for age, 

stage, and sex. Furthermore, they also reported a complete 

cure in one patient treated with sunitinib, another inhibitor 
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similar to sorafenib, 8 weeks after JX-594 treatment. As the 

virus is likely to be cleared from the patient by 8 weeks, the 

mechanism by which the oncolytic virus can sensitize tumors 

to these inhibitors is unclear. Interestingly, the patients who 

have the best responses to sorafenib are those patients who 

have hepatitis C related hepatocellular carcinoma,93 suggest-

ing that there may be a therapeutic class effect where viruses 

sensitize tumors to VEGF receptor inhibitors.

Erlotinib, an epidermal growth factor receptor inhibitor, 

combined additively with two oHSV, G207, and hrR3 in 

order to enhance cytotoxicity in vitro in human malignant 

peripheral nerve sheath tumor cells often associated with Ras/

epidermal growth factor receptor hyperactivation; however, 

this effect did not translate into an in vivo malignant periph-

eral nerve sheath tumor xenograft model.94 Thalidomide, 

which is now approved for use in multiple myeloma patients, 

was found to have significant benefit in reducing tumor bur-

den in combination with OncdSyn (an NV1020-like oHSV) 

than either OncdSyn or thalidomide alone in a murine breast 

cancer model,95 though the mechanism is unclear.

Conclusion
Oncolytic viruses are a new and emerging treatment for 

cancer. As they become an established therapy, much 

attention will have to be paid to the interaction between 

current standard of care drugs and oncolytic viruses. So 

far, the signs are encouraging; not only can oHSV be 

given alongside other cancer treatments, but can actu-

ally result in an enhancement of efficacy in reducing 

tumor burden and improving survival. The majority of 

virus–drug combinations listed in Tables 4–8 show syn-

ergistic, enhanced, or additive effects, but this may in 

part reflect the fact that antagonistic combinations might 

not be submitted for  publication. Recently, Kulu et al96 

reported on the inhibition of HSV oncolysis in colon and 

pancreatic cancer cell lines in vitro when combined with 

5-FU, irinotecan, or  methotrexate. Their studies showed 

that replication of both ICP6 and/or ICP34.5 deleted 

oHSV was significantly reduced in HT29 and SW620 

(colon) and Capan-2 (pancreatic) cell lines. Others have 

reported additive/synergistic interactions (with respect to 

cell  killing) between 5-FU, irinotecan, and methotrexate 

(Table 2) with oHSV in diverse cell lines, including both 

colon and pancreatic lines. It is conceivable that the drugs 

can inhibit virus replication but the combined effects of 

virus and drug act in concert to enhance cell death, and 

seemingly conflicting results serve to illustrate our poor 

understanding of such interactions.

Furthermore, the sequence in which the drug and oHSV 

are given may impact on cell killing. For example, gemcit-

abine and HDIs such as valproic acid are synergistic when 

given as a pretreatment to the virus, thus sensitizing the tumor 

to virus, whereas sorafenib appeared to work better given 

after oncolytic virus; thus the virus is acting as the sensitizer. 

Similarly, when oHSV rRp450 was given before Avastin® 

(bevacizumab) there was a significantly prolonged survival 

compared to the same combination in reverse order.74

Many of the published combination studies examined 

the effects of combinations in vitro. These identify com-

binations that enhance cancer cell cytotoxicity. However, 

many of the interactions between oHSV and drugs either 

affect the tumor or host biology, and these interactions will 

only be seen in vivo. The immune system is a key player 

in the efficacy of any combination treatment; it appears 

that initial suppressing of the innate immune response in 

order to allow the virus to undergo replication, then an 

upregulation of the immune system to clear the virus and 

tumor, would be a rational strategy in terms of reducing 

tumor burdens.

The use of patient-derived tumor xenografts, where pri-

mary human tumors are transplanted into immune deficient 

mice within hours after the sample is collected, are increas-

ingly being used to predict the effectiveness of chemothera-

peutic drugs in patients. To our knowledge, such models have 

not been reported for testing combinations of oncolytic HSV 

together with chemotherapy or targeted drugs, but are likely 

to be valuable and should provide data that will improve 

decision making and accelerate development programs for 

virus/drug combinations.

As preclinical studies progress into the clinical setting, 

major progress in the understanding of oHSV in combination 

with other treatments is likely to occur. Early clinical trials 

usually involve patients who have already exhausted all the 

available standard treatment options, and even later Phase III 

trials will often compare standard of care versus standard of 

care plus oHSV. Such studies should help confirm preclinical 

findings on useful virus/drug combinations and hopefully 

bring benefit to cancer sufferers.
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