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Abstract: Perinatal asphyxia is a cause of significant neonatal morbidity worldwide. Lack 

of oxygenation and perfusion to the neonatal brain leads to energy failure and cell death. 

Currently, therapeutic hypothermia is the standard of care for term infants with hypoxic-

ischemic encephalopathy, but as it has shown only modest effects on survival and morbidity, 

additional neuroprotective agents are needed. Erythropoietin has been extensively studied as 

a neuroprotective agent for infants who suffer a hypoxic-ischemic brain injury. It has multiple 

mechanisms of action, in both preventing cell death and promoting tissue repair. Studies have 

progressed over time from in vitro to in vivo studies, first in animals and now in humans, with 

several Phase I/II trials completed and Phase III trials underway. As therapeutic hypothermia 

has become the standard of care in treating term infants with hypoxic-ischemic encephalopathy, 

studies must now evaluate other neuroprotective agents, including erythropoietin, used in concert 

with therapeutic hypothermia. Erythropoietin has shown promise as a neuroprotective agent in 

animal and human models, both alone and together with hypothermia.

Keywords: neonate, brain injury

Perinatal asphyxia
Lack of oxygen and tissue perfusion in the perinatal period can lead to neonatal 

hypoxic-ischemic encephalopathy (HIE), which occurs in one to three/1,000 live 

births in developed countries.1 In 2008, it was estimated that birth asphyxia caused 

between 563,000 and 997,000 deaths worldwide, 9% of all deaths in children younger 

than 5 years of age.2 Recently, therapeutic hypothermia has proven to be effective at 

improving mortality and neurodevelopmental outcomes in infants with moderate-to-

severe HIE.3,4 However, even with therapeutic hypothermia, HIE still causes significant 

morbidity and mortality, with approximately 48% of infants dying or having major 

neurodevelopmental disability at 18 months of age.4 Additional interventions are 

clearly needed to further improve outcomes, and these must be tested in the context 

of therapeutic hypothermia.

Mechanisms of brain injury
Perinatal asphyxia results from disruption in cerebral perfusion and oxygenation, often 

caused by an interruption in blood flow and gas exchange across the placenta. The 

resulting brain injury is characterized by an evolving process, which spans the period 

of initial interruption of blood flow through the period of recovery after reperfusion. 

The first phase occurs during the period of decreased oxygen delivery to the infant. The 

body must switch to anaerobic metabolism, resulting in significantly less adenosine 
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triphosphate (ATP) being generated for each molecule of 

glucose metabolized. The decreased availability of ATP 

causes failure of the ATP-dependent Na+/K+ pump, leading 

to a sodium influx into cells. The sodium influx is followed 

by chloride and water influx, leading to cellular swelling and, 

eventually, lysis with cell death by necrosis.5 The failure of 

the ATP-dependent Na+/K+ pump also causes membrane 

depolarization, leading to increased glutamate release and 

decreased glutamate uptake. The increased concentration of 

extracellular glutamate, along with activation of ion-gated 

calcium channels and failure of energy-dependent processes 

of calcium removal from the cell, causes accumulation of 

calcium in the cytosol, which has significant negative effects 

including membrane injury, generation of free radicals and 

nitric oxide, and further decreases in ATP production.5,6 The 

number of cells that die during this initial phase is related 

to the severity of the insult, with a higher number of cells 

dying in the initial phase after a more severe insult.6 The next 

phase consists of secondary energy failure that occurs 6 to 

48+ hours after the original injury and involves inflamma-

tion, cytotoxic edema, nitric oxide synthesis, mitochondrial 

dysfunction, and further accumulation of excitotoxins.6,7 This 

phase correlates best with neurodevelopmental outcomes 

and has the potential to be affected by neuroprotective 

interventions.3,6,8 Hypoxia and ischemia can cause injury to 

both white and gray matter regions, depending on the type, 

duration, timing, and other circumstances of the injury. In 

term infants, the most common patterns of injury include 

watershed injury (plus cortical gray matter injury when 

severe), deep gray matter injury (involving deep grey nuclei, 

hippocampi, and perirolandic cortex, with additional corti-

cal damage when severe), and multicystic encephalopathy 

in infants who experience an acute event superimposed on 

more chronic mild-to-moderate hypoxia.9

Mechanisms of cell death
Three mechanisms of cell death can occur in response to 

hypoxic-ischemic injury: necrosis, apoptosis, and autophagy. 

These cell death programs are complex, interrelated, and 

involve signaling pathways which can potentially be inter-

rupted or modified, allowing for targeted neuroprotective 

strategies.10 Necrotic cell death tends to occur early following 

HIE. It is characterized by profound cellular swelling lead-

ing to cell rupture, membrane disintegration, and release of 

intracellular contents.5 Necrotic cell death requires less energy 

than apoptosis or autophagy, but still involves activation 

of specific signaling pathways.11,12 Neuronal necrosis that 

occurs in the context of excitotoxicity and hypoxic-ischemic 

injury is mediated by membrane depolarization caused by 

glutamate-triggered influx of calcium into the cell. Necrosis 

occurs predominantly in sites of profound energy deprivation, 

such as the core of an ischemic region, and is responsible for 

much of the immediate cell death during the first phase after 

injury, but there is a continuum between necrotic and apoptotic 

cell death.13,14 In contrast to necrosis, apoptosis is a form of 

programmed cell death characterized by immunologically 

silent cell shrinkage with nuclear pyknosis and intact plasma 

membranes.5 It can be activated by intrinsic or extrinsic path-

ways. The intrinsic, or mitochondrial, pathway depends on the 

balance of antiapoptotic proteins (such as Bcl-2 and Bcl-xL) 

and proapoptotic proteins (such as BAX and BAD).15,16 

Apoptosis can also be triggered by external signals such as 

Fas ligand and tumor necrosis factor-alpha (TNF-α) activation 

of proapoptotic receptors on the cell surface, which is known 

as the extrinsic pathway. Proapoptotic proteins cause permea-

bilization of the mitochondrial membrane, allowing factors 

including cytochrome c to be released into the cytosol, leading 

to apoptosis.17 Neuroapoptosis following hypoxic-ischemic 

injury typically occurs in the ischemic penumbra during the 

secondary phase of brain injury, making this pathway an 

excellent target for neuroprotection.10,18

Autophagy is a homeostatic process by which unwanted 

proteins and damaged organelles are eliminated from cells. 

It is a catabolic process involving intracellular degradation of 

cytosolic proteins and organelles by autophagosomes, which 

fuse with lysosomes to form autolysosomes.10 Autophagy is 

now recognized as a distinct mechanism of cell death that is 

interrelated to both necrosis and apoptosis.19 There are several 

proposed mechanisms for the role of autophagy in cell death 

following hypoxic-ischemic injury, including as an indepen-

dent mechanism and as a trigger for apoptotic cell death.10

The mechanism of cell death that predominates in 

hypoxic-ischemic injury is influenced by characteristics of 

the individual including age (neonates are more sensitive to 

apoptosis than adults, and the location of calcium permeable 

membrane receptors switches from white matter to gray mat-

ter over time), sex (different specific pathways predominate 

in males compared to females), and other factors, such as 

energy availability.20–22 Many cells die from hybrids of mul-

tiple pathways (such as apoptosis and necrosis or apoptosis 

and autophagy), as there are significant interconnections 

between pathways.23,24 The overlap in cell death pathways 

makes identifying targets for neuroprotective agents complex, 

because cell death can proceed down an alternative pathway 

if one pathway is inhibited.10 Each pathway is important for 

normal development, thus blocking all pathways completely 
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can have negative effects.25–28 As understanding of the 

complex interactions between mechanisms of cell death and 

survival improves, neuroprotective strategies may include 

use of multiple complimentary agents, either to target dif-

ferent pathways or to use one drug to extend the therapeutic 

window for another.

Therapeutic hypothermia
Therapeutic hypothermia has become the standard of care 

treatment for HIE.3,29 It has multiple neuroprotective effects, 

including decreased energy depletion, inhibition of glutamate 

release and decreased impairment in glutamate reuptake, 

deceased free radical generation and inflammation, and block-

ade of pathways leading to apoptosis (Figure 1).5 It has been 

shown in trials to reduce the risk of death or major neurode-

velopmental disability by approximately 50% with a number 

needed to treat of 7–9.3,30 As hypothermia has become the 

standard of care, research into other neuroprotective agents, 

particularly in humans but also in animal models, has shifted 

from study of a neuroprotective agent alone to investigation of 

the combined effects of the agent along with hypothermia.

Erythropoietin
Erythropoietin (Epo) is a 30.4 kDa hematopoietic cytokine 

that was originally recognized for its role in erythropoiesis. 

It is produced primarily in the kidney of adults and the 

liver of fetuses, although Epo production also occurs in 

the brain, testis, and placenta.31,32 Endogenous Epo is 

required for normal brain development, function, and repair. 

Epo is primarily produced by astrocytes but can also be 

detected in oligodendrocytes, neurons, endothelial cells, 

and microglia.33–38 In the setting of hypoxia-ischemia, Epo 

receptors (EpoRs) in neurons, astrocytes, and microglia are 

massively upregulated.39,40 Increased Epo expression follows, 

via hypoxia-mediated stabilization of neuronal transcrip-

tion factor hypoxia-inducible factor 1α, if the insult is of 

sufficient duration.41,42 Hypoxia-inducible factor-2 (HIF-2) 

has also been found to regulate the production of Epo in 

response to hypoxia in many tissues, though its precise role 

is less clear.43–46 In the absence of Epo–EpoR binding, cells 

are predisposed to apoptosis, while, in the presence of Epo, 

cells are preserved.47,48 This creates an important rationale 

for exogenous Epo administration, given that brain injury can 

occur after brief but catastrophic insults, such as placental 

abruption or cord accidents, which are insufficient to stimu-

late an increase in endogenous Epo synthesis.49

Mechanisms of action of Epo
Epo binds to the EpoR homodimer, which activates Jak2 

kinase to phosphorylate Jak2 and EpoR (Figure 2).50–52 

Figure 1 Comparison of mechanisms of neuroprotection between therapeutic hypothermia and erythropoietin (epo).
Notes: Mechanisms of brain injury and recovery after injury are listed. Therapeutic hypothermia and epo have many similar mechanisms of action, but epo has additional 
effects of prevention of necrosis and promotion of angiogenesis and neurogenesis beyond hypothermia alone.
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This activates multiple signaling cascades, including MAPK/

ERK, PI3K/Akt, Stat5, and NF-κB.53,54 NF-κB and Stat5 

move into the nucleus and act as transcription factors in the 

production of Bcl-2 and Bcl-xL, which are antiapoptotic 

proteins.40,55 Epo also inhibits the function of Bax and Bad, 

which are proapoptotic, via AKT. The balance of these pro-

teins determines whether a cell undergoes apoptosis.40 In 

addition to the EpoR homodimer, other receptor complexes 

have been implicated in the neuroprotective effects of Epo. In 

particular, the common beta receptor (CβR)–EpoR heterodi-

mer has been found in some studies to be essential in Epo 

neuroprotective abilities, but other studies have not confirmed 

these findings.56,57 These signaling pathways have multiple 

downstream neuroprotective and neurotrophic effects.

Epo appears to have both acute and long-term effects 

following brain injury (Figure 1). Through multiple mecha-

nisms, Epo decreases cell death acutely and also promotes 

cell and tissue repair, affecting many components of the 

neurovascular unit. Many studies have demonstrated Epo’s 

antiapoptotic effects.50,53,58–69 Additionally, Epo has also 

been shown to have anti-inflammatory, neurotrophic, and 

antioxidant properties, along with having a role in promoting 

angiogenesis, neurogenesis, and oligodendrogenesis.47,70–80 

Epo may protect the brain from edema by upregulation of 

aquaporin channels.81 Epo also increases reticulocytosis in 

preterm infants, which in turn increases iron utilization. 

When iron is unbound, it can produce free radicals that cause 

oxidative injury, so, by increasing iron utilization, Epo may 

secondarily decrease injury.82,83

Animal and human studies of Epo
The effects of Epo on neonatal brain injury have been studied 

in multiple animal models (Table 1), most commonly in the 

rat model of unilateral carotid ligation followed by hypoxia 

(Vannucci model) and the middle cerebral artery occlusion 

model.84,85 These models are commonly used to produce 

gray matter injury similar to that seen in term infants who 

experience hypoxic-ischemic injury or perinatal stroke, 

respectively. Animal models have been used both to demon-

strate Epo’s neuroprotective effects on gross and histological 

brain injury and neurobehavioral outcomes and to elucidate 

the mechanism of neuroprotection. There is some variability 

in the results of these studies, likely related to variability in 

methodology, including duration of hypoxia/ischemia; tim-

ing, dose, and frequency of Epo administration; and timing of 

the outcome studied. Overall, however, Epo has been shown 

Figure 2 Molecular mechanism of erythropoietin (epo).
Notes: epo production is upregulated after hypoxia via stimulation of HiF-1, but it can also be given exogenously. epo binds to the epo receptor (epoR) homodimer, 
causing JAK2 kinase phosphorylation of JAK2 and the epoR, which triggers a signaling cascade that involves STAT5, NF-κB, PI3K/AKT, and MAPK/ERK. Together, this leads 
to production of antiapoptotic proteins, including Bcl-2 and Bcl-xL, and also inhibition of proapoptotic proteins, including Bad and Bax. The balance of proapoptotic and 
antiapoptotic proteins affects release of substances such as cytochrome c from the mitochondria which then leads to apoptosis. 
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to be protective over a wide range of doses, in multiple animal 

models, by multiple investigators (see Table 1).

As hypothermia became the standard of care for neonates 

with HIE, Epo began to be incorporated in animal studies of 

HIE.49,86,87 Fan et al published a study in 2012 comparing no 

treatment, hypothermia alone, Epo alone, and hypothermia + 

Epo on brain injury and behavior in rats subject to a hypoxic-

ischemic insult using the Vannucci model.87 Hypothermia in 

this study consisted of 3 hours at 32.5°C–33°C immediately 

after the hypoxic period was complete. Epo was dosed at 

5,000 U/kg given intraperitoneally immediately after hypo-

thermia and repeated 24 and 48 hours later. The investigators 

found that administration of Epo alone modestly improved 

behavioral outcomes at 2 and 5 weeks post-injury (measured 

using the cylindrical rearing test) but had no effect on histo-

logic brain injury. Similarly, Epo in addition to hypothermia 

had a mildly additive effect on hypothermia alone in improv-

ing behavioral outcomes but no additive effect for histological 

injury. Interestingly, the authors found that the neuroprotec-

tive effects of hypothermia were more pronounced in female 

animals, while Epo did not have sex-specific effects. In the 

same journal, Fang et al published a similar study evaluating 

the effects of Epo and hypothermia on neonatal rats subjected 

to hypoxic-ischemic injury using the Vannucci model.86 In 

this study, therapeutic hypothermia consisted of 8 hours at 

32°C and Epo was dosed at 1,000 U/kg, given immediately 

after injury but prior to hypothermia and repeated at 24 hours 

and 7 days post-injury. The authors found no differences 

between untreated animals and animals treated with hypo-

thermia, Epo, or both in either histopathological or behavioral 

outcomes other than improved histopathological outcomes 

in male animals treated with Epo. Traudt et al completed a 

study in 2013 comparing hypothermia alone to hypothermia 

+ Epo in a nonhuman primate (pigtail macaque) model of 

perinatal asphyxia.49 The macaques were exposed to 15 or 18 

minutes of umbilical cord occlusion and were then treated 

with 72 hours of therapeutic hypothermia at 33.5°C with 

or without Epo or were untreated. Epo was initially dosed 

intravenously at 3,500 U/kg for one dose, followed by three 

doses of 2,500 U/kg given at 24 and 72 hours and 7 days 

post-injury, but was then switched to 1,000 U/kg for all four 

doses based on pharmacokinetic data. The authors found 

that, among macaques exposed to umbilical cord occlusion, 

there was a 44% incidence of death or moderate-to-severe 

cerebral palsy in the untreated animals and a 43% incidence 

in the animals treated with hypothermia alone compared to 

a 0% incidence in the hypothermia + Epo group. Animals 

treated with hypothermia + Epo also showed improvement R
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in motor and cognitive outcomes, cerebellar growth, and 

diffusion tensor imaging (DTI) measures.

These three studies clearly have disparate results 

regarding the efficacy of both hypothermia and Epo. This 

variability could be related to many factors, including dif-

ferences in the models used, Epo dosing, and the duration 

and degree of hypothermia.88 Traudt’s study is the first study 

of Epo and hypothermia in a nonhuman primate model of 

HIE. Large-animal models of brain injury offer both advan-

tages and disadvantages compared to small animal models. 

Large animals (sheep, piglets, nonhuman primates) are 

expensive and require more resources for their care, thus it 

is not possible to include the same number of subjects as 

are typically included in small-animal studies. However, in 

many ways, their brains are more similar to those of humans. 

Large animals possess a gyrencephalic brain, a white to 

gray matter ratio that better approximates that of humans, 

and similar vascular patterns to humans and they can be 

monitored and cared for in a manner similar to neonates in 

an intensive care unit.89

Human studies of Epo
In the past 5 years, several studies on the neuroprotec-

tive effects of Epo on human infants with HIE have been 

published (Table 2). The initial study by Zhu et al in 2009 

compared Epo to supportive care in infants with moderate-

to-severe encephalopathy.90 Epo was dosed at either 300 or 

500 U/kg and given subcutaneously immediately following 

injury and repeated every other day for 2 weeks intravenously. 

The authors demonstrated decreased incidence of moderate-

to-severe disability or death at 18 months of age in infants 

given either of the two doses of Epo, particularly in infants 

with moderate compared to severe HIE, without adverse 

hematopoietic side effects. The second study, by Elmahdy 

et al in 2010, compared Epo to supportive care in infants 

with mild-to-moderate HIE.91 Epo was dosed at 2,500 U/kg 

subcutaneously, started within 4–6 hours of injury, and 

repeated daily for five total doses. These authors also dem-

onstrated improved outcomes in infants treated with Epo, 

including decreased seizure activity, decreased endogenous 

nitric oxide production, and improved neurodevelopmental 

outcomes up to 6 months. The third study, by Wu et al in 2012, 

was a Phase I/II study of the safety and pharmacokinetics 

of Epo at escalating doses in infants with HIE being treated 

with therapeutic hypothermia.92 Doses ranged from 250 to 

2,500 U/kg and were administered intravenously, starting 

at less than 24 hours of age and continuing every 48 hours 

for up to six total doses. The authors showed that dosing 

at 1,000 U/kg produced plasma concentrations similar to 

those found to be neuroprotective in animals and was well 

tolerated. At mean age 22 months, infants who received 

Epo exhibited a relatively low rate of moderate-to-severe 

disability, even in the setting of significant brain injury.93 

The most recent study, by El Shimi et al in 2014, examined 

whether a single dose of Epo was as safe and effective as 

hypothermia in treating HIE, given that hypothermia was 

not available in many lower-resource nations, despite being 

the standard of care for HIE in developed nations.94 Epo was 

dosed at 1,500 U/kg given subcutaneously on day 1 of life. 

Hypothermia was accomplished using cold packs to maintain 

Table 2 Human infant studies of epo

Subjects/treatment groups/type Dose/timing Outcomes Reference
153 infants with moderate-to-severe  
Hie (73 given one of two different  
doses of epo and 80 controls);  
randomized trial

either 300 U/kg or 500 U/kg  
given every other day for  
2 weeks starting ,48 hours  
after birth

Overall improvement in rate of death/moderate-to- 
severe disability in infants with moderate Hie in epo  
groups at 18 months; improvement in behavior as  
early as day 7; no negative hematopoietic side effects;  
no difference in outcomes between doses

90

30 infants with Hie (15 controls and  
15 given epo) plus 15 controls;  
case-control study

2,500 U/kg given subcutaneously  
daily for 5 days

improvement in blood NO concentrations and eeG  
background; fewer neurologic and developmental  
abnormalities; no difference in MRI findings

91

24 infants undergoing hypothermia for  
Hie given epo at varying doses (Phase i  
safety and pharmacokinetics study)

250 U/kg, 500 U/kg, 1,000 U/kg,  
or 2,500 U/kg given every  
48 hours for six doses starting  
at ,24 hours of age

No deaths or serious adverse events; nonlinear  
pharmacokinetics; plasma concentrations that are  
neuroprotective in animals seen at 1,000 U/kg dosing

92

30 infants with perinatal hypoxia  
(randomized as: ten to supportive care,  
ten given moderate hypothermia, ten  
given epo) and 15 healthy infants;  
case-control study

Single 1,500 U/kg dose given  
on day 1 of life

infants given hypothermia had the best survival, followed  
by infants given epo and then the control group, though  
differences not statistically significant; significantly higher  
brain-derived neurotrophic factor in hypothermia and  
epo groups than in supportive care group

94

Abbreviations: eeG, electroencephalography; epo, erythropoietin; Hie, hypoxic-ischemic encephalopathy; MRi, magnetic resonance imaging; NO, nitric oxide.
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a rectal temperature between 33°C and 34°C for 72 hours. 

This small study showed improved survival in the infants 

treated with hypothermia compared to single-dose Epo and 

supportive care, particularly in infants with moderate or 

Sarnat stage II encephalopathy. There was a trend toward 

improved MRI brain injury score and functional outcomes 

in infants treated with hypothermia. Larger Phase III studies 

to test efficacy are planned or under way in France (Neurepo, 

NCT01732146), Australia (PAEAN), and the US (NEAT O, 

NCT01913340).

Epo dosing and adverse effects
The optimal dosing regimen in human neonates is unknown. 

Epo is ineffective at promoting neuroprotection at very 

low doses and may cause harm at very high doses.82,95 

Kellert et al’s dose comparison study in rats demonstrated 

that three doses of 5,000 U/kg resulted in the most consistent 

neuroprotection with the lowest total dose exposure.62 

Traudt et al’s study, which showed strong benefits of Epo 

when used in conjunction with hypothermia, found that dos-

ing hypothermic macaques at 1,000 U/kg produced similar 

pharmacokinetic parameters to rats dosed at 5,000 U/kg.49 

Interestingly, these authors noted that a dosing regimen in 

hypothermic macaques produced a 25% higher peak Epo 

concentration than expected based on pharmacokinetic 

data obtained in normothermic human neonates, suggest-

ing that hypothermia alters Epo’s pharmacokinetics. Wu 

et al’s pharmacokinetic study of Epo in human neonates 

undergoing therapeutic hypothermia for HIE also found 

that 1,000 U/kg of Epo produced similar pharmacokinetic 

parameters as doses that have been found to be neuroprotec-

tive in animal models.92

The significance and severity of adverse effects related 

to Epo administration also remain controversial. As Epo is 

used primarily as an erythropoietic agent, it certainly has 

effects on red blood cell formation. Polycythemia has not 

been seen in trials of neuroprotection in term infants, and two 

trials did not find a significant difference in hematocrit and 

number of red blood cell transfusions between treated and 

untreated infants, although Zhu et al’s trial did show that use 

of Epo prevented the decrease in hematocrit over time seen 

in control and hypothermia-only infants.90–94 In adults, Epo 

has been associated with an increased risk for hypertension, 

but this has not been the case in neonates.83,96–99 In premature 

infants, Epo has been linked to several possible adverse 

effects. Early studies demonstrated a risk of neutropenia 

after treatment with Epo, but this has not been confirmed 

in later studies of erythropoietic or neuroprotective dosing 

of preterm infants.83,97–100 There has also been concern 

about increased risk of retinopathy of prematurity in pre-

term infants treated with Epo, particularly early in life, 

but the data are conflicting and this is not relevant to term 

infants.98,99,101–104 In one retrospective study, an increased risk 

of cutaneous hemangiomas was reported with Epo exposure 

in preterm infants, but, as cutaneous hemangiomas are 

common in preterm infants, a causal relationship has not 

been established.83,105–108

There are theoretical concerns regarding clotting abnor-

malities in infants treated with both Epo and therapeutic 

hypothermia. Hypothermia has negative effects on hemosta-

sis and leads to increased risk of disseminated intravascular 

coagulation.109,110 Epo may also affect clot formation, as use 

of Epo has been associated with increased risk for throm-

boembolic events in adults with strokes.111 At this time, no 

studies of normothermic or hypothermic neonates treated 

with Epo have demonstrated increased risk of clotting 

abnormalities, but we must continue to be vigilant about 

this potential adverse effect. Overall, significant adverse 

effects have not been seen in term or preterm infants treated 

with Epo.

Limitations of studies to date
Animal models
The animal models described previously all attempt to repro-

duce hypoxic-ischemic injury in term infants.112 While these 

models can simulate the human neonatal experience, they are 

not exact reproductions. Infants that meet clinical criteria 

for HIE can have had very different antenatal and perinatal 

experiences. HIE may be caused by a single acute event, 

such as a placental abruption or umbilical cord prolapse; 

a more chronic process like intrauterine growth restriction 

or infection; or a combination of events, such as a difficult 

delivery in a stressed infant who does not tolerate delivery 

well due to maternal chorioamnionitis or longstanding pla-

cental insufficiency. Thus, infants with HIE who meet entry 

criteria for a study may in fact have disparate mechanisms of 

injury, which likely helps to explain variability in response 

to treatments and, therefore, outcomes. Additionally, it is 

likely that infants with mild, moderate, and severe HIE will 

respond differently to neuroprotective therapies.3,90 Many of 

the studies on the neuroprotective effects of Epo following 

HIE use the Vannucci model, which models acute, severe 

hypoxic ischemic brain injury, but does not reflect more 

chronic or combined inflammatory and hypoxic injuries. 

Thus, it is important to glean information from a wide variety 

of animal models and, as clinical trials are planned, to target 
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neuroprotective therapies toward specific mechanisms of 

injury that show improvement in preclinical trials.

Human studies
There is currently a paucity of human trials available from 

which to assess the efficacy of Epo neuroprotection for HIE. 

Phase I/II trials have been undertaken to establish rudi-

mentary safety, pharmacokinetics, and feasibility of larger 

studies and have provided limited long-term outcome data. 

Because of the nature of these studies, there is also significant 

heterogeneity in study design, with Epo doses ranging from 

250–2,500 U/kg, dosing intervals ranging from 24–48 hours, 

and dose numbers ranging from one to seven. Despite these 

limitations, these studies have laid the groundwork for future 

Phase III studies in which the safety and efficacy of Epo 

neuroprotection can be rigorously tested.

Conclusion
In the past 5 years, there has been a significant advance-

ment in treatment of HIE. Therapeutic hypothermia has 

been proven to improve outcomes, with a number needed 

to treat of 7. Despite this, infants with moderate-to-severe 

HIE who receive hypothermia still experience high rates of 

death (26%) and, among survivors, developmental delay 

(23%), cerebral palsy (19%), deafness (4%), and blindness 

(6%). The overall rate of death or major disability despite 

hypothermia thus remains unacceptably high (48%).4 

Adjuvant therapies are therefore needed to further improve 

outcomes.

As we further our understanding of how cells die after 

neonatal hypoxic-ischemic brain injury, we can develop new 

neuroprotective strategies that promote or inhibit specific 

pathways. The complex and interconnecting pathways of 

cell death illustrate the need to approach neuroprotection 

from multiple angles. Several agents, including Epo, have 

shown promise as neuroprotective agents and are being 

studied further. If these therapies interact at different points 

in tissue response and healing pathways following injury, it 

is possible that, ultimately, a “cocktail” of therapeutic agents 

will be used to promote optimal healing.
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