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Abstract: Around 80% of mutations in the PTEN gene have been reported to be associated 

with diseases such as Cowden syndrome, which is an autosomal dominant disorder associated 

with an increased risk of developing breast, thyroid, and endometrial neoplasms. Recent studies 

have also demonstrated that KILLIN, which is located proximally to PTEN, shares the same 

transcription start site, and is assumed to be regulated by the same promoter, but is transcribed 

in the opposite direction. In this regard, we postulate that there may be a connection between 

KILLIN/PTEN genes and breast and thyroid cancers. Using real-time quantitative polymerase 

chain reaction (qPCR), we found that expression of KILLIN, but not PTEN, was significantly 

decreased in 23 Chinese women with a personal history of breast and thyroid cancer or a personal 

history of breast cancer and a family history of thyroid cancer, or vice versa, and at least two 

persons in the family with thyroid cancer or at a young age ,40 years, when compared with 

healthy controls (P,0.0001). No PTEN mutations were found in these 23 patients. We then 

developed a simple methylation-sensitive restriction enzyme digestion followed by real-time 

quantitative assay to quantify plasma methylated KILLIN/PTEN DNA in these patients. Plasma 

levels of methylated KILLIN/PTEN DNA were significantly increased in these patients when 

compared with healthy controls (P,0.05). This study shows that plasma methylated KILLIN/

PTEN DNA was significantly elevated, suggesting hypermethylation of the KILLIN/PTEN 

promoter in breast and thyroid cancer patients.
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Introduction
Germline mutations in PTEN (phosphate and tensin homologue) have been reported 

to be associated with diseases such as Cowden syndrome (CS), and account for 80% 

of cases.1 CS is an autosomal dominant disorder characterized by multiple hamartoma 

syndromes, and is associated with an increased risk of developing breast, thyroid, and 

endometrial neoplasms.1 Individuals who met at least the relaxed International Cowden 

Consortium operational criteria were recruited. Relaxed criteria are defined as full 

criteria minus one criterion, and such individuals are referred to as CS-like. The life-

time risk of breast cancer in CS patients is estimated to be in the range of 25%–50%, 

with a pathological predominance of ductal and lobular carcinoma.1,2 Thyroid cancer 

is another common malignancy in patients with CS, with a lifetime risk of 10%, and 

the follicular-derived type is most often observed.1–3

The PTEN gene spans 105 kb and contains nine exons on chromosome 10q23.31. 

It is a well characterized tumor suppressor gene that antagonizes the phosphoinositol- 

3-kinase/protein kinase B (Akt) signaling pathway. The decreased level of phos-

phorylated Akt results in G1 cell cycle arrest and apoptosis.3,4 PTEN also regulates 
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interactions between the cell and extracellular matrix via 

interaction with focal adhesion kinase.5 In addition to CS, 

PTEN mutation is also reported in other hamartoma tumor 

syndromes, including Bannayan-Riley-Ruvalcaba syndrome, 

Proteus syndrome, and Proteus-like syndrome, as well as 

macrocephaly and autism.1,4,6

While the genetic predisposition of PTEN to multiple 

hamartoma syndromes in Caucasian populations is being 

increasingly understood, there are few relevant reports in 

Asian cohorts.7,8 Recent studies have reported a newly identi-

fied gene, KILLIN (RefSeq, NM_001126049), which is also 

located in the 10q23.31 chromosomal region,  proximal to 

PTEN. Similar to PTEN, KILLIN is involved in cell cycle 

arrest and is regulated by p53.9,10 Interestingly, PTEN and 

KILLIN share the same transcription start site, and are 

assumed to be regulated by the same promoter, but are tran-

scribed in opposite directions. Bennett et al recently demon-

strated that approximately 30% of CS and CS-like patients 

without PTEN mutations had germline hypermethylation 

and downregulation of the KILLIN gene.10 Therefore, in this 

study, we sought to determine if there is any association 

between KILLIN/PTEN genes in patients with breast and/or 

thyroid cancer. We also investigated whether KILLIN/PTEN 

promoter hypermethylation and downregulation were present 

in the plasma of Chinese patients.

Materials and methods
Patients
Twenty-three Chinese women with breast and/or thyroid 

cancer and a family history of thyroid cancer were recruited 

from the Hong Kong Hereditary Breast Cancer Family Reg-

istry between March 1, 2009 and February 28, 2011. We 

included four patients with breast cancer only, three patients 

with thyroid cancer only, and 16 patients with breast and 

thyroid cancer. In our study cohort, none of the patients with 

both breast and thyroid cancer had a family history of thyroid 

cancer. Twenty healthy control subjects with no diagnosed 

malignancy were also recruited for the study. Blood samples 

were collected from patients at diagnosis or during surgery. 

All patients were selected for Chinese ancestry and met the 

criteria for genetic/familial high-risk assessment according 

to the National Comprehensive Cancer Network. All the 

patients with breast cancer were confirmed to be BRCA1/2 

mutation-negative by direct bidirectional sequencing and 

by multiplex ligation-dependent probe amplification test-

ing.11,12 Written informed consent was obtained from all the 

participants, and the study was approved by the institutional 

review board of the University of Hong Kong/Hospital 

Authority West Cluster and other contributing hospitals in 

Hong Kong.

PTEN mutation screening  
by conventional Dna sequencing
Mutation screening was done by direct bidirectional DNA 

sequencing of all coding exons for PTEN and partial flank-

ing intronic sequences. All primer sequences are listed in 

Table S1. Mutation detection was performed on genomic 

DNA extracted from peripheral blood samples using a Qiagen 

DNA Mini blood kit (Qiagen, Hilden, Germany) according to 

the manufacturer’s instructions. Bidirectional sequencing was 

performed using a BigDye® Terminator v3.1 cycle sequencing 

kit (Applied Biosystems, Foster City, CA, USA) and analyzed 

on an ABI 3130xl genetic analyzer (Applied Biosystems). 

The results of sequencing were compared with the reference 

DNA sequences using Variant Reporter software (Applied 

Biosystems) and then reviewed manually. Computational 

analysis for potential cryptic splice site mutation was per-

formed using splice site prediction programs (NNSPLICE 

and ESEF finder) when sequence changes were identified. 

All mutation and sequence variants were named according 

to the description of sequence variants as recommended by 

the Human Genome Variation Society.

rna extraction and real-time qPcr
Total RNA was extracted from whole blood using TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Next, 0.5 µg of total RNA 

was reverse transcribed into cDNA using a high capac-

ity cDNA reverse transcription kit (Applied Biosystems). 

Real-time qPCR was performed using a QuantiTect SYBR 

Green PCR kit (Qiagen) in an ABI PRISM 7900 HT  system 

(Applied Biosystems). The sequences of the primers were 

as follows: PTEN-F, CAGAAAGACTTGAAGGCGTAT; 

PTEN-R, AACGGCTGAGGGAACTC; KILLIN-F: 

AAAAGAATTCCGGGGCTGGCGCTTGGGG;  KILLIN-R: 

AAAAGCGGCCGCGTCCTT TGGCTTGCTCTTAGG; 

GAPDH-F, GAAGGTGAAGGTCGGAGT; GAPDH-R, 

GAAGAT GGTGATGGGATTTC. Expression  levels 

of PTEN and  KILLIN mRNA were normalized to 

 glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

Fold change in PTEN/KILLIN expression was calculated 

by the equation 2−∆∆Ct. ∆Ct was calculated by subtracting 

the Ct values of GAPDH from the Ct values of the genes. 

∆∆Ct was then calculated by subtracting ∆Ct of the control 

from ∆Ct of breast cancer. Real-time qPCR was performed 

in triplicate.
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Methylation-sensitive restriction  
enzyme digestion and MsreD-qPcr
Methylation-sensitive restriction enzyme digestion fol-

lowed by qPCR (MSRED-qPCR) assays were performed, 

as described previously.13 In brief, 100 ng of genomic DNA 

from either ethylenediaminetetraacetic acid blood or plasma 

samples was digested in a 40 µL reaction volume with 30 U 

of the methyl ation-sensitive restriction enzyme, BstU1 (New 

 England  BioLabs, Hitchin, UK) at 60°C for 16 hours. To ensure 

complete enzyme digestion, a positive and a negative control 

digestion containing 30 ng of completely methylated or unm-

ethylated control DNA (EpiTect Control DNA; Qiagen) were 

run in parallel. After digestion, the same amount of digested or 

undigested DNA along with control digestion was subjected 

to qPCR using a QuantiTect SYBR Green PCR kit in an 

ABI 7900 HT system. The primer sequence for the KILLIN/

PTEN promoter was F- GTTGTAGTTTTAGGGAGGGGGT; 

R-CTACTTCTCCTCAACAACCAAAAAC. Each reaction was 

performed in a final volume of 20 µL containing digested (1.3 

µL) or undigested (1 µL) DNA, 500 nM of each primer, and 1× 

SYBR Green PCR Master Mix (Qiagen). At the end of the PCR 

cycles, melting curve analyses were performed to validate the 

specific PCR product. Relative expression of methylated DNA 

was expressed as 2∆Ct(undigest-digest). ∆Ct
(undigest-digest)

 was calculated 

by subtracting the Ct values of plasma DNA from the Ct values 

of undigested DNA. Given that the Ct of undigest should be less 

than or equal to the Ct of digest, the expression level ranged from 

1 to 0. Each sample was run in duplicate for analysis. For 100% 

digestion efficiency, the relative expression level of completely 

unmethylated control (CTRL) DNA (2∆Ct(CTRLundigest-CTRLdigest)) 

must be close to zero, whereas the level of completely methylated  

control must be 1.

statistical analysis
The significance of PTEN and KILLIN expression levels in 

blood was determined using the Mann–Whitney U test. The 

statistical significance of plasma methylated KILLIN DNA 

levels was also determined by the Mann–Whitney U test. The 

correlation between PTEN and KILLIN gene expression was 

determined by Spearman’s rank correlation coefficient. All 

P-values were two-sided and a value ,0.05 by GraphPad 

Prism 5 software (GraphPad Software, La Jolla, CA, USA) 

was considered to be statistically significant.

Results
Patient characteristics
A total of 23 patients with breast and/or thyroid cancer were 

recruited. The mean age at diagnosis of breast cancer was 

51.4 (range 33–74) years and that of thyroid cancer was 43.84 

(range 19–74) years. The mean age of the healthy controls 

was 49.7 years. The patient characteristics were shown in 

Table 1.

PTEN mutation screening  
by full gene sequencing
Based on our PTEN sequencing results, no PTEN  coding 

mutations were found. Only four single nucleotide 

polymorphisms were identified, including c.1–9C.G, 

c.80–96A.G, c.1026+32T.G, and c.1212+75T.A, which 

were reported in the Single Nucleotide Polymorphism Data-

base of the National Center of Biotechnology Information 

(Table 2).

Downregulated expression  
of Killin but not PTen
We examined the expression levels of PTEN and KILLIN 

using qPCR in blood samples from 23 patients and 20 healthy 

controls. Our results show that PTEN gene  expression was 

higher in cancer patients when compared with healthy controls 

(Figure 1A). On the other hand,  expression of KILLIN was sig-

nificantly decreased in patients when compared with healthy 

controls (Figure 1B). However, there is no direct correlation 

between PTEN and KILLIN mRNA expression (Figure 1C). 

Interestingly, when we stratified patients into those with breast 

cancer only, thyroid cancer only, and both breast cancer and 

thyroid cancer, the expression level of PTEN was significantly 

increased in those with breast cancer and thyroid cancer, and 

in those with breast cancer only, when compared with healthy 

controls (Figure 2A). Also, there was a decreasing trend of 

KILLIN expression levels in patients with breast cancer and 

thyroid cancer, those with breast cancer only, and those with 

thyroid cancer only relative to healthy controls (Figure 2B).

Quantitative analysis of methylated  
KILLIN Dna in the plasma of patients
To investigate whether downregulation of expression is associ-

ated with hypermethylation of the KILLIN/PTEN promoter, 

we developed a simple methylation-sensitive restriction 

enzyme digestion and real-time quantitative assay to quantify 

the methyl ated KILLIN DNA in the patients’ blood samples. 

Initially, methyl ated KILLIN DNA levels in blood samples 

from the 23 patients and 20 healthy controls were assessed. 

Our results indicated that there was no significant difference in 

blood levels of methylated DNA between cancer patients and 

healthy controls (P=0.111; Figure 3A). We also assessed the 

level of methylated KILLIN/PTEN DNA in the plasma samples.  
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Our results demonstrated that plasma levels of methylated 

KILLIN DNA in the 23 cancer patients were significantly 

increased when compared with those in controls (P,0.05; 

Figure 3B), suggesting hypermethylation of the KILLIN/PTEN 

promoter in these patients, and significant negative correlation 

between blood level of KILLIN mRNA expression and plasma 

level of methylated KILLIN DNA of the 43 subjects including 

20 healthy controls and 23 cancer patients (Spearman r=–0.58, 

P,0.0001; Figure 4).

Discussion
In this study, we found that KILLIN gene expression but not 

that of PTEN, was significantly decreased in blood samples 

from Chinese women with breast and/or thyroid cancers. 

We then quantified plasma methylated KILLIN/PTEN DNA 

levels in these patients and demonstrated that they were sig-

nificantly elevated. To the best of our knowledge, this is the 

first report to show increased plasma levels of methylated 

KILLIN DNA in such patients, suggesting hypermethylation 

of the KILLIN/PTEN promoter in breast and thyroid cancer.

Given that variants c.80–96A.G, c.1026+32T.G, and 

1212+75T.A were identified in most of our subjects and 

the fact that they were located far away from the PTEN 

exons, these variants might be presumed to have no effect 

on normal PTEN function.2 It is unclear whether variant 

c.1–9C.G would have any effect on PTEN expression 

in breast and thyroid carcinoma. This variant is shown in 

the Single Nucleotide Polymorphism Database from the 

National Centre of  Biotechnology Information with a noted 

frequency of 0.024, and has not been reported in carcinoma. 

However, overexpression of PTEN has been shown to be 

associated with this variant in type 2 diabetes in the Japanese  

population.7 The nucleotide sequence around the AUG 

initiation codon can influence recognition of the ribosome 

and affect the efficiency of translation. It was suggested that 

Table 1 Patient characteristics

Case number Age at diagnosis  
of BC, years

BC type Family history 
of BC

Age at diagnosis  
of TC, years

TC type Family history 
of TC

Bc and Tc
 PMh1301 33 iDc no 21 colloid nodule na
 TWh51701 40 iDc + ilc na 26 FTc na
 TWh51901 47 iDc no 35 FTc na
 TWh49701 42 iDc no 43 na no
 PTen201 35 Dc no 44 PTc no
 PTen901 64 iDc na 46 FTc na
 PTen1101 74 iDc na 57 FTc na
 hKsh1101 51 iDc + ilc na 60 PTc na
 PTen1001 66 na no 70 PTc no
 PTen101 70 iDc Yes 70 PTc na
 Uch701 73 iDc no 74 Medullary na
 Uch201 38 iDc no 38 PTc na
 Qeh601 52 iDc na 52 PTc no
 QMh7801 71 Dcis no 20 na no
 TWh42301 38 iDcii (l); Dcis (r) no 38 PTc no
 TWh56201 50 iDcii na 42 PTc na
Tc only
 TWh46303 not applicable not applicable na 19 PTc Yes
 TWh46302 not applicable not applicable na 44 PTc Yes
 TWh36401 not applicable not applicable Yes 34 PTc na
Bc only
 TWh36901 40 iDc no not applicable not applicable Yes
 TWh4101 44 iDc Yes not applicable not applicable Yes
 TWh46301 50 iDc (l); Dcis (r) no not applicable not applicable Yes
 TWh50901 50 iDc na not applicable not applicable Yes

Abbreviations: Bc, breast cancer; Tc, thyroid cancer; na, not available; iDc, invasive ductal carcinoma; Dcis, ductal carcinoma in situ; ilc, invasive lobular carcinoma; 
Dc, ductal carcinoma; PTc, papillary thyroid carcinoma; FTc, follicular thyroid carcinoma; (l), left breast; (r), right breast; PMh, Princess Margaret hospital; TWh, Tung 
Wah hospital; hKsh, hong Kong sanatorium and hospital; Uch, United christian hospital; Qeh, Queen elizabeth hospital; QMh, Queen Mary hospital.

Table 2 PTEN polymorphisms in patients with cancer of the 
breast and/or thyroid

Location Variant NCBI ref SNP

5′UTr c.1–9c.g rs11202592
intron 1 c.80–96a.g rs1903858
intron 8 c.1026+32T.g rs555895
intron 9 c.1212+75T.a rs74535369

Abbreviations: ncBi, national center of Biotechnology information; ref, reference;  
snP, single nucleotide polymorphism; UTr, untranslated region.
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substitution of the G residue at position 9 results in greater 

homology of the PTEN gene sequence, ctcccagacATGa, to 

the Kozak sequence gccgcc(a/g)ccATGg, which has been 

reported to enhance translation in mammalian cells.7,14 The 

prevalence of c.1–9C.G in diabetic patients was reported to 

be 14% (15/107) for both the heterozygous and homozygous 

variants, whereas only 5% (5/100) of control subjects car-

ried the heterozygous variant but not the homozygous vari-

ant.7 In our study, three of 18 (16.6%) patients carried the 

heterozygous variant and no homozygous variant was found. 

Due to the small sample size and lack of comparison with 

control subjects, no association between the polymorphism 

and our cancer patients could be identified. The pathoge-

nicity of this variant in breast and thyroid cancers remains 

to be elucidated and confirmed by protein expression and 

functional assays. However, the broad phenotypic spectrum 

of multiple hamartoma syndromes makes diagnosis of CS 

complicated, and hence recruitment of suitable subjects for 

research is difficult.1,2,6,15–17 CS-like patients, with features 

of CS but not meeting the strict diagnostic criteria, might 

not have PTEN mutation.2,6,16 Although breast and thyroid 
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Figure 1 PTEN and KILLIN expression in cancer patients.
Notes: gene expression of (A) PTEN and (B) KILLIN in blood samples from healthy 
normal subjects (n=20) and patients with cancer of the breast and/or thyroid (n=23). 
expression of mrna was normalized to GAPDH. The lines inside the boxes denote 
the medians. The boxes mark the interval between the 25th and 75th percentiles. 
The whiskers denote the interval between the 10th and 90th percentiles. statistical 
significance of differences was analyzed using Mann–Whitney U tests. (C) correlation 
between PTEN and KILLIN mrna expression (spearman rank correlation, r=−0.06, 
P=NS, not significant).
Abbreviations: ncBi, national center of Biotechnology information; snP, single 
nucleotide polymorphism.
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Figure 2 expression levels of PTEN and KILLIN in patients with breast and thyroid 
cancer.
Notes: gene expression of (A) PTEN and (B) KILLIN in blood samples from healthy 
normal subjects (n=20), and patients with breast and thyroid cancer (n=16), breast 
cancer only (n=4), and thyroid cancer only (n=3).
Abbreviations: Bc, breast cancer; Tc, thyroid cancer.
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cancers are the most common manifestation of CS, renal cell 

and endometrial carcinoma could be included in the patient 

selection criteria to increase the chances of finding PTEN 

mutations.6,8,16–18 In addition to the coding region, it is sug-

gested that the promoter region is an important site of PTEN 

analysis. A screen of 119 CS patients negative for PTEN 

mutation at the coding region showed that 10% had mutations 

located at the promoter region between −1344 and −745 bp 

upstream of the translation start codon.4 It was estimated that 

mutations at the promoter might result in post-translational 

modifications or targeted PTEN degradation, thereby lead-

ing to impaired protein expression.4 Other than PTEN, 

succinate dehydrogenase genes might be alternative markers 

for CS/CS-like syndromes.6,17 Succinate dehydrogenase  

is a mitochondrial enzyme complex that participates in the 

electron transport chain and Kreb’s cycle. Like PTEN, suc-

cinate dehydrogenase also has a tumor suppressor function, 

and negatively regulates the Akt and mitogen-activated 

protein kinase signaling pathway.19 One study showed that 

13.5% of PTEN mutation-negative CS/CS-like patients 

had germline succinate dehydrogenase complex subunit B 

(SDHB) and succinate dehydrogenase complex subunit D 

(SDHD) mutations.6 Patients with succinate dehydrogenase 

mutations had increased levels of phosphorylated Akt and 

mitogen-activated protein kinase, causing dysregulation of 

apoptosis. Higher frequencies of breast, thyroid, and renal 

cell carcinomas were observed in succinate dehydrogenase 

mutation carriers than PTEN mutation carriers.6

Apart from PTEN, KILLIN is another important gene that 

might be implicated in breast cancer. One recent study offers 

an intriguing explanation for some of the families with PTEN 

wild-type CS and Cowden-like syndrome.10 The authors of 

that study examined peripheral lymphocytes from patients 

with CS or Cowden-like syndrome for hypermethylation of 

the PTEN promoter.10  Unexpectedly, they discovered that 

although a significant proportion of patients had hyperm-

ethylation of the PTEN promoter, silencing of PTEN was 

not found. Bennett et al investigated a relatively new gene 

known as KILLIN.  KILLIN has recently been identified and 

little is known about its function or its role in cancer. They 

found that KILLIN is indeed transcribed in the opposite, 

ie, antisense, strand relative to PTEN and shares the same 

promoter as PTEN. Thus, they postulated that the methyla-

tion changes in their patient samples were indeed regulating 

KILLIN expression and not that of PTEN. They demonstrated 
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Figure 3 Methylated KILLIN Dna expression in plasma samples from healthy 
normal subjects and patients with breast and/or thyroid cancer.
Notes: Quantitative analysis of methylated KILLIN/PTEN Dna in (A) blood samples 
from healthy normal subjects (n=20) and patients (n=23) and in (B) plasma samples 
by methylation-sensitive restriction enzyme digestion followed by qPcr. scatter 
plots for plasma levels of methylated KILLIN Dna in healthy normal subjects (n=20) 
and patients with breast and thyroid cancer (n=16), breast cancer (n=4), and thyroid 
cancer (n=3). Horizontal lines denote the medians. Statistically significant differences 
were determined using the Mann–Whitney U test, P,0.0001.
Abbreviations: Bc, breast cancer; qPcr, quantitative polymerase chain reaction; 
Tc, thyroid cancer.
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hypermethylation of KILLIN/PTEN in cancer patients

that patients with KILLIN/PTEN promoter hypermethylation 

have significantly reduced KILLIN gene expression levels 

compared with controls.10 Since there is only an association  

between  downregulated KILLIN  expression and hyper-

methylation of the KILLIN/PTEN promoter, PTEN expres-

sion was not affected by promoter hypermethylation. We 

speculate that other regulatory mechanisms may be involved 

in PTEN expression, specifically in the development of 

breast cancer.

We believe that our finding of increased plasma methy-

lated KILLIN/PTEN DNA in patients with thyroid and breast 

cancers relative to those with either of these cancers alone 

might have important clinical implications. One possible 

clinical scenario would be if a female patient has been 

diagnosed with a follicular-derived thyroid carcinoma and 

is also found to have raised plasma methylated KILLIN/

PTEN DNA. Our results suggest that such a patient has 

a relatively higher chance of developing breast cancer in 

the future and so would benefit from breast cancer screen-

ing. In other words, methylated KILLIN/PTEN DNA in 

plasma could be used as a diagnostic marker for patients 

with an increased lifetime risk of developing both cancers. 

 However, a much larger longitudinal study would be needed 

to confirm this.

Conclusion
Taken together, no correlation between PTEN mutations 

and cancer of the breast and/or thyroid was found in this 

study. Nonetheless, hypermethylation of the KILLIN/PTEN 

promoter could have contributed to the development of 

these cancers in those patients without identifiable PTEN 

mutations. In this regard, we showed that plasma methylated 

KILLIN/PTEN DNA was significantly increased, suggesting 

hypermethylation of the KILLIN/PTEN promoter in patients 

with breast and/or thyroid cancers. Because our sample 

size was small, further validation in a larger sample size is 

required to confirm the potential diagnostic usefulness of 

this methylated DNA marker.
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Table S1 sequence of polymerase chain reaction and sequencing primers for PTEN gene

Exon Forward primer sequence (5′ to 3′) Reverse primer sequence (5′ to 3′)

1 aTTTccaTccTgcagaagaagc gcaaccaggcaagagTTccgT
2 TTTaTTacTccagcTaTagTggg ccaTTaggTacggTaagccaaa
3 ccaTagaaggggTaTTTgTTgg ggacTTcTTgacTTaaTcggTTT
4 TaaacacagcaTaaTaTgTgTcac aTgTaTcTcacTcgaTaaTcTgg
5 TTaagTTTgTaTgcaacaTTTcTa gTaTaTacacaTacaTcaaaacaTc
6 gTaTaTaTgTTcTTaaaTggcTa cTTcagaaaTaTagTcTccTgcaT
7 gaTacagaaTccaTaTTTcgTgTa gTaagcaaaacaccTgcagaTc
8 caaaTgTTTaacaTaggTgacaga cTgcTacgTaaacacTgcTTcga
8s gacaaaaTgTTTcacTTTTgggT
9 TaaagaTcaTgTTTgTTacagTgc TcTgacacaaTgTccTaTTgcc
9s TTcaTggTgTTTTaTcccTcTTg

Abbreviation: s, sequencing primer.
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