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Abstract: Diabetes mellitus is characterized by a lack of insulin causing elevated blood glucose, 

often with associated insulin resistance. Over time, especially in genetically susceptible individu-

als, such chronic hyperglycemia can cause tissue injury. One pathological response to tissue 

injury is the development of fi brosis, which involves predominant extracellular matrix (ECM) 

accumulation. The main factors that regulate ECM in diabetes are thought to be pro-sclerotic 

cytokines and protease/anti-protease systems. This review will examine the key markers and 

regulators of tissue fi brosis in diabetes and whether their levels in biological fl uids may have 

clinical utility.

Keywords: diabetic complications, extracellular matrix, markers

Introduction
Fibrosis is characterized by extracellular matrix (ECM) accumulation and often by a 

change in the quality of the ECM, as well as angiogenesis. It is a common pathological 

response to tissue insults such as hyperglycemia, dyslipidemia, and hypertension. This 

review will examine the extent and type of tissue fi brosis that occurs in experimental 

and human diabetes, with an emphasis on potential circulating and urinary predic-

tors and markers of fi brosis in human diabetes. While the pathogenesis and nature 

of end-organ complications in type 1 and type 2 diabetes are similar, especially in 

glucose-dependent aspects of microvascular disease, where possible throughout the 

text the type of diabetes is referenced.

Fibrosis in tissues affected by diabetic 
complications
Microvessels
Long-standing diabetes leads to both structural and functional anomalies in the vasculature 

(Zimmet 2000; Khan et al 2003) which characterize micro- and macrovascular diabetic 

complications: retinopathy, nephropathy, cardiomyopathy, peripheral vascular disease, 

cerebrovascular disorders, and atherosclerosis. Firstly described by Siperstein and 

colleagues (1968), extracellular matrix (ECM) alterations and basement membrane 

(BM) thickening have been documented as structural hallmarks in all target organs of 

diabetic complications (Brownlee et al 1979; Tsilibary 2003). The morphological and 

biochemical disturbances of the ECM are directly related to a loss of function in target 

organs (Farquhar et al 1972; Scheinman et al 1974; Ikeda et al 1991; Makino et al 1993). 

ECM comprises an insoluble network of collagens, elastins, structural glycoproteins, 

proteoglycans-hyaluronans and integrins, which provide not only mechanical support 

for the cells, but also mediate complex interactions between the cells or between cells 

and the ECM of vascular tissues (Hayden et al 2005). EC matrices differ qualitatively 

and quantitatively from tissue to tissue and within various organs.
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Diabetic retinopathy
Expansion of ECM that occurs in diabetic complications can 

be due to increased synthesis of matrix proteins and/or an 

inhibition of ECM degradation. With respect to the increased 

synthesis of matrix, proteins that are normally present in these 

structures or proteins that are not present in normal tissue, 

or both, may be induced. Thus, collagen types I and IV as 

well as laminin and fi bronectin are normal constituents of 

normal retinal vessels from large thick-walled vessels down 

to microvessels less than 10 microns in diameter, whilst 

types III and V collagen were seen to stain primarily the 

walls of the larger vessels. A preclinical hallmark of early 

diabetic retinopathy (DR) is the thickening of the capillary 

basement membrane (BM) resulting from increased produc-

tion and/or decreased breakdown of collagen IV, laminin, 

fi bronectin, and other proteins (Roy et al 1990; Ljubimov 

et al 1996; Spirin et al 1999; Lorenzi et al 2001). In prolifera-

tive diabetic retinopathy (PDR), the BM of the new vessels 

and the epiretinal membranes show signifi cantly increased 

amounts of types VI, VIII, XII, and XIV collagen, as well 

as perlecan, bamacan (Ljubimov et al 1996), fi bronectin, 

tenascin (Ioachim et al 2005), and vimentin (Hosoda et al 

1993). While not present in normal retina (Jerdan et al 

1986), type II collagen was found in epiretinal membranes 

(ERM) (Hosoda et al 1993). A positive relationship was 

found between fi bronectin expression and ERM proliferative 

activity (Ioachim et al 2005). Downregulation of fi bronectin 

synthesis could partially prevent retinal BM thickening along 

with a reduction of pericyte loss and acellular capillaries in 

animal model (Roy et al 2003).

Diabetic renal disease
Type IV collagen collagen, fi bronectin and laminin, which 

are normal constituents of the mesangium and glomerular 

basement membrane (GBM), are increased in diabetic kidney 

disease (Kim et al 1991; Makino et al 1993; Kiryu et al 1994; 

Zhu et al 1994; Yagame et al 1995; Razzaque et al 1997; 

Moriya et al 2001). Accelerated matrix deposition (type IV 

collagen) can be present even in early stages of diabetic renal 

disease (microalbuminuria stages) in experimental models 

(Liu Y et al 2007). In diabetic diffuse glomerulosclerosis 

deposition of collagen IV, V, laminin, and fi bronectin is 

increased in the mesangial matrix and glomerular basement 

membranes (Nerlich et al 1991; Tsilibary 2003), whilst in 

nodular glomerulosclerosis normal BM components are 

decreased or absent (Olgemoller et al 1993). Expressed only 

under pathological conditions, type I and III collagen appears 

in the late stages of glomerulosclerosis (Glick et al 1992; 

Makino et al 1994; Razzaque et al 1994; Makino et al 1995; 

Stokes et al 2000; Schaefer et al 2001), and are associated 

with the development of Kimmelstiel-Wilson nodules rather 

than with the diffuse expansion of the mesangial matrix, 

which occurs in the early and moderately advanced stages 

of the disease. Decreased levels of proteoglycans (heparin 

sulphate, perlecan) found in diabetic kidney in the mesangial 

matrix, GBM, the endothelial and epithelial BM, and renal 

tubular cells have also been assigned a role in the develop-

ment of diabetic micro- and macroalbuminuria (Schaefer et al 

2001). Interestingly, a substantial subset of type 2 diabetic 

patients, despite the presence of microalbuminuria or pro-

teinuria, have normal glomerular structure with or without 

tubulointerstitial and/or arteriolar abnormalities (Fioretto 

et al 2007).

Diabetic cardiomyopathy
Both types I and III collagen are present in normal and 

diseased myocardial tissue. Type I collagen is predominant 

in the myocardium, but type III is more specifi c to cardiac 

tissue (Bishop et al 1995; Zannad et al 2000; D’Armiento 

2002). Myocardial biopsies from diabetic subjects revealed a 

signifi cantly higher proportion of type III collagen compared 

with their nondiabetic counterparts, while the proportion of 

collagen type I did not differ between the groups (Shimizu 

et al 1993). Responsible for the increased left ventricle (LV) 

mass (van Hoeven et al 1990), diffuse myocardial fi brosis 

has a distribution in both interstitium and perivascular sites 

(Regan et al 1977; Nunoda et al 1985; Genda et al 1986; 

Das et al 1987; van Hoeven and Factor 1990). Extensive 

myocyte necrosis and replacement of contractile fi bers by 

connective tissue are likely to account for depressed cardiac 

performance, at least in advanced stages of diabetic cardio-

myopathy (Factor et al 1980). It appears that hypertrophy 

of myocardial cells and myocardial interstitial fi brosis may 

be present even in mild hyperglycemia in diabetes (Nunoda 

et al 1985).

Larger arteries
In animal models of type 2 diabetes it has been found that 

increased intimal proliferation and medial thickness as well 

as ECM deposition occur in vessels such as mesenteric arter-

ies and aorta (Song and Ergul 2006). Vascular remodeling 

and hypertrophy associated with augmented expression of 

dedifferentiation markers of vascular smooth muscle cells 

also occur in larger vessels like aorta (Vranes et al 1999). 

Fibronectin expression varied in different reports in large 

vessels (Fukuda et al 2005). Proteoglycans (PGs) such 
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as versican, biglycan, and decorin have been involved in 

diabetic nephropathy pathogenesis (Schaefer et al 2001). 

PGs accumulate in developing atherosclerotic and restenotic 

lesions, and thus contribute to plaque burden and infl uence 

cellular and extracellular events associated with the patho-

genesis of vascular lesions, such as migration and prolifera-

tion, lipid metabolism and retention, and thrombosis (Shirk 

et al 2000; Edwards et al 2004; Nakashima et al 2007; Tran 

et al 2007).

Nonalcoholic fatty liver disease
Type 2 diabetic patients also have an increased risk for 

developing chronic liver disease. Nonalcoholic fatty liver 

disease (NAFLD) represents a spectrum of conditions char-

acterized histologically by excessive accumulation of hepatic 

fat in the absence of alcohol consumption. Obesity, type 2 

diabetes, dyslipidemia, and hypertension contribute to the 

risk for liver disease and to disease progression. Two main 

histological patterns of NAFLD are described: fatty liver 

alone and nonalcoholic steatohepatitis (NASH). NASH is 

an increasingly recognized cause of liver-related morbidity 

and mortality (Angulo 2002; Sanyal 2002; Charlton 2004), 

with about a quarter of patients progressing to serious liver 

sequelae, including end-stage liver disease and hepatocellular 

carcinoma (Bugianesi et al 2002; Ratziu et al 2002). Those at 

highest risk include patients with signifi cant hepatic necro-

infl ammation and fi brosis (Ratziu et al 2000; Sanyal 2002). 

Unlike other vascular beds, the normal hepatic sinusoids 

have no BM to become thickened. Sinusoidal (perisinusoidal) 

fi brosis with formation of BMs occurs in a variety of liver dis-

eases, including chronic viral hepatitis, alcoholic hepatitis and 

NASH. In those diseases, the fi brosis is a result of the activa-

tion of the hepatic stellate cells with a phenotypic transition to 

collagen-producing myofi broblasts. Activated hepatic stellate 

cells are involved in the ECM degradation and remodeling 

that occur with fi brogenesis (Sugimoto et al 2005).

Effects of diabetes on regulators 
of ECM turnover
Metabolic and hemodynamic induction 
of fi brosis by hyperglycemia
Chronic hyperglycemia is a main factor in the onset of 

microvascular diabetic complications in both type 1 and 

2 diabetes, as strict glycemic control reduces end-organ 

complication incidence and rate of progression (The Diabetes 

Control and Complications Trial Research Group 1993; UK 

Prospective Diabetes Study Group 1998). This pathogenesis is 

shown schematically in Figure 1. Specifi c biochemical pathways 

linking hyperglycemia to microvascular changes have been 

proposed: increased glucose fl ux through the polyol pathway 

(Greene et al 1987), nonenzymatic glycation of proteins 

(Brownlee et al 1988), glucose autooxidation, and oxidative 

stress (Hunt et al 1990), hyperglycemic pseudohypoxia 

Elevated blood glucose levels
(to diabetic range)

Diabetes end-organ complications

Insulin
deficiency

Initial insult(s)
(genetic and environmental)

Cell and tissue injury

Figure 1 The linear pathway leading from insulin defi ciency, through hyperglycemia to diabetes complications.
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(Williamson et al 1993), enhanced activation of protein kinase 

C isoforms (Lee et al 1989; DeRubertis and Craven 1994), and 

alteration in cell signaling pathways (Brownlee 2001; Sheetz 

et al 2002). As described in subsequent sections, experimental 

data support causative roles for hyperglycemia and these 

downstream biochemical pathways in causing alterations in 

ECM turn-over (Fukui et al 1992; Nahman et al 1992; Roy et al 

1994; Wahab et al 1996). Hyperglycemia can work through 

both metabolic and hemodynamic pathways to change growth 

factors and ECM turn-over. This is shown schematically in 

Figure 2.

Advanced glycation end-products (AGEs)
Hyperglycemia is responsible for the presence of high levels 

of nonenzymatically produced AGEs in patients with diabe-

tes (Goldin et al 2006). AGEs are able to stimulate directly 

the production of ECM. Nonenzymatic glycosylation of 

collagens produces cross-linkages and hence may produce 

physical alterations in the properties of the ECM. AGEs 

modifi cation of matrix proteins is able to disrupt matrix-

matrix and matrix-cell interactions, contributing to their 

profi brotic action. In addition, AGEs signifi cantly interact 

with the renin-angiotensin system. AGEs play important 

roles in cell signaling by interacting with specifi c receptors, 

receptor for advanced glycation end products (RAGE), that 

link to the activation of adhesion molecules, proinfl amma-

tory cytokines and growth factors, thus contributing to the 

pathogenesis of diabetic complications (Mason et al 2003; 

McLennan et al 2004). AGEs have extracellular effects, 

such as protein cross-linking, that appear to inhibit ECM 

degradation and promote the expansion of the glomerular 

mesangial matrix and BM in diabetic kidney disease. Drugs 

that either inhibit the formation of AGE or break AGE-

induced cross-links have been shown to be renoprotective 

in experimental models of diabetic nephropathy (Forbes 

et al 2002).

The renin-angiotensin-aldosterone system
The renin-angiotensin-aldosterone system (RAAS) is an 

important contributor to the pathogenesis of diabetic micro- 

and macrovascular complications by inducing various tissue 

responses, such as vasoconstriction, infl ammation, oxidative 

stress, cell hypertrophy and proliferation, angiogenesis and 

fi brosis. RAAS effects can be locally generated in many 

organs (Paul et al 1993; Morgan et al 1994; Wagner et al 

1996; Engeli et al 1999; Bataller et al 2003).

Tissue insult Tissue injury

glucose  Metabolic Factors

-  AGEs

- Oxidant stress

- PKC/MAPK
           pathways

- polyol pathway

- hexosamine
          pathway

- fatty acid

(insulin resistance)

Tissue 
specific
effects 

Genetic
factors

Resolution

Inflammation
Cell infiltration
Cell loss
Cell proliferation

Fibrosis/scarring
Cell loss
Cell proliferation
Expansion of ECM
Neovascularisation

Figure 2 Schematic diagram indicating how hemodynamic and metabolic factors, and growth factors, can network to cause tissue damage. Infl ammation and fi brosis occur 
variably in tissue at different stages of diabetes complications.
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Angiotensin II (Ang II), the main physiological effector 

molecule of RAAS, mediates fi brosis by stimulating the 

synthesis of ECM components (Kagami et al 1994; Gomez-

Garre et al 1996; Brilla et al 1997) apoptosis/proliferation 

(Efrati et al 2007), infi ltration of infl ammatory cells, and the 

release of infl ammatory cytokines and growth factors such 

as transforming growth factor (TGF)-β1 (Wu et al 1997), 

monocyte chemoattractant protein (MCP)-1 (Ruiz-Ortega 

et al 1998), vascular endothelial growth factor (VEGF) 

(Otani et al 2000), platelet derived growth factor (PDGF) 

(Naftilan et al 1989), and connective tissue growth factor 

(CTGF) (Ruperez et al 2003a; Finckenberg et al 2003). Ang 

II is up-regulated under the diabetic conditions (Singh et al 

1999) and exerts its deleterious effects through the angiotensin 

type I receptor (AT1R). RAS blocking with either angiotensin 

converting enzyme inhibitors (ACEI) or angiotensin type 1 

receptor blockers (ARB) has clearly demonstrated positive 

outcomes on diabetic complications, with benefi ts beyond 

those derived from lowering blood pressure. Thus ACEI and/

or ARB treatment can slow the progression of diabetic renal 

disease (The EUCLID Study Group 1997; Heart Outcomes 

Prevention Evaluation Study Investigators 2000), decrease 

cardiovascular events (Heart Outcomes Prevention Evaluation 

Study Investigators 2000), may decrease retinopathy in T1DM 

(Chaturvedi et al 1998) and improves diastolic dysfunction 

in diabetic patients (Kawasaki et al 2007).

Another component of the RAAS, aldosterone, plays also 

a role in the development of hypertension, endothelial dys-

function, vascular structure damage, proteinuria, myocardial 

fi brosis, collagen synthesis (Cha et al 2005). Spironolactone, 

an aldosterone antagonist, associated to ACEI and/or ARB 

treatment may offer additional renoprotection in diabetic 

nephropathy (Sato et al 2003; Schjoedt et al 2006; van den 

Meiracker et al 2006).

Growth factors
Under normal circumstances ECM undergoes continuous 

synthesis and degradation and ECM turn-over is a requisite 

for normal structure and function of organs and tissues 

(Tyagi et al 1995). ECM turn-over is characterized by a 

balance between matrix formation and matrix degradation. 

Factors that regulate ECM formation include multiple forms 

of growth factor such as such as TGF-β (McClain et al 

1992; Kolm et al 1996; Riser et al 1998), CTGF (Twigg 

and Cooper 2004; Twigg et al 2001; McLennan et al 2004; 

Paradis et al 2001; Liu X et al 2007), and insulin-like growth 

factor I (IGF-I), fi broblast growth factor (FGF), epidermal 

growth factor (EGF) and PDGF, (Lembach 1976; Tseng et al 

1982; Dresow et al 1984; Roberts et al 1986; Qi et al 2005). 

Enzymes responsible for ECM degradation and remodeling 

include the matrix metalloproteinases (MMPs) (McLennan 

et al 1998, 2000; Death et al 2003), and serine proteases 

(Geiger et al 1988), as well as their respective tissue inhibi-

tors, the TIMPs (Nakamura et al 1994; Shankland et al 1996; 

Gomez et al 1997), and PAI-1 (Fisher et al 1997; McLennan 

et al 2000). These regulators of ECM will now be explored 

in detail in diabetic complications.

The important role of growth factors in the pathogenesis 

of diabetic long-term complications was suggested by their 

increased concentrations in target tissues (Yamamoto et al 

1993; Tikellis et al 2004; Roestenberg et al 2006; Umezono 

et al 2006). In diabetic nephropathy, IGF-I seems to be impli-

cated in the earlier stages of the disease, while TGF-β and 

CTGF are involved both in the early and later stages, being 

responsible, at least in part, for ECM accumulation (Park et al 

1997; Gilbert et al 1998; Riser et al 2000). VEGF and FGF 

play a pivotal role both in nonproliferative and proliferative 

retinopathy (Wells et al 1996; Mathews et al 1997).

Figure 3 indicates the main growth factors involved in 

diabetic complications, based on tissue levels measured 

in human and animal diabetes, and also on intervention 

studies mainly in animals. An excess of growth factor is 

implicated in tissues where fi brosis predominates, whereas 

a lack of growth factors occurs in diabetic neuropathy and 

wound healing.

TGF-β
TGF-β is generally accepted to be the main pro-fi brotic 

factor in diabetic nephropathy. Several lines of experimental 

and clinical evidence support a major role for TGF-β in 

development of glomerulosclerosis and interstitial fi brosis 

in diabetes. Diabetic environment up-regulated TGF-β1 

expression and bioactivity in glomerular mesangial cells 

and proximal tubule cells (Ziyadeh et al 1994, 1998; Sharma 

et al 1995). With the development of incipient diabetic 

nephropathy TGF-β mRNA increased in mesangial cells, 

podocytes and tubular epithelial cells. Progression to manifest 

diabetic nephropathy was associated with further increase 

in TGF-β mRNA, especially in the glomeruli (Wahab et al 

2005). The kidney of a diabetic patient actually elaborates 

TGF-β1 protein into the circulation whereas the kidney of 

a nondiabetic subject extracts TGF-β1 from the circulation 

(Sharma et al 1997). Inhibition of TGF-β1 with neutralizing 

antibodies prevented glomerular enlargement, and attenuated 

the excess matrix expression by reducing type IV collagen and 

fi bronectin mRNA (Sharma et al 1996; Ziyadeh et al 2000).
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Up-regulation of TGF-β protein was demonstrated in 

the myocardium of rodents with diabetic cardiomyopa-

thy. ARB treatment reduced its expression and decreased 

cardiac fi brosis (Westermann et al 2007). TGF-β is also 

involved in liver fi brosis (Roth et al 1998), by activating 

the hepatic stellate cells and inducing apoptosis of hepa-

tocytes in liver injury (Oberhammer et al 1992). However, 

due to its important anti-proliferative and anti-infl amma-

tory effects, TGF- β is not a suitable target for therapeutic 

intervention.

CTGF
CTGF is another prominent growth factor in the patho-

genesis of diabetic nephropathy. High glucose conditions, 

TGF-β, AGEs, RAS, TNF-α, mechanical strain or CTGF 

itself promote CTGF expression by mesangial cells (Wahab 

et al 1996; Murphy et al 1999; Riser et al 2000; Twigg et al 

2001, 2002a; Cooker et al 2007; Hughes et al 2007). CTGF 

can also be produced by podocytes (Roestenberg et al 2006), 

parietal epithelial cells (Umezono et al 2006) and proximal 

tubular cells (Wang et al 2001; Roestenberg et al 2006). 

In experimental type 1 and type 2 diabetes CTGF mRNA 

and protein was up-regulated in various organs: kidney, 

heart, liver, retina (Roestenberg et al 2006). Glomerular 

CTGF mRNA levels were found to be upregulated in dia-

betic patients with microalbuminuria as well as in overt 

nephropathy (Umezono et al 2006). In addition, CTGF 

mRNA levels were found to correlate with the degree of 

albuminuria (Adler et al 2001). We have recently found 

that renal tubular CTGF protein by renal biopsy at 5 years 

predicts albuminuria at 10 years, in a diabetic baboon model 

of type 1 diabetes (Thomson et al 2007). The role of CTGF 

in DN pathogenesis in both type 1 and type 2 diabetes has 

been confi rmed by a recent study showing that a CTGF 

antisense oligonucleotide may attenuate progression of 

nephropathy in mice (Guha et al 2007). CTGF overexpres-

sion in podocytes was critically involved in diabetes-related 

GBM thickening (Roestenberg et al 2006). However, a 

site-specifi c downregulation of CTGF accompanied by 

a reduced VEGF-A mRNA in glomeruli from diabetic 

patients can be evidenced in DN and is a result of podocyte 

loss (Baelde et al 2007).

Relative abundance of myocardial mRNA for CTGF 

compared with brain natriuretic peptide (BNP) was positively 

correlated with diastolic dysfunction, myocardial fi brosis 

area, and procollagen type 1 mRNA expression in a rat 

pressure overload cardiac hypertrophy model. Exogenous 

BNP prevented the production of CTGF in cardiac myocytes 

(Koitabashi et al 2007).

CTGF has been shown to be up-regulated in the retina of 

diabetic rats (Tikellis et al 2004). It appears that in diabetes 

CTGF expression shifts from microglia to microvascular 

pericytes (Kuiper et al 2004). CTGF was also expressed in 

endothelial cells and myofi broblast in PDR membranes, and 

in myofi broblast in proliferative vitreoretinal membranes 

(Abu El-Asrar et al 2007). CTGF is overexpressed in peri-

cytes in the human diabetic retina, irrespective of changes 

related to clinical DR like vascular leakage (Kuiper et al 

2004). Overexpression of CTGF in cultured human aortic 

smooth muscle cells, a cell type closely related to pericytes 

and mesangial cells, induced apoptosis by activating caspase 

3 (Hishikawa et al 1999).

Growth factor excess            Growth factor deficiency

• Diabetic nephropathy
- TGF- , IGF-1, VEGF,

CTGF, PDGF, EGF, bFGF

• Diabetic retinopathy
- VEGF, IGF-1, CTGF,

angiopoetin-1, EGF

• Atherosclerosis
- TNF- , TGF-

•  Diabetic wounds
- PDGF, EGF, TGF- ,

VEGF, CTGF, bFGF

•  Diabetic neuropathy
-  IGF-1, NGF (nerve growth

factor)

•  Diabetic cardiomyopathy
- VEGF

Figure 3 The major growth factors implicated in diabetes complications. The prosclerotic ones involved in human diabetic fi brosis are currently thought to be TGF-β and 
CTGF.
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In fi brotic liver, CTGF mRNA and protein are produced 

by hepatocytes, fi broblasts, myofi broblasts, hepatic stellate 

cells (HSCs), endothelial cells, and bile duct epithelial cells 

(Rachfal et al 2003). Interestingly, whilst in HSCs CTGF was 

only marginally stimulated by TGF-β, in cultured hepatocytes 

it was strongly upregulated by TGF-β (Gressner et al 2007). 

CTGF could be reduced in liver by antisense RNA of CTGF 

recombinant or slicing through siRNA, which decreased 

activation of HSCs, prevented the upregulation of CTGF 

and TGF-beta1 gene expression and inhibited accumulation 

of connective tissue proteins in the liver (George et al 2007; 

Lu et al 2007).

Once induced, CTGF can up-regulate its own gene 

expression (Riser et al 2000; Twigg et al 2001; Wahab et al 

2001). It is also able to initiate changes in ECM composi-

tion: it increased expression of fi bronectin (Wahab et al 

2001; Ruperez et al 2003a; Weston et al 2003) and enhanced 

fi bronectin assembly into an insoluble matrix (Weston et al 

2003), increased in type IV (Zhou et al 2004), type III (Lam 

et al 2004) and type I collagen production (Gore-Hyer 

et al 2002), and up-regulated integrins on the cell surface, 

facilitating the deposition and assembly of ECM proteins 

(Weston et al 2003). Furthermore, CTGF caused induction of 

plasminogen activator inhibitor-1 (Wahab et al 2001), rear-

rangement of the actin cytoskeleton (Crean et al 2002) and 

an increase in TIMP-1 with subsequent decrease in matrix 

degradation (McLennan et al 2004). CTGF also exerted a 

strong chemotactic effect on peripheral blood mononuclear 

cells in vitro (Cicha et al 2005), which may then contribute 

to tissue infl ammation and late fi brosis (Frazier et al 1996).

CTGF has been described as a downstream media-

tor of TGF-β in the fi brotic process (Igarashi et al 1993; 

Grotendorst et al 1996; Duncan et al 1999; Weston et al 

2003; Kobayashi et al 2005). TGF-β1-induced effects can 

be blocked by CTGF antisense oligonucleotides (Duncan 

et al 1999; Abdel-Wahab et al 2002; Weston et al 2003). 

However, CTGF can also exert its pro-fi brotic effects via 

TGF-β1-independent pathways (Murphy et al 1999; Blom 

et al 2001; Twigg et al 2001; McLennan et al 2004; Chaqour 

et al 2006) as seen for induction of CTGF by AGEs which is 

TGF-β independent (Twigg et al 2001). Glucose-induced col-

lagen production was reduced by CTGF anti-sense nucleotide 

(Wahab et al 2001; Abdel-Wahab et al 2002; Ruperez et al 

2003a; Weston et al 2003; Guha et al 2007), ACEI or ARB 

(Ruiz-Ortega et al 1995; Wu et al 1997; Border et al 1998; 

Ruperez et al 2003b; Tsutsui et al 2007), or by treatment 

with an AGE inhibitor (Twigg et al 2002b; Candido et al 

2003). CTGF can interact with, and infl uence the signaling 

of IGF-I (Lam et al 2003), VEGF (Brigstock 2002), TGF-β 

(Grotendorst et al 1996) and bone morphogenic proteins 

(BMPs) (Abreu et al 2002). Moreover, CTGF can be cleaved 

by metalloproteases (MMPs) and other proteases (Hashimoto 

et al 2002).

PDGF-β
PDGF-β is involved in structural alterations at the glomerular 

level. It seems that high glucose induces an early activation 

of a PDGF loop that in turn causes an increase of TGF-β1 

gene expression, thus modulating both human mesangial 

cell proliferation and mesangial matrix production (Di Paolo 

et al 1996).

VEGF
VEGF appears to be another mediator for these early and late 

vascular changes. Neutralizing antibodies directed against 

VEGF blocked vascular permeability and blood fl ow changes 

induced by elevated tissue glucose and sorbitol levels in a 

dosage-dependent manner (de Vriese et al 2001). VEGF 

signaling affected GBM thickening, slit pore density, and 

nephrin quantity, all of which were associated with the extent 

of diabetic albuminuria. These effects could be blocked by a 

VEGF receptor inhibition (Sung et al 2006).

FGF
FGF is secreted by fi broblasts, macrophages and in particu-

lar endothelial cells (EC) in response to tissue injury and 

is important in promotion of neovascularization. Produced 

and stored in epiretinal membranes (Hueber et al 1996; 

Schneeberger et al 1997), FGF is a potent endothelial cell 

mitogen that has been proposed to play a role in prolifera-

tive diabetic retinopathy and other neovascular processes 

(Hanneken et al 1991).

Protease systems and their regulators
The MMP system
Metalloproteinases (MMPs) are a family of zinc-dependent 

enzymes with the combined ability to digest all ECM 

proteines: native and partially degraded fi brillar collagens, 

basement membrane collagens, proteoglycans, elastin, 

fi bronectin. The gelatinase (MMP-2 and MMP-9) are two 

proteinases primarily responsible for breaking down type 

IV collagen from the BMs. These are produced by multiple 

vascular cell types, such as pericytes, podocytes, vascular 

smooth muscles cells, renal mesangial cells, fi broblasts, mac-

rophages. The MMPs are synthesized as inactive zymogens 

with a pro-peptide domain that must be removed before the 
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enzyme is active. Activation of MMPs can be induced by 

urokinase type (uPA) and tissue-type (tPA) plasminogen 

activators that cleave plasminogen into active plasmin. 

MMP-9, but not other MMPs, is able to upregulate biologi-

cally active proteins such as the profi brotic growth factor 

TGF-β (Rutschow et al 2006).

A major control point in the regulation of active enzyme 

is inhibition of the active form by their tissue family of inhibi-

tors. TIMPs comprise a family of four protease inhibitors 

(TIMP-1 to TIMP-4), which are expressed in a tissue specifi c 

pattern and regulate the function of MMPs either by inhibit-

ing active MMPs or by controlling their activation process. 

Overall, all MMPs are inhibited by TIMPs once they are 

activated, with most of the MMPs being inhibited by TIMP-1. 

The gelatinases (MMP-2 and MMP-9) can form complexes 

with TIMPs when the enzymes are in the latent form. The 

complex of latent MMP-2 (pro-MMP-2) with TIMP-2 serves 

to facilitate the activation of pro-MMP-2 at the cell surface 

by MT1-MMP (MMP-14), a membrane-anchored MMP. The 

role of the pro-MMP-9/TIMP-1 complex is unknown.

An imbalance between MMPs and TIMPs plays an 

important role in ECM modeling that favors tissue fi brosis. 

For example, the imbalance between the MMP-2 and TIMP-2, 

caused primarily by an increase in TIMP-2 activity, may 

contribute to the pathogenesis of diabetic nephropathy (Han 

et al 2006). Decreased MMP-2 expression and activity, and 

up-regulated MMP-9 protein were found in the myocardium 

of diabetic mice with STZ-induced DCM. These alterations 

were corrected by ARB treatment (Westermann et al 2007). 

Myofi broblasts and vascular endothelial cells in PDR mem-

branes expressed an increase in MMP-9 protein and activity 

(Abu El-Asrar et al 2007). ProMMP-9 and activated MMP-9 

levels were also signifi cantly increased in vitreous samples in 

PDR patients. In addition, TIMP-1 levels were signifi cantly 

increased in PDR patients. Activated MMP-9 levels in vitre-

ous samples of PDR patients with hemorrhage were higher 

than those in PDR patients without hemorrhage, suggesting 

that activated MMP-9 might be involved in hemorrhagic 

transformation in these patients (Descamps et al 2006).

The plasminogen system
Plasminogen activator (PA)/plasmin/PA inhibitor (PAI) 

system is involved in ECM degradation. PAI-1 may promote 

ECM build-up by preventing plasmin and MMPs activation 

(McLennan et al 2000). PAI-1 can regulate TGF-beta expres-

sion by binding to uPAR and activating the extracellular-

regulated signal kinase (ERK)/MAPK pathway (Yang et al 

2007). PAI-1 plays a critical role in ECM remodeling in 

the kidney. Normal human kidneys do not express PAI-1 

but PAI-1 is overexpressed in pathologic conditions asso-

ciated with renal fi brosis including diabetic nephropathy 

(Paueksakon et al 2002; Hagiwara et al 2003). Reactive 

oxygen species mediate PAI-1 up-regulation in renal cells 

cultured under high glucose, hypoxia, and with TGF-beta1 

(Lee and Ha 2005). PAI-1 induced ECM deposition in dia-

betic kidney through increased ECM synthesis by TGF-beta1 

up-regulation as well as through decreased ECM degradation 

by suppression of plasmin and MMP-2 activity (Lee and Ha 

2005). Impaired fi brinolysis resulting from high plasma PAI-

1 can lead to excessive fi brin accumulation within vessels, 

resulting in atherothrombosis. Increased expression of PAI-1 

was found in the arterial wall in patients with type 2 diabetes 

(Pandolfi  et al 2001). This increased vascular expression of 

PAI-1 promotes neointima formation via accumulation of 

fi brin or fi brinogen as a result of inhibited clearance of plate-

let-fi brin thrombi. PAI-1, an acute phase protein, also has been 

involved in vascular infl ammation (Alessi et al 2004).

Figure 4 shows methods in diabetes by which pro-fi brotic 

growth factors may link with the protease and anti-protease 

systems to dysregulate ECM turnover and thus cause ECM 

accumulation.

Endothelin-1
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide, 

which can also exert pro-infl ammatory, mitogenic and pro-

fi brotic effects. Up-regulated by glucose, angiotensin II, 

TGF-β, ROS and PDGF in various renal cells (Zoja et al 

1991; Kohno et al 1992; Kohno et al 1993; Hughes et al 

1996; Hua et al 2001), retinal cells (Chakravarthy et al 1997; 

Park et al 2000; Yokota et al 2003) and cardiomyocytes, 

ET-1 has been linked with matrix accumulation in diabetic 

kidney (Ruiz-Ortega et al 1994; Hargrove et al 2000) and 

cardiomyocyte hypertrophy (Chen et al 2007), and with 

hemodynamic and histopathological abnormalities in diabetic 

retina (Bursell et al 1995; Takagi et al 1996; Chakrabarti et al 

1998). Neutralizing ET-antibodies and anti-sense oligonucle-

otides, as well as ET-receptor antagonist treatment reduced 

proteinuria and the production of ECM proteins in the kidney 

(Li et al 1999; Hocher et al 2001; Sugimoto et al 2002) and 

prevented myocardial and coronary dysfunction (Ding et al 

2006; Wolkart et al 2006) in experimental diabetes.

Markers of fi brosis in biological 
fl uids in diabetes
In order to assess accurately the morphological changes in 

the target organs and the extent to which the fi brotic changes 
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affect their function, invasive studies (tissue biopsy) is 

commonly required. However, biopsy is not always feasible 

in human tissues and is associated with obvious risks. There-

fore it is highly desirable to potentially estimate the severity 

of organ fi brosis by measuring ECM factors in biological 

fl uids (peripheral blood or urine). Such markers, if proven 

they mirror the changes in specifi c organs structure and func-

tion, will allow a better monitoring of the disease. Moreover, 

if these markers levels show changes with treatment, they 

will be a useful tool to evaluate the therapeutic interventions. 

Thus the potential clinical value of the circulating or urinary 

levels of several ECM components and its regulators have 

been tested in diabetes and its complications.

ECM formation and degradation markers
Serum aminoterminal propeptide of type III (PIIINP) or 

type I (PINP) procollagen and carboxyterminal propeptide 

of type I procollagen (PICP) are released in a stoichiometric 

manner with collagen type III or I molecules during collagen 

biosynthesis, and therefore they are considered markers of 

the synthesis and deposition of type III and I collagen (Jensen 

et al 1990; Risteli et al 1995; Weber 1997). However, there 

is evidence that some of the PIIINP is also released during 

collagen degradation, because these propeptides are not 

completely cleaved during collagen synthesis (Fleischmajer 

et al 1985). Therefore, PIIINP could refl ect both synthesis 

and degradation of collagen.

Circulating levels of collagen have been suggested as 

indicators of diabetic complications. Elevated serum levels 

of both PIIINP and laminin were associated with the devel-

opment of diabetic microangiopathy (Okazaki et al 1988). 

Another study (Migdalis et al 1994) found elevated serum 

PIIINP levels in type 2 diabetic subjects with peripheral 

vascular disease and proposed that this refl ected an increase 

in collagen deposition in the large arteries that accompanies 

the development of macroangiopathy. Serum PIIINP was 

also increased in type 2 diabetic patients with nephropathy 

(Ishimura et al 1996).

PICP concentration did not differ between uncomplicated 

type 2 diabetic patients and controls, but it was increased 

in complicated diabetes and related to the progression of 

nephropathy (Inukai et al 2000). In contrast, other investigators 

Figure 4 One pathogenic pathway by which high glucose in diabetes and hypertension work through prosclerotic growth factors to dysregulate ECM turnover. Both TGF-β 
and CTGF have been shown to induce TIMP-1 and PAI-1, resulting in reduced MMP and plasmin activity. This paradigm best applies to diabetic renal disease.
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found decreased levels of serum PICP but increased PIIINP 

concentrations in subjects with proliferative retinopathy 

compared with those with no retinopathy (Arkkila et al 2001). 

Similarly, hypertensive type 2 diabetic patients had higher 

mean levels of PIIINP than controls, and lower mean levels 

of PINP and PICP (Alla et al 2006). No association between 

collagen markers and neuropathy was found (Arkkila et al 

2001).

ECM regulators as systemic 
fi brosis markers
In patients with type 1 diabetes plasma and urinary TGF-β1 

levels were signifi cantly higher than in controls. The effect 

of metabolic control on plasma TGF-β level is controversial 

(Azar et al 2000; Flores et al 2004; Thrailkill et al 2007). 

Increased TGF-β levels in both plama and urine were found 

especially in relation to diabetic nephropathy (Pfeiffer et al 

1996; Houlihan et al 2002). Urinary TGF-beta signifi cantly 

decreased with ACEI, ARB or thiazolinediones treatment, 

in parallel with a decrease in albuminuria (Matos et al 2005; 

Katavetin et al 2006; Song et al 2006; Woo et al 2006).

While it seems correlated with glycemic control 

(Kakizawa et al 2004), plasma VEGF concentration was not 

strongly correlated with risk factor status or microvascular 

disease in type 1 diabetes, nor was affected by ACE inhibi-

tion (Chaturvedi et al 2001). Urinary VEGF concentrations 

were signifi cantly higher in the diabetic groups, even at the 

normoalbuminuric stage, with further increase as diabetic 

nephropathy advanced (Kim et al 2004).

Diabetes status is associated with dysregulation in the 

circulating MMP/TIMP system even in the absence of 

complications. Thus, serum MMP-9 and TIMP-1 levels are 

increased in both type 1 (Maxwell et al 2001) and type 2 

diabetes (Tayebjee et al 2004), with no changes in MMP-2 

concentration. In contrast, in another study urine and plasma 

MMP-2 levels and plasma MMP-2 activity were all signifi -

cantly elevated in type 1 diabetic patients, with urine MMP-2 

correlated with higher HbA1c, longer duration of diabetes, 

evidence of renal hyperfi ltration and the presence of micro-

albuminuria (Thrailkill et al 2007). Increased serum MMP-2 

and TIMP-1 concentrations, but no elevation of MMP-9 

levels, were also found in a cohort of diabetic patients with 

mild or no complications (Lee et al 2005).

Some therapies have been proven effi cient in reduction 

the plasma/serum MMPs and TIMP-1 levels in diabetic 

patients. Thiazolidinediones, which act via the PPARγ recep-

tor, reduced the increase in circulating levels of MMP-9 but 

had no effect on circulating MMP-2. Furthermore, reductions 

in MMP-9 levels were associated with decrease in other 

infl ammatory markers, such as C-reactive protein, PAI-1, 

IL-6, TNF-α and serum amyloid A (Haffner et al 2002; Marx 

et al 2003; Hanefeld et al 2007).

Circulating MMP-9 and TIMP-1 could also be reduced by 

lipid reduction therapy (plasma LDL apheresis) in diabetic 

patients with end-stage renal disease and arteriosclerosis 

obliterans (Nakamura et al 2003). Multifactorial cardiovas-

cular risk reduction therapy with intensive glucose control 

and statin therapy caused signifi cant reductions in circulating 

TIMP-1 levels (Tayebjee et al 2004). This effect was prob-

ably independent of blood pressure lowering, as the latter 

was relatively well controlled from the outset and did not 

fall signifi cantly.

Current evidence for clinical utility 
of markers of fi brosis in diabetes
Diabetic renal disease
Type IV collagen in the circulation or urine has been identi-

fi ed as a possible indicator of renal injuries, especially in 

early stages of diabetic nephropathy, in numerous, albeit 

relatively small studies (Watanabe et al 1991; Kotajima et al 

2000; Xu et al 2002; Tashiro et al 2004). Both serum and 

urinary type IV collagen increased in accordance with the 

clinical stage of the renal disease (Watanabe et al 1991, 2000; 

Xu et al 2002; Tashiro et al 2004). Serum carboxy-terminal 

propeptide type I procollagen (P1CP) levels may also refl ect 

the progression of diabetic nephropathy in patients with type 

2 diabetes (Inukai et al 2000). In type 1 diabetes, measure-

ment of syndecan-1 in serum has shown signifi cant increase 

even at the microalbuminuric stage compared to normoal-

buminuric patients (Svennevig et al 2006). TGF-β levels in 

serum were increased in patients with diabetic nephropathy 

(Sharma et al 1999) and decreased with ACEI (Ellis et al 

1998; Sharma et al 1999).

Urinary levels of collagen IV positively correlated with 

uPA, and that of fi bronectin negatively correlated with PAI-1 

in the diabetic patients with microalbuminuria (Woo et al 

2006). Urinary TGF-β was signifi cantly increased in type 2 

diabetic patients with micro- or macroalbuminuria. ACEI, 

ARB, and TZD signifi cantly reduced urinary excretion of 

TGF-β in these patients (Houlihan et al 2002; Praga et al 

2003; Matos et al 2005; Katavetin et al 2006; Song et al 

2006; Woo et al 2006).

Increasing evidence has emerged on circulating and uri-

nary CTGF as indicators of renal disease in diabetes. Elevated 

plasma CTGF concentrations have been found in diabetic 

nephropathy. CTGF levels in the circulation correlated with 
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urinary albumin excretion, creatinine clearance, glycemic 

control and duration of diabetes (Roestenberg et al 2004). Of 

note, there was a wide overlap in plasma CTGF between nor-

moalbuminuric patients and those with diabetic nephropathy. 

Urinary concentrations of CTGF (U-CTGF) has been more 

extensively investigated than circulating CTGF, in diabetic 

renal disease (Gilbert et al 2003; Riser et al 2003; Nguyen 

et al 2006). U-CTGF was correlated with clinical markers 

of renal disease severity (urinary albumin excretion rate and 

glomerular fi ltration rate). Furthermore, the association of 

U-CTGF with diabetic nephropathy was comparable with that 

of the established risk factors: HbA1c and systemic blood 

pressure. Signifi cantly higher in patients with microalbumin-

uria or overt nephropathy, urinary CTGF excretion varied 

largely across the studies, from 1.6-fold (Nguyen et al 2006) 

to 6-fold (Riser et al 2003) and were 10–100-fold higher 

(Gilbert et al 2003) in diabetic nephropathy versus normo-

albuminuric subjects. Large overlaps in U-CTGF were also 

noted between patients and controls (Nguyen et al 2006). In 

patients with DN, U-CTGF correlated positively with urinary 

albumin excretion and negatively with GFR (Nguyen et al 

2006). It is unclear to what extent plasma CTGF levels con-

tribute to U-CTGF. CTGF and its fragments are predicted to 

be cleared from plasma by glomerular fi ltration.

Animal studies have shown increased CTGF mRNA in 

renal cortex in a very early phase of nephropathy, which 

paralleled an increase in plasma and U-CTGF (Roestenberg 

et al 2006). Local production of CTGF in the kidney, renal 

fi ltration of (elevated) plasma CTGF, together with tubular 

dysfunction and/or saturation of tubular reabsorption capac-

ity in proteinuric patients may all be involved in increased 

U-CTGF (Nguyen et al 2006). Interventional studies have 

shown that in type 1 diabetes with nephropathy, RAS block-

ade with ARB signifi cantly decreased U-CTGF concentra-

tion, and this reduction was associated with a slower rate of 

decline in GFR in a cohort of hypertensive type 1 diabetic 

patients with diabetic kidney disease (Andersen et al 2005). 

However, plasma CTGF remained unchanged throughout 

the study, suggesting that circulating CTGF is at least partly 

independent of U-CTGF and renal dysfunction.

In diabetic patients, plasma VEGF levels were found to be 

positively correlated with plasma urea and urinary ACR, and 

urinary VEGF was positively correlated with urinary ACR 

and creatinine. Urinary VEGF and serum creatinine were 

independently correlated with urinary ACR (Kim et al 2004). 

Urinary excretion of VEGF increased during the earlier stage 

of diabetic nephropathy and was signifi cantly correlated with 

urinary albumin excretion. This suggests that urinary VEGF 

might be used as a sensitive marker of diabetic nephropathy 

and for predicting disease progression (Kim et al 2004). In 

addition, another study implicated the potential of plasma 

VEGF as a DN marker (Baba et al 2004).

Dysregulations in circulating and urinary MMP/TIMP 

systems have been found in diabetic renal disease. Thus, 

increased levels of plasma MMP-9 have been shown in DN 

patients (Nakamura et al 2000; Zaoui et al 2000), and were 

signifi cantly reduced by ACEI treatment (Nakamura et al 

2000). Moreover, it seems that elevation in plasma MMP-9 

may precede the onset of microalbuminuria in type 2 dia-

betic patients (Ebihara et al 1998). Higher levels of MMP-9 

were also found in the urine of type 2 diabetic patients with 

macroalbuminuria (Tashiro et al 2004). Interestingly, uri-

nary MMP-9 levels were elevated not only in patients with 

diabetic renal disease but also in their fi rst-degree relatives 

when compared with healthy controls (Zaoui et al 2000). 

It has been suggested that increased urinary MMP-2 and 

MMP-9 activities, but not serum MMP levels, may be sensi-

tive markers of the extent of renal disease in type 1 diabetic 

patients (Tashiro et al 2004). Urine MMP-2 concentrations 

correlated with higher HbA1c levels, longer duration of 

disease, evidence of renal hyperfi ltration, and the presence 

of microalbuminuria (Thrailkill et al 2007).

Another study has shown a signifi cant increase in urinary 

TIMP-1 in association with urinary albumin and the progress 

of glomerular diffuse lesions, while no correlation between 

serum TIMP-1 and urinary TIMP-1 was found (Kanauchi 

et al 1996). TIMP-1 was also increased in the urine in a 

group of nondiabetic patients with chronic renal disease and 

was correlated with progressive reduction in renal function, 

but not with proteinuria (Horstrup et al 2002). In an animal 

model urinary protein excretion showed a signifi cant posi-

tive correlation with glomerular and tubular TIMP-2 protein, 

and a negative correlation with MMP-2 expression (Han 

et al 2006).

Diabetic retinopathy
Increased synthesis of type III collagen (serum PIIINP), 

refl ecting deposition of matrix and BM connective tissue, 

has been reported in patients with DPR (Arkkila et al 2001). 

While some investigators have found no signifi cant differ-

ences of serum carboxy-terminal propeptide of human type 

I procollagen (PICP) across the differing severity of diabetic 

retinopathy in type 2 diabetic patients (Inukai et al 2000), oth-

ers have actually observed progressively decreased levels of 

serum PICP, which can result in weakened vascular integrity 

in subjects with retinopathy (Arkkila et al 2001).
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Diabetic retinopathy is associated with increased 

concentrations of type IV collagen in serum (Yano et al 1998; 

Kotajima et al 2001). Although in the vitreous the NH2-

terminal CTGF fragment content was increased in patients 

with active PDR, suggesting that it may play a pathogenic 

role or may represent a surrogate marker of CTGF activity in 

DR (Hinton et al 2004), the elevated level of plasma CTGF 

found in the circulation in patients with DR compared with 

patients without DR seems likely to be due to associated 

nephropathy rather than to the retinopathy itself (Roestenberg 

et al 2004). In addition, no changes in urinary CTGF were 

noted in DR (Nguyen et al 2006).

Increased plasma levels of VEGF and Ang II were found 

in diabetic patients, with the highest VEGF and Ang II 

levels being seen among patients with pre-proliferative and 

proliferative retinopathy (Lip et al 2004). The clinical utility 

of plasma VEGF levels after photocoagulation has yielded 

contradictory results (Lip et al 2000; Lip et al 2004).

Diabetic patients with retinopathy also displayed 

elevated systemic values of MMP-9 and MMP-9/TIMP-1 

ratio when compared with patients without retinopathy. 

Logistic regression analysis identifi ed diabetes duration 

fi rstly, and MMP-9 serum levels secondly as signifi cant 

and independent variables associated with the existence 

of retinopathy in type 1 diabetic patients who were free 

of other overt vascular complications (Jacqueminet et al 

2006).

Diabetic cardiomyopathy, heart failure
A strong correlation has been reported between myocardial 

collagen content and serum concentration of PICP in systemic 

hypertension (Querejeta et al 2000). Moreover, serum PICP 

has been found to be secreted by the heart via the coronary 

sinus in patients with hypertensive heart disease (Querejeta 

et al 2004). Thus, even if these markers could be released 

from various other tissues in diabetes or hypertension, the 

measurement of serum collagen degradation products may 

offer a reasonable evaluation of myocardial ECM changes 

in diabetes. In a highly selected group of uncomplicated type 

2 diabetic patients, parameters of myocardial function were 

positively correlated with glutathione peroxidase and serum 

PICP, but not with levels of angiotensin II, aldosterone or 

endothelin-1 (Gonzalez-Vilchez et al 2005). Serum pro-

peptide of procollagen type I (PIP) appears an independent 

predictor of new heart failure episodes, readmission and death 

and a single serum measurement of PIP may have prognostic 

value in patients presenting with decompensated heart failure 

(Ruiz-Ruiz et al 2007).

In hypertensive subjects, plasma TIMP-1 levels were 

increased and associated with LVH and LV diastolic 

impairment in some (Laviades et al 1998; Lindsay et al 

2002; Timms et al 2002) but not all studies (Li-Saw-Hee 

et al 2000). Treatment of hypertension with ACEI has been 

shown to decrease TIMP-1 levels (Laviades et al 1998). 

Previous studies of small samples of patients with heart 

failure or LV dilatation have yielded inconsistent results, 

with both increased and decreased levels of myocardial or 

serum TIMP-1 being reported. (Li et al 1998; Schwartzkopff 

et al 2002). The Framingham Heart Study (Sundstrom et al 

2004) has shown that plasma total TIMP-1 is directly related 

to major CVD risk factors and to echocardiographic indices 

of LVH, and inversely to systolic dysfunction.

It has also been suggested that elevated TIMP-1 might 

be a useful noninvasive marker of left ventricular diastolic 

dysfunction and fibrosis (Lindsay et al 2002). Serum 

TIMP-1 concentrations over 500 ng/ml showed good speci-

fi city and positive predictive value for detecting diastolic 

dysfunction among untreated patients with hypertension 

(Lindsay et al 2002). In an asymptomatic population with 

either diabetes or hypertension, but with no evidence of LV 

hypertrophy, plasma TIMP-1 negatively correlated with 

e’ (early diastolic velocity at the annulus). This suggests 

that the higher circulating levels of TIMP-1 may refl ect 

structural changes within the heart that result in diastolic 

dysfunction. The correlation was however stronger among 

the hypertensive patients when compared with the diabetic 

group, suggesting again that systemic hypertension may 

mainly mediate the TIMP-1 and diastolic dysfunction link 

(Tayebjee et al 2005a).

Increased serum levels of AGEs were associated with 

heart stiffness in patients with type 1 diabetes, possibly 

mediated by the cross-linking properties of AGEs (Berg 

et al 1999).

Atherosclerosis and arteriosclerosis
Plasma plasminogen activator inhibitor (PAI)-1, a potent 

inhibitor of fi brinolysis, was elevated in a number of clinical 

situations that are associated with high incidence of car-

diovascular disease (CVD) (obesity, hypertension, type 2 

diabetes) (Hoekstra et al 2004).

Serum 7S-collagen levels in diabetic patients with essen-

tial hypertension were signifi cantly higher than in normal 

subjects, and signifi cantly correlated with systolic blood 

pressure. Thus it has been suggested that the metabolic 

alteration of basement membrane occurring in patients with 

diabetes mellitus may worsen in the presence of high systolic 
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blood pressure (Yano et al 1997). In hypertensive type 2 

diabetic patients there were also noted an imbalance between 

serum MMP-1 which was decreased, and its tissue inhibitor, 

TIMP-1 which was not signifi cantly changed compared to 

controls (Alla et al 2006).

Diabetic patients with acute coronary syndromes showed 

increased plasma levels of MMP-9, TIMP-1, and TIMP-2 

(Derosa et al 2007). A high percent of patients with coronary 

artery disease (CAD) or acute coronary syndromes (ACS) had 

elevated urine values of MMP-9 and TIMP-1 suggesting that 

these variables might be a useful marker of atherosclerotic 

disease (Fitzsimmons et al 2006). Plasma levels of MMP-9, 

TIMP-2, but not TIMP-1 were high in patients with stable 

CAD compared with healthy controls. However, no corre-

lation with severity of CAD or collateralization was found 

(Tayebjee et al 2005b).

In patients with premature coronary atherosclerosis, the 

levels of plasma MMP-9 and TIMP-1 were signifi cantly 

higher, and the levels of MMP-2, MMP-3, and TIMP-2 were 

signifi cantly lower than those of controls, with signifi cant 

positive correlation between plasma MMP-9 levels and low-

density lipoprotein (LDL)-cholesterol levels, and signifi cant 

negative correlation between plasma MMP-9 levels and 

high-density lipoprotein (HDL)-cholesterol levels. TIMP-2 

levels were negatively correlated with total cholesterol and 

LDL-cholesterol levels (Noji et al 2001).

In patients with CAD the low TGF-β group had a 

signifi cantly poor prognosis in terms of survival without 

cardiovascular events and survival without coronary 

interventions as compared with the high TGF-β group, while 

other prognoses were comparable between the two groups. 

These results suggest that lower plasma concentrations 

of TGF-β may have an adverse prognostic signifi cance in 

patients with CAD (Tashiro et al 2002). In another study, 

plasma TGF-β levels were signifi cantly lower in patients with 

ischemic heart disease than they were in controls (Tashiro 

et al 1997).

Liver fi brosis
The serum glyceraldehyde-derived AGEs level may be a 

useful biomarker for discriminating NASH from simple 

steatosis. Moreover, it correlated with adiponectin (Hyogo 

et al 2007). Serum hyaluronic acid could identify NAFLD 

in patients with severe fi brosis in some (Sakugawa et al 

2005; Kaneda et al 2006) , but not all studies (Yoneda et al 

2007). Type IV collagen 7 s domain and type IV collagen 7s 

domain concentrations in the circulation have been identi-

fi ed as potential markers in differentiating between NASH 

and NAFLD (Sakugawa et al 2005), and between advanced 

and mild liver fi brosis (Yoneda et al 2007). Serum levels 

of endothelin-1 (ET-1), an infl ammatory and marker of 

increased endothelial tone, also showed a signifi cant positive 

correlation with liver fi brosis severity in patients with NASH 

(Degertekin et al 2007).

TIMP-1 and MMP-1 levels in serum or peripheral blood 

mononuclear cells (PBMCs) seem to have some value in 

assessing liver fi brosis. The combination of serum PDGF-BB, 

TIMP-1 mRNA and TIMP-1mRNA/MMP-1mRNA ratio in 

PBMCs was suggested as an effi cient test in screening for 

the presence of liver fi brosis (Zhang et al 2003).

Research required in circulating 
and urinary markers of fi brosis 
in diabetes
Important issues appear when interpreting levels of the 

ECM markers and their regulators in blood or urine from 

diabetic patients. First, it is not yet clear whether the assess-

ment of these markers in biological fl uids provide clinically 

valuable information of the fi brosis process in the affected 

organs and whether tissue levels are refl ected accurately in 

blood or urine. Factors such as the relative contribution of a 

tissue to a particular circulating marker and also the rate of 

clearance of the marker from the circulation and its depen-

dence on renal function can have signifi cant effects on its 

level. Nevertheless, the fact that different therapies impact 

upon their levels indicates that they may be involved in the 

pathological process.

A second issue is the presence of conditions that com-

monly co-exist with diabetes, such as hypertension and/or 

dyslipidemia, which could also influence the levels of 

circulating/urinary markers of fi brosis. The differentiation 

between the contribution of diabetes and other co-morbidities 

to the total level of ECM markers in blood/urine could there-

fore be diffi cult to assess.

Figure 5 summarizes the main fi ndings of circulating and 

urinary markers and their regulators and their potential value 

in diabetes complications. At this time, Type IV collagen 

and CTGF in plasma and urine hold promise in diabetic 

renal disease, MMP-9 has promise in acute coronary syn-

dromes as does TIMP-1 and also in myocardial dysfunction. 

Longitudinal and large studies in appropriate populations of 

people with diabetes, will be needed to further investigate the 

possible clinical value of these and other ECM components 

and ECM regulators as makers for incipient or progressive 

diabetes complications. Ideally, such markers in their natu-

ral history and after therapy, would show predictive value 
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independent of other common clinical variables such as 

hypertension, degree of glycemic control, and microalbumin-

uria. It is envisaged that clinically verifi ed algorithms will be 

generated where automated plasma or urine measures will 

aid in the calculation of risk of tissue fi brosis, and related 

organ dysfunction. It may be that other, tissue specifi c mea-

sures such as BNP for the heart or liver function tests for 

liver fi brosis, will be useful in combination with such ECM 

markers. Urinary measures do appear to often be indepen-

dent of circulating levels, although whether such measures 

have advantage over albuminuria and estimated GFR levels, 

remains to be determined.
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