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Abstract: Statin-induced inhibition of HMG-CoA reductase reduces cholesterol production and 

prevents the formation of many non-steroidal isoprenoid compounds, such as farnesylpyrophos-

phate and geranylgeranylpyrophosphate, that act as lipid attachments for the post-translational 

modifi cation of various proteins, including the G-proteins and transcription factors involved in 

a number of cell processes. However, the blockade of isoprenylation elicited by statin treatment 

also has biological effects on cell function that go beyond the decrease in cholesterol synthesis: 

these are the so-called “pleiotropic” effects that mainly relate to vascular function. Endothelial 

dysfunction is an independent predictor of cardiovascular events that correlates with infl am-

mation markers/mediators and robust predictors of cardiovascular diseases such as increased 

high-sensitivity C-reactive protein levels. The results of in vivo and in vitro studies indicate 

that the statins have benefi cial effects unrelated to cholesterol lowering, such as improving 

endothelial function, increasing myocardial perfusion, and enhancing the availability of nitric 

oxide. This review describes the pleiotropic effects of statins that may be involved in modulat-

ing/preventing endothelial dysfunction and infl ammatory processes, as well as the cellular and 

molecular mechanisms through which they improve endothelial function.
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Introduction
The endothelium is a monocellular layer lining the inside of vessels that normally 

provides a non-adhesive, non-thrombogenic surface for blood constituents, and acts 

as a dynamic interface regulating blood vessel functions (Behrendt and Ganz 2002). 

It infl uences responses to environmental and endogenous factors by generating para-

crine and autocrine mediators that control the biology of the entire vessel wall. The 

endothelium plays a pivotal role in regulating vascular tone, but also controls other 

physiological process such as infl ammation, coagulation and thrombosis.

Persistent hemodynamic or infl ammatory factors activate the endothelium and 

lead to it becoming dysfunctional. In particular, endothelial cell activation by cyto-

kines or other infl ammatory mediators increases the expression of a variety of cell 

surface adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and 

vascular cell adhesion molecule-1 (VCAM-1), procoagulants and anticoagulants, 

and substances regulating vasomotor tone. One hallmark of endothelium dysfunction 

is an altered response to endothelium-dependent and endothelium-independent stimuli, 

such as acetylcholine and bradykinin (Harrison 1997). These effects are due to a 

reduced bioavailability of nitric oxide (NO), which may be caused by a decrease in 

the synthesis, release and/or activity of endothelial-derived NO.

It is now known that abnormal endothelium function can be detected before the 

establishment of obvious intimal lesions in patients with risk factors for atherosclerosis 

(Celermajer et al 1992), and endothelial dysfunction of the coronary or peripheral 
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arteries is an independent predictor of cardiovascular events, 

even after adjusting for traditional factors (Ganz and Vita 

2003). Endothelial dysfunction correlates with infl ammation 

markers/mediators and robust predictors of cardiovascular 

diseases, such as increased high-sensitivity C-reactive pro-

tein (hs-CRP) levels in subjects with coronary artery disease 

(Fichtlscherer et al 2000). This observation is of particular 

interest because CRP stimulates the expression of VCAM-1, 

thus highlighting once again the link between infl ammation 

and endothelial dysfunction (Pasceri et al 2000). Further-

more, it has been suggested that enhanced endothelial func-

tion may contribute to improved clinical status (Anderson 

et al 1995; Treasure et al 1995).

Experimental and clinical studies have shown that 

hypercholesterolemia, a major risk factor for vascular 

diseases, impairs endothelium function (Creager et al 1990; 

Egashira et al 1993), and LDL apheresis alone rapidly exerts 

benefi cial effects on endothelial vasodilator function within 

a few hours (Tamai et al 1997).

It has been shown that, in addition to reducing atheroscle-

rosis and cardiovascular events, lipid-lowering therapies and 

particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG 

CoA) reductase inhibitors (commonly known as statins) 

improve endothelium function, and numerous clinical stud-

ies have demonstrated that this is not necessarily related to 

a detectable decrease in serum cholesterol levels.

The first evidence that statins may inhibit cardio-

vascular events regardless of their effects on blood cho-

lesterol levels came from the WOSCOPS study, which 

found that the incidence of cardiovascular events in a 

subgroup of patients treated with placebo or statin with 

the same LDL-cholesterol level was markedly lower in 

the statin group (WOSCOPS Study Group 1998). The 

beneficial effects of statins may occur relatively soon 

after the start of therapy and are different from those 

observed after the reduction of plasma cholesterol levels 

(Buchwald et al 1995). The cholesterol-independent, 

anti-thrombotic, anti-oxidative and anti-inflamma-

tory vascular effects of statins are known as pleiotropic 

effects (Davignon 2004; Halcox and Deanfield 2004). 

The most important underlying mechanism is mediated 

by a reduction in the synthesis of mevalonate, which is 

not only a precursor of cholesterol, but also of a variety 

of non-steroidal isoprenoid compounds that are essential 

for normal cell activity (Corsini et al 1999; Wolfrum 

et al 2003). Isoprenoids, such as farnesylpyrophosphate 

and geranylpyrophosphate, are essential for the cell 

membrane attachment of important regulatory proteins, 

particularly small GTPase: by inhibiting its synthesis, 

statins deplete cells of these lipids and thus elicit the 

retention of small GTPase in the cytosol, where they 

cannot exert their biological actions.

Statins and endothelial 
NO synthase (eNOS) expression
The initial studies of endothelial function concentrated on 

vasomotion, which became the major parameter of endothe-

lial health. Endothelium-dependent vasodilatation primarily 

occurs via the release of a humoral mediator (identifi ed as 

NO), rather than prostacyclin and an endothelium-derived 

hyperpolarisation factor (Kansui et al 2004).

Well documented data from experimental and clinical 

studies show that statins increase eNOS expression and 

activation, which may be the principal mechanism by which 

statins improve endothelial dysfunction in addition to reduce 

cholesterol levels. Interestingly, statins can modulate NO 

bioavailability by increasing mRNA expression or increas-

ing eNOS activity: the fi rst is a late effect and involves 

inhibiting the isoprenylation of Rho, small GTPase proteins, 

whereas the second is much more rapid and requires a lower 

statin concentration. It must also be remembered that statins 

maintain NO availability by preventing its degradation by 

free radical molecules (Koh 2000).

NO bioavailability is mediated 
by Rho inhibition
Rho proteins are small GTPases that regulate cytoskeleton 

organization and cell adhesion, thus contributing to cell mi-

gration and endothelial permeability (Nobes and Hall 1999; 

Ridley 1995). Their function is strictly regulated by their 

membrane localization, which is favored by prenylation, 

a post-translational modifi cation that helps anchor them to 

membranes.

Statins modulate the stability and activity of Rho GTPases 

by acting on their sub-cellular localization and inhibiting the 

synthesis of farnesyl- and geranylgeranyl pyrophosphate, 

the isoprenoids required for the prenylation of Rho proteins. 

They also alter Rho expression at transcriptional level, 

although the underlying mechanism is still unclear.

However, the inhibition of Rho (and particularly RhoA) is 

a determinant factor in stabilizing the mRNA of endothelial 

NO synthase (eNOS) and improving endothelium-dependent 

relaxation (Figure 1).

It has been demonstrated that RhoA affects vasomo-

tion by activating Rho-kinases (ROCK), which inactivates 
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myosin light chain phosphatase (MLCP) and reduces the 

expression of eNOS (Somlyo 2002). Direct inhibition of 

ROCK by specifi c inhibitors such as hydroxyfasudil and 

Y27632 increases the half-life and expression of eNOS 

mRNA (Rikitake et al 2005).

Furthermore, ROCK inhibits the serin/threonine 

kinase Akt phosphorylation and activity, and thus has 

negative effects on eNOS activity. Akt can phosphorylate 

eNOS on Ser 1179, and that phosphorylation enhances 

the enzyme’s ability to generate NO (Fulton et al 1999). 

Interestingly, the membrane compartmentalization of both 

proteins (inside the Golgi region and plasma membrane 

of endothelial cells) is required for Akt’s functional in-

teraction with eNOS. It is not fully understood how the 

phosphorylation of eNOS enhances NO release, but it 

seems to be mediated by the introduction of a negative 

charge that ‘opens’ the structure and thus permits acti-

vated calmodulin binding at lower calcium concentrations 

(Salerno et al 1997). In vitro data suggest that enzyme 

activity is enhanced in a Ca2+-independent manner, but is 

due to greater Ca2+-sensitization (Dimmeler et al 1999).

The bioavailability of NO may also be infl uenced by 

RhoA in a ROCK-independent manner. Non-fi lamentous 

actin (G-actin) interacts with eNOS mRNA, and changes 

in actin polymerization affect eNOS mRNA stability and 

down-regulate eNOS expression (Searles et al 2004). Recent 

studies have demonstrated that cytoplasmatic fi laments and 

microtubules are necessary to transport mRNA within the 

cytoplasm and anchor them at specifi c sub-cellular locations 

(Bassell and Singer 1997; Nasmyth and Jansen 1997). The 

cytoskeleton anchoring of mRNAs, and their co-localisation 

with ribosomes and RNA-binding protein complexes are 

necessary for their translational expression and stability. The 

Rho-controlled reorganisation of the actin cytoskeletron may 

therefore play a key role in the movement and compartmen-

talisation of specifi c mRNAs.

Endothelial dysfunction and vasoactive 
agonists
The partial reversion of endothelial dysfunction induced by 

statin treatment is not totally due to improved NO bioavail-

ability, but also to the better regulated expression of vaso-

active factors. The regulation of vascular tone is a complex 

process that involves the concerted action of many factors; 

in particular, endothelin-1 (ET-1) and angiotensin II (Ang II) 

elicit contractile and proliferative activities in the vascular 

smooth muscle layer. An imbalance between Ang II and NO 

is often caused by a loss of NO due to endothelial dysfunction 

and oxidative stress and/or the enhancement of Ang II local 

tissue activity (Dzau 2001).

Ang II, which is the primary effector of the renin-angio-

tensin system (RAS), is a multifunctional hormone that plays 

important autocrine and paracrine roles in vascular function 

(Campbell and Habener 1986). Albeit indirectly, Ang II 

and NO interact with each other in the vasculature to infl u-

ence vascular tone, cell growth, apoptosis and infl ammation 

(Fig. 2). Via AT
1
 receptor-coupled G protein, Ang II activates 

phospholipase C (PLC) which in turn produces inositol 

1,4,5-triphosphate (IP
3
), and stimulates Ca2+ mobilisation. 

The Ca2+-mediated activation of myosin light-chain kinase 

(MLCK) leads to the phosphorylation of MLCK and smooth 

muscle contraction. Ang II also induces Ca2+ sensitization 

of the contractile apparatus by activating RhoA/Rho kinase, 

which in turn inactivates myosin light-chain phosphatases 

(MLCP). A recent in vivo study has shown that Ang II infu-

sion decreases NO production and uncouples eNOS in rat 

aortas, thus causing superoxide rather than NO production 

(Mollnau et al 2002). Interestingly, the long-term infusion 

of Ang II causes endothelial dysfunction associated with 

decreases in guanylyl cyclase (GC) expression and cGMP-

dependent protein kinase (PKG) activity in rat aorta (Mollnau 

et al 2002).

On the contrary, by activating soluble guanylyl cyclase 

(sGC), NO stimulates PKG and reduces Ca2+ levels by down-

regulating IP
3
 production and decreasing Ca2+ mobilization. 

PKG inactivates the RhoA/Rho kinase signaling pathway 

to inhibit RhoA-induced Ca2+ sensitization. The results of a 

number of experimental studies suggest that NO may directly 

inhibit ACE activity reducing plasma Ang II concentrations 

Figure 1 Statins inhibit the activation of Rho signaling, which negatively infl uences 
eNOS mRNA stability and activity, leading to an increased NO bioavailability.
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and decrease AT
1
 receptor mRNA expression at transcrip-

tional level (Kumar and Das 1997; Ackermann et al 1998; 

Wu et al 2000).

Recent studies have demonstrated that statins may pre-

vent harmful Ang II-induced events, such as the production 

of reactive oxygen species in vascular smooth muscle cells 

(VSMCs), cardiac hypertrophy and end-organ damage 

(Wassmann et al 2001; Park et al 2000). In particular, it 

has been found in an in vivo model of arterial neointimal 

thickening that fl uvastatin inhibits Ang II-mediated ERK 

phosphorylation, and the tyrosine- and serine-induced 

phosphorylations of STAT1 and STAT3 that are known 

to be activated by many extracellular signaling proteins, 

including cytokines, growth factors, and Ang II via the 

AT
1
 receptor. Furthermore, in vitro and in vivo studies 

have shown that the effects of statins on AT
1
 receptor-

mediated actions affecting VSMCs may also be mediated 

by decreasing AT
1
 receptor expression (Ichiki et al 2001; 

Wassmann et al 2001). Various fi ndings indicate that pa-

tients with high levels of LDL-cholesterol may also increase 

vascular responses to Ang II, and it is known that hyper-

cholesterolemia is closely associated with AT
1
 receptor 

upregulation (Nickenig et al 1997, 1999). Statin treatment 

improves vascular responsiveness to Ang II (although not in 

a dose-dependent manner), and seems to be closely related 

to serum cholesterol levels.

In vascular endothelial cells, statins also affect the 

expression of pre-pro-endothelin-1, a precursor of endo-

thelin-1 (ET-1), which elicits potent contractile and prolif-

erative action in VSMCs (Hirata 1996). Statins-mediated 

inhibition of the activity of Rho proteins downregulates 

pre-pro-endothelin-1 gene expression, an effect that is 

independent of their action on NO.

Statins and caveolae
The endothelial cell plasma membrane consists of liquid-

ordered microdomains (lipid rafts), that are assembled from 

lipid constituents and have distinct biophysical characteristics 

and limited random movement (Brown and London 2000; 

Simons and Ehehalt 2002). These regions are involved 

in the local sequestration of proteins that mediate signal 

transduction in a variety of cell types, including endothelial 

and vascular smooth muscle cells. In certain pathological 

situations, such as hyperlipidemia, the composition of some 

membrane microdomains are altered and thus contribute to 

the mechanisms of atherogenesis in vascular cells.

Caveolae are the most widely studied lipid rafts. Their 

principal component is the protein caveolin, a scaffolding 

element that effi ciently binds cholesterol and interacts with 

various signalling macromolecules, including G proteins 

(Smart et al 1999; Gargalovic and Dory 2003). Caveolin 

also inhibits eNOS by blocking its access to cofactors, and 

regulates the production of NO in the endothelium (Ju et al 

1997; Feron et al 1998).

The high caveolae levels under condition of hypercholes-

terolemia are associated with reduced endothelial NO synthe-

sis and increased superoxide levels, SMC proliferation and 

leukocyte adhesion (Vergnani et al 2000). The therapeutic 

benefi t of statins is mainly due to their restoration of normal 

endothelial NO levels by means of various mechanisms, 

including the upregulation of eNOS expression (Laufs et al 

1998). They also stimulate endothelial NO production by 

greatly decreasing plasma membrane caveolin levels: a recent 

study on endothelial cells (ECs) found that atorvastatin re-

duced the abundance of caveolin-1 in the absence or presence 

of LDL-cholesterol, and promoted NO production regardless 

of the level of extracellular LDL-cholesterol (Feron et al 

2001). These results highlight the central role of inhibiting the 

mevalonate pathway in peripheral cells by reducing the syn-

thesis of isoprenoid intermediates regardless of cholesterol 

synthesis. Moreover, the benefi cial effect of atorvastatin on 

eNOS activity was greater in the cells expressing high levels 

of caveolin. Finally, the statin promoted the agonist-induced 

association of eNOS and chaperone Hsp90, thus leading to 

increased activity (Feron et al 2001).

In addition to modulating the physical and chemical 

properties of membrane lipids, hypercholesterolemia has 

also been associated with the disruption of active L-arginine 

transport, which affects the capacity of endothelial cells to 

Figure 2 Ang II and NO functions interplay to infl uence vascular tone, through 
different effects on RhoA pathway.
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generate NO: ie, L-arginine defi cit leads eNOS to overpro-

duce superoxide from oxygen instead of NO. By improving 

L-arginine uptake through amino acid transport, statins may 

also enhance NO production and interfere with superoxide 

formation.

Effects of statins on endothelial 
dysfunction
Many studies have demonstrated the benefi cial clinical 

effects of statins on endothelial dysfunction, but the under-

lying mechanisms remain largely unknown. Nevertheless, 

all researchers believe that, in addition to the reduction in 

cholesterol, a NO-dependent process is also involved. In vitro 

and in vivo studies have confi rmed that statins enhance the 

expression of eNOS by means of post-transcriptional/transla-

tional mechanisms (Laufs et al 1998, 2000). In particular, the 

use of different animal models has been useful in improving 

our understanding of the role of individual risk factors, such 

as hypertension, hypertriglyceridemia, hyperinsulinemia, 

hyperglycemia and insulin resistance in endothelial dysfunc-

tion, and correlating the improvement in endothelial function 

due to statins treatment with changes in these factors.

Animal studies
Chronic treatment with simvastatin improves endothelium-

dependent acetylcholine relaxations of aorta from hyperten-

sive rats (SHR) by means of a mechanism that is independent 

of the cyclo-oxygenase pathway (de Sotomayor et al 1999). 

The improved endothelial function in the treated animals can 

be attributed to the normalization of deranged NOS activity, 

partly mediated by the promotion of superoxide dismutase 

(SOD) (Carneado et al 2002).

The same authors have also shown that simvastatin 

improves endothelium-dependent acetylcholine relaxations 

in vessels from aged Wistar rats. The mechanisms involved 

enhanced endothelial NO vasodilatation due to increased 

eNOS expression, decreased participation of TXA
2
 associ-

ated with the decreased expression of the COX-2 isoform, 

and enhanced vessel antioxidant properties (de Sotomayor 

et al 2005).

Statins improve endothelial health in many situations, 

but have failed in the well-known model of cardiovascular 

disease offered by DOCA-salt rats that develop hypertension, 

cardiovascular hypertrophy, infl ammation and endothelial 

dysfunction. At a dose that decreased plasma cholesterol 

levels, rosuvastatin attenuated aortic media thickness and 

vascular hypertrophy, but did not affect the developing 

hypertension. It surprisingly increased aortic responses to 

acetylcholine in male Wistar rats, but had no effect on the 

reduced responses to noradrenaline, sodium nitroprusside 

and acetylcholine of DOCA-salt rats. These results may be 

attributed to species-related differences and variations in the 

capacity of statins to penetrate vascular cell membranes, but 

it is also conceivable that lowering blood pressure is neces-

sary to improve endothelial dysfunction in DOCA-salt rats 

(Loch et al 2006).

A recent study investigated in vivo a possible molecu-

lar mechanism of vascular dysfunction and the effects of 

fl uvastatin in obese Zucker rats, a model of diabetes mellitus 

(Nishimatsu et al 2005). Fluvastatin partially (but signicantly) 

reduced Ang II-induced vasoconstriction and improved 

endothelium-dependent vasorelaxation via the phosphati-

dylinositol 3-kinase/protein kinase Akt (PI3K/Akt)-depen-

dent and NO/cGMP-dependent pathways in rat aorta. This 

had previously been observed in an in vitro study of endothe-

lial cells in which statins seemed to stimulate the membrane 

translocation of Akt and its activating phosphorylation by 

PI3-kinase (Skaletz-Rorowski et al 2003): statin stimulation 

promoted the association of tyrosine phosphorylated protein 

with the p85 subunit of PI3-kinase, and Akt translocation 

was inhibited by mevalonate and wortmannin, a PI3-kinase 

inhibitor, thus leading to the inactivation of the enzyme. It 

has been reported that the Akt-dependent phosphorylation 

of eNOS is necessary for the full activation of eNOS and 

endothelium-dependent vasorelaxation, and so impaired 

PI3K/Akt activation may have been involved in the reduced 

endothelium-dependent vasorelaxation (Dimmeler et al 1999; 

Fulton et al 1999).

Furthermore, Akt signaling is subject to regulation by a 

rapidly exchanging pool of cholesterol within cells. Some 

authors suggest that this endothelial cholesterol pool is more 

sensitive to the statin-mediated inhibition of endogenous 

cholesterol synthesis than it is to changes in exogenous 

cholesterol delivery from the serum by LDLs. In this regard, 

it may be relevant that PI3-kinase activity in fi broblasts is 

negatively regulated by the recruitment of caveolin-1, an 

intracellular cholesterol transport protein, to PI3-kinase-

associated receptor complexes within lipids rafts (Zundel 

et al 2000). It has also been shown that the statin-induced 

inhibition of cholesterol synthesis in endothelial cells can im-

prove the inhibitory action of caveolin-1 on eNOS (Feron et 

al 2001), the activity of which is controlled by Akt-mediated 

phosphorylation (Fulton et al 1999; Dimmeler et al 1999).

Cerivastatin treatment improves endothelial dysfunction 

in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a 

useful model of obese type 2 diabetes. The restoration of 
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endothelial function was related to an increased in the aortic 

expression of CD36, a gene encoding a fatty acid transporter, 

and PPAR-γ. This study is an interesting example of an inter-

relationship between cholesterol and fatty acid metabolism 

which may lead to marked benefi cial effects on endothelial 

function in patients with diabetic hyperlipidemia and insulin-

resistance syndromes (Nakamura et al 2004).

Human studies
Strong evidence that lowering LDL alone is not enough to 

improve endothelial dysfunction has been provided by the 

inability of ezetimibe, in comparison with atorvastatin alone 

or in combination with ezetimibe, to improve endothelial va-

sodilator function in the forearm circulation of patients with 

coronary artery disease (CAD), despite its LDL-cholesterol 

lowering effect (Fichtlscherer et al 2006). These fi ndings 

suggest that the lipid-lowering capacity of atorvastatin is not 

the primary mechanism underlying the benefi cial effects of 

short-term atorvastatin therapy in patients with CAD.

In subjects with moderately high total serum cholesterol 

levels, the vasodilatator response to acetylcholine and base-

line blood fl ow signifi cantly increased after four weeks’ 

treatment with simvastatin, which simultaneously increased 

the vasoconstrictor response to L-NMMA, whereas the 

response to the endothelium-independent vasodilator sodium 

nitroprusside remained unchanged. None of these effects 

were related to the decrease in cholesterol levels (O’Driscoll 

et al 1997). Statin therapy also improves endothelial function 

in normocholesteremic patients with chronic heart failure 

(CHF) and, if the treatment is long, stabilizes neurohor-

monal imbalances and provides measurable clinical benefi ts. 

Furthermore, these benefi cial effects on the endothelium are 

dose dependent (van der Harst et al 2005).

Some new aspects have been highlighted by a recent study 

of atorvastatin in hyperlipidemic patients. The improvement 

in endothelial function preferentially occurred in patients 

with pre-existing endothelial dysfunction and completely 

disappeared within the 36 hours following the withdrawal 

of the statin (Taneva et al 2006). This last observation cor-

responds to results from cell cultures and animal experiments 

in which the lowering of eNOS and/or NO levels occurred 

after the discontinuation of statins (Laufs et al 2000; Gertz 

et al 2003; Xing et al 2005). One possible molecular mecha-

nism of this may be related to the increase in membrane Rho 

expression after statin withdrawal that has been found both 

in vitro and in vivo (Laufs et al 2000).

However, as the findings conflict with the results 

obtained in non-diabetic subjects, it is intriguing to note 

that statins do not seem to improve endothelial function 

consistently in patients with type 2 diabetes. Only a few 

published clinical studies have assessed the effect of statins 

on the microcirculation in subjects with type 2 diabetes, and 

their results were varied. Some found that statin therapy 

failed to improve endothelial dysfunction, and the authors 

suggested that lowering LDL alone may not be suffi cient 

to improve endothelial function in the absence of glycemic 

control (Mansourati et al 2001; van Etten et al 2002; van 

Venrooij et al 2002; Fegan et al 2005). Another recently 

suggested explanation for the failure of statins to improve 

endothelial function in such cases is the diabetes-specifi c ac-

cumulation of advanced glycosylation end-product (AGE) 

products (Sowers 2002) that leads to vascular thickening, 

loss of elasticity, and the cross-linking of subendothelial 

structural proteins.

However, two studies have demonstrated improved 

endothelial function with statins in diabetes and, although 

CRP levels did not decrease signifi cantly, the change corre-

lated with the change in endothelium-dependent vasodilata-

tion (Tsunekawa et al 2001; Tan et al 2002).

Anti-infl ammatory properties 
of statins
Infl ammation plays a pivotal role in all stages of atheroscle-

rosis, from the nascent lesion to acute coronary syndromes 

(Libby et al 2002).

A number of in vitro studies have described the ben-

efi cial effects of statins in decreasing the levels of CD 11b 

adhesion molecules (Weber et al 1997), leukocyte function 

antigen-1 (LFA-1) (Weitz-Schmidt et al 2001), and ICAM-

1 and VCAM-1 (Bernot et al 2003; Zapolska-Downar 

et al 2004; Landsberger et al 2006), and other studies have 

shown that they reduce the secretion of pro-infl ammatory 

cytokines (such as interleukin IL-6, IL-1β and TNF-α) and 

chemokines, such as IL-8 and MCP-1 (Romano et al 2000; 

Wang et al 2005). Interestingly, statins inhibit the produc-

tion of TNF-α in endothelial cells as well as the CRP-stimu-

lated activation of NF-kB, a strong biomarker of systemic 

infl ammation in cardiovascular diseases. It has been shown 

that CPR induces plasminogen activator inhibitor (PAI-1) 

expression and complement activation, and decreases eNOS 

expression, thus leading to a propensity for thrombosis, 

infl ammation and endothelial dysfunction. Recent clinical 

studies have found that various statins reduce CRP levels, 

and that this is at least partially independent of their lipid-

lowering properties (Ridker 2003; Nawawi et al 2003; 

Sugiyama et al 2005).
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Numerous in vitro and in vivo experiments have shown 

that the anti-infl ammatory effects of statins are partially medi-

ated by vascular endothelial NO (Scalia et al 2001; Stalker 

et al 2001). This cholesterol-independent effect of statins is 

absent in eNOS-defi cent mice, thus suggesting that eNOS 

mediates the protective vascular effects of statins (Stalker 

et al 2001).

NO mediates the benefi cial effects 
of statins on vascular health
Recent studies have shown that endothelial dysfunction plays 

an important role as an independent risk factor (Widlansky 

et al 2003) and, together with infl ammation, triggers cardio-

vascular diseases (Drexler et al 1992; Tousoulis et al 2005). 

Furthermore, it has been recognized that endothelium-derived 

NO is an anti-infl ammatory and anti-arteriosclerotic molecule 

as it protects nuclear transcription factor (NF-kB) from 

activation by oxidized LDL or cytokines, and thus prevents 

or attenuates the transcription and expression of adhesion 

molecules (Marui et al 1993). It has also been shown that 

the inhibition of NO synthesis in cultured endothelial cells 

increases the expression of the gene coding for MCP-1, and 

that MCP-1 expression is associated with the activation 

of NF-kB (Zeiher et al 1995). Therapies that increase NO 

bioactivity may reduce the synthesis of pro-infl ammatory 

proteins on the endothelial cell surface, which may reduce 

infl ammation.

The capacity of statins to improve endothelial dysfunc-

tion and reduce infl ammation has been demonstrated in 

numerous experimental studies. Long-term treatment with 

simvastatin normalizes acetylcholine-induced relaxation 

in rats treated with L-NAME without affecting response 

to the nitrovasodilator itself (Perez-Guerrero et al 2003). 

The inhibition of NO synthesis by N-nitro-arginine methyl 

ester induces early infl ammation characterized by increased 

monocyte infi ltration coronary vessels and increased MCP-1 

expression (Takemoto et al 1997; Tomita et al 1998). In the 

same animal model, pravastatin and cerivastatin inhibited 

vascular infl ammation by increasing eNOS expression and 

restoring NO-generating capacity by inhibiting Rho activity 

(Ni et al 2001). A recent study has suggested a novel molecu-

lar mechanism by which statins regulate vascular infl amma-

tion by fi nding that simvastatin increased NO production in 

human aortic endothelial cells (HAECs), and this covalently 

modifi ed N-ethylmaleimide sensitive factor (NSF), a key 

regulator of endothelial exocytosis. The nitrosylation of NSF 

blocked the externalization of P-selectin to the endothelial 

surface, which otherwise activates leukocyte rolling, the fi rst 

step in leukocyte infl ammation (Yamakuchi et al 2005). The 

statin also modifi ed the second step in leukocyte traffi cking 

by blocking the interaction of LFA-1 with intercellular adhe-

sion molecule-1 (VCAM-1) but, interestingly, not in eNOS 

knockout mice.

In patients with heart failure, atorvastatin treatment 

signifi cantly improves forearm vasodilatory response to 

reactive hyperemia and reduced serum levels of IL-6, TNF-α 

and soluble VCAM-1, but has no effects on MCP-1 (Tou-

soulis et al 2005). Statins also improve arterial stiffness and 

decrease the plasma levels of hsCRP, a sensitive marker of 

the chronic infl ammation of arteriosclerotic lesions in patients 

with hypercholesterolemia (Matsuo et al 2005).

In hypercholesterolemic patients with angiographically-

documented coronary artery disease, simvastatin signifi cantly 

improved the percent fl ow-mediated dilator response to 

hyperemia, whereas the response to nitroglycerin was not 

signifi cantly modifi ed (Koh et al 2003). In the same patients, 

it signifi cantly lowered the plasma levels of TNF-α, CRP, 

fi brinogen and ICAM-1, but had no effect on E-selectin and 

VCAM-1; furthermore, the greatest reduction in plasma 

TNF-α and CRP levels occurred in the patients with the 

highest baseline levels. It is interesting to note that there 

was a signifi cant inverse correlation between the percent-

age of fl ow-mediated dilatation and plasma TNF-α levels, 

and a positive correlation between the latter and changes in 

plasma nitrate levels.

High-dose atorvastatin acutely increased endothelium-

dependent forearm blood flow (FBF) in subjects with 

normal vascular function, and rapidly decreased the levels 

of the inflammation marker hs-CPR (Laufs et al 2001). 

Furthermore, its withdrawal has been found to induce a 

rapid deterioration in endothelial function, a rebound-like 

decrease in NO bioavailability, and increased inflamma-

tion in clinical and experimental studies (Thomas and 

Mann 1998; Laufs and Liao 2000; Laufs et al 2000). These 

data are in line with the recent finding that the discontinu-

ation of statin treatment induces vascular complications 

in patients with acute coronary syndromes (Heeschen 

et al 2002; Li et al 2006).

Statin modulates thrombosis 
and coagulation
Nitric oxide is the major mediator synthesized by the 

endothelium. It regulates vascular homeostasis and blood 

flow, and a decrease in its bioavailability is related to 

vasoconstriction, vascular smooth muscle proliferation, 

platelet aggregation and endothelial-leukocyte adhesion 
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The (ATROCAP) study provides defi nite in vivo evidence 

that statins affect TF expression and activity, and macrophage 

infi ltration in human vessels (Cortellaro et al 2002). These 

data strongly indicate that statins attenuate atherosclerotic 

plaque thrombogenicity by reducing cell-mediated throm-

bin generation. Studies of the effects of statins on plasma 

fi brinogen and factor VII levels have led to very contrasting 

results (Colli et al 2004).

Additional features of endothelial cell dysfunction in-

clude atheroma fi brinolytic imbalance. In advanced lesions, 

a state of hypofi brinolysis prevails because of the high levels 

of plasminogen activator inhibitor-1 (PAI-1) released by acti-

vated cells within the atheroma and the platelets incorporated 

in mural thrombi (Robbie et al 1996). Although, in vitro and 

ex vitro studies have shown that different statins induce tis-

sue-type plasminogen activators (t-PA) and reduce PAI-1, 

the results of in vivo studies are confl icting (Colli et al 2004). 

These results may be explained by differences in metabolic 

profi les and genetic backgrounds, which are known to have 

a considerable effect on PAI-1 levels.

Conclusion
Many of the benefi cial pleiotropic effects of statins occur 

as a result of modulated endothelial function and reduced 

infl ammatory processes. Attempting to understand these 

properties of statins is an exciting fi eld of research that will 

also improve our understanding of vascular biology in health 

and disease, and thus enable the better use of this drug class 

in clinical practice.
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