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Abstract: The use of doxorubicin (DOX), one of the most effective antitumor molecules in 

the treatment of metastatic breast cancer, is limited by its low tumor selectivity and its severe 

side effects. Colloidal carriers based on biodegradable poly(butylcyanoacrylate) nanoparticles 

(PBCA NPs) may enhance DOX antitumor activity against breast cancer cells, thus allowing 

a reduction of the effective dose required for antitumor activity and consequently the level of 

associated toxicity. DOX loading onto PBCA NPs was investigated in this work via both drug 

entrapment and surface adsorption. Cytotoxicity assays with DOX-loaded NPs were performed 

in vitro using breast tumor cell lines (MCF-7 human and E0771 mouse cancer cells), and in 

vivo evaluating antitumor activity in immunocompetent C57BL/6 mice. The entrapment method 

yielded greater drug loading values and a controlled drug release profile. Neither in vitro nor in 

vivo cytotoxicity was observed for blank NPs. The 50% inhibitory concentration (IC
50

) of DOX-

loaded PBCA NPs was significantly lower for MCF-7 and E0771 cancer cells (4 and 15 times, 

respectively) compared with free DOX. Furthermore, DOX-loaded PBCA NPs produced a 

tumor growth inhibition that was 40% greater than that observed with free DOX, thus reducing 

DOX toxicity during treatment. These results suggest that DOX-loaded PBCA NPs have great 

potential for improving the efficacy of DOX therapy against advanced breast cancers.

Keywords: biodegradable polymer, carcinoma, cytotoxicity, chemotherapeutic drug, drug 

delivery, nanopolymer

Introduction
Breast cancer is the most common malignancy affecting women in the world. Thirty 

percent of patients eventually develop an untreatable metastatic disease, their average 

life expectancy being no more than 3 years.1 At present, systemic chemotherapy is 

considered the standard strategy against metastatic breast cancer. Despite the impor-

tant advances in breast cancer therapy, including the development of new molecules 

(eg, trastuzumab, fulvestrant, eribulinmesylate), combinations of well-established 

drugs continue to be the first-line therapy against the malignant disease.2 Doxorubicin 

(DOX)-based regimens, due to the molecule’s high antitumor efficacy, are one of the 

most interesting approaches toward improving the level of clinical success in treating 

metastatic breast cancers. However, DOX-based chemotherapy is characterized by poor 

tumor selectivity plus severe (dose-limiting) side effects in healthy tissues and cells.3,4 

Furthermore, DOX can lead to drug resistance in breast cancer cells, which may be 

another pertinent cause of chemotherapy failure.5 Therefore, new research efforts are 

needed to reduce the effective dose required for antitumor activity, the toxicity, and 

the drug resistance associated with DOX in such chemotherapy programs.6
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therapies against advanced breast cancers, while also mini-

mizing the toxicity associated with doxorubicin’s activity.

Materials and methods
Materials
All chemicals used were of analytical grade from Sigma-

Aldrich Chemical Co. (Spain), except for DOX hydrochloride 

(purchased from Dr M Damas, San Cecilio Hospital, 

Granada, Spain), and butylcyanoacrylate (generous gift from 

Henkel Loctite, Ireland).

Preparation of poly(butylcyanoacrylate) 
nanoparticles
PBCA NPs were synthesized following the well-known 

emulsion/polymerization procedure for butylcyanoacrylate 

monomers in an aqueous solution.18,19 Briefly, a 1% (w/v) 

acetonic solution of the monomer was added dropwise, under 

stirring at 1,200 rpm, to 10 mL of an aqueous polymerization 

medium containing 10-4 N HNO
3
 and the stabilizing agent 

Pluronic® F-68 (Sigma-Aldrich, St Louis, MO, USA) (1%, 

w/v). The mixture was maintained under polymerization 

conditions for 3 hours, after which the medium was finally 

neutralized with 10 μL of an aqueous NaOH (10-1 M) solution 

to ensure total consumption of the monomer. The remaining 

acetone was then fully evaporated using a BuchiRotavapor® 

(BÜCHI Labortechnik AG, Flawil, Switzerland) rotary 

evaporator to obtain an aqueous suspension of PBCA NPs. 

Finally, the nanoparticulate system was cleaned by subjecting 

it to repeated cycles of centrifugation (60 min at 10,700 rpm 

using a Centrikon T-124 high-speed centrifuge, Kontron, 

France) and redispersion in water, until the conductivity of 

the supernatant was 10 μS/cm.

loading to the polymeric nanoplatform 
with doxorubicin
The polymeric NPs were loaded with antitumor drug by: 

1) DOX entrapment within the (nano-)matrix; and 2) DOX 

surface adsorption onto previously prepared NPs. DOX 

entrapment/adsorption within/onto the NPs was assessed 

through UV–Vis spectroscopy by determining the amount 

of drug remaining in the supernatant solutions (see below), 

which were obtained by filtering the nanoparticulate suspen-

sions through a 0.1 μm membrane filter, after the entrapment/

adsorption process. No DOX adsorption on the filter mem-

brane was determined spectrophotometrically.

DOX entrapment involved the preparation of an aque-

ous polymerization medium, containing 10-4 N HNO
3
 

and Pluronic® F-68 (1%, w/v) (Sigma-Aldrich), and the 

In this context, the use of nanotechnology may be a 

promising strategy to improve DOX efficacy and safety. 

Drug-delivery nanoplatforms have been formulated to protect 

the antitumor agents that are loaded onto them from in vivo 

metabolization and elimination (thus optimizing the phar-

macokinetic profile of the antitumor agent), and to increase 

drug accumulation at the site of the tumor, thereby reducing 

the drug dose needed to obtain a greater antitumor effect and 

minimizing toxicity.7 Poly(alkylcyanoacrylates) have been 

used as promising nanoplatforms in targeted tissue/cell drug 

delivery, because of their well-known biodegradability and 

low toxicity in chronic treatments (multiple dosing), good tol-

erance, and biocompatibility.8–11 Furthermore, cell recovery 

after the metabolization of poly(alkylcyanoacrylate)-based 

nanoparticles (NPs) occurs easily in vivo, thanks to the 

very low contact time between healthy tissues and the 

NP biodegradation products that are carried away from 

the degradation site by the blood flow.12 These nanocar-

riers have been engineered for the efficient delivery of 

numerous anticancer drugs to the tumor site (targeted drug 

delivery), thus increasing the patient survival rate.13 In this 

regard, they have demonstrated a promising capacity to 

reverse the multidrug resistance mechanisms developed by 

malignant cells. For instance, the adsorption of drug-loaded 

poly(alkylcyanoacrylate) NPs onto the surface of cancer cells, 

along with the formation of drug–poly(cyanoacrylic acid) ion 

pairs (as polymer degradation occurs), has been described 

as preventing drug recognition by the P-glycoprotein.14 

Some authors have produced a large volume of particularly 

interesting work with respect to the development of DOX-

loaded poly(alkylcyanoacrylate) NP. However, their work is 

entirely focused on the application of such nanoplatforms to 

glioblastoma models.8,15–17 To the best of our knowledge, the 

possibilities of these DOX-loaded polymeric nanoplatforms 

have not been fully investigated in other cancer models, eg, 

that of breast cancers.

The present work, therefore, is devoted to the engineering 

of DOX-loaded poly(butylcyanoacrylate) (PBCA) NPs with 

the aim of optimizing DOX therapies used against breast 

cancers. To that end, the best formulation conditions have 

been investigated. Compared with the free drug, our nano-

particulate DOX delivery system gave rise to a significant 

enhancement of the in vitro antiproliferative efficacy of DOX 

molecules. In addition, in vivo experiments demonstrated that 

the DOX-loaded PBCA nanoparticulate formulations clearly 

reduced tumor growth without evidence of an associated 

systemic toxicity. Therefore, this (nano-)formulation may 

be a promising candidate for improving the efficacy of DOX 
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subsequent dropwise addition of an acetonic solution of the 

butylcyanoacrylate monomer (1%, w/v) containing increas-

ing concentrations of DOX (10-4, 5×10-4, 10-3, 5×10-3, and 

10-2 M). All other steps previously described to prepare the 

PBCA NPs remained unchanged. Finally, DOX surface 

adsorption was performed at 25.0°C±0.5°C by combining 

suspensions of PBCA NPs (≈2%, w/v) with aqueous DOX 

solutions of known concentrations (10-4, 5×10-4, 10-3, 5×10-3, 

and 10-2 M). The suspensions were then stirred (50 rpm) for 

24 hours. All experiments were performed in triplicate.

characterization methods
The geometry of the NPs was deduced from scanning 

electron microscopy images (Zeiss DSM 950 scanning 

electron microscope, Germany). Before taking images, a 

dilute aqueous NP suspension (≈0.1%, w/v) was sonicated 

for 5 minutes, and then drops of the suspension were placed 

on copper grids with Formvar film. The grids were then dried 

in a convection oven at 35.0°C±0.5°C.

Mean particle diameters were also determined in triplicate 

at 25.0°C±0.5°C by photon correlation spectroscopy (PCS) 

(Malvern Autosizer® 4700, Malvern Instruments Ltd., 

Malvern, UK), with the scattering angle set at 60°. Mea-

surements were made after suitably diluting the aqueous NP 

dispersions (≈0.1%, w/v). The stability of the DOX-loaded 

PBCA NPs was assessed by measuring both their size and 

DOX loading values after 1 month of storage in water at 

4.0°C±0.5°C. The surface electrical properties of the PBCA 

NPs (in a ≈0.1% w/v aqueous suspension) were examined 

by electrophoresis (Malvern Zetasizer 2000 electrophoresis 

device, Malvern Instruments Ltd.) at pH 4 (adjusted with the 

addition of 10-4 N HNO
3
) and in a 10-3 M KNO

3 
solution. 

Measurements were performed at 25.0°C±0.5°C, after the 

DOX solution and PCBA NP suspension had been mixed 

under mechanical stirring (200 rpm) for 24 hours at the same 

temperature. The experimental uncertainty of the measure-

ments was less than 5%. The O’Brien and White theory was 

used to convert the electrophoretic mobility (u
e
) data into 

zeta potential (ζ ) values.20

UV–Vis absorption measurements (8500 UV–Vis Dinko 

spectrophotometer, Dinko, Spain) to determine DOX con-

centration in all the systems investigated were conducted at 

the maximum absorbance wavelength (481 nm), using quartz 

cells of 1 cm path length. Good linearity was observed at this 

wavelength, and the method was validated and verified for 

accuracy, precision, and linearity in all conditions tested. The 

reproducibility of the drug solutions’ UV–Vis absorbance 

spectra was assured throughout the time period required 

for the experiments performed in this work by wrapping 

all glassware with aluminum foil to protect them against 

ambient light. DOX entrapment/adsorption measurements 

were carried out in triplicate by applying Beer’s law to the 

UV–Vis absorbance of the supernatant solutions obtained 

by filtration (see above). For the method to be accurate, we 

considered the contribution to the absorbance of sources other 

than variations in drug concentration (mainly the presence 

of Pluronic® F-68 [Sigma-Aldrich] and PBCA degradation 

products in the supernatant solutions) by subtracting the 

absorbance of the supernatant produced under the same 

conditions but without DOX.21–23

DOX incorporation to the PBCA NPs was expressed in 

terms of drug entrapment efficiency (%) and drug loading (%). 

These parameters were calculated as follows:

Drug entrapment 

efficeiency (%)

Mass of drug incorporated 
=

((mg)

Initial drug added to the 

suspension (mg)

×100

 (1)

 Drug loading
Massof drug incorporated mg

Massof PBCA NPs mg
(%)

( )

( )
= ××100

 
(2)

In vitro release of doxorubicin from 
poly(butylcyanoacrylate) nanoparticles
The dialysis bag method was used in triplicate to subsequently 

determine the amount of DOX released from PBCA NPs 

after its incorporation. Concretely, this characterization was 

performed on the PBCA NPs with the highest drug entrapment 

efficiencies (Figure 1B), ie, ≈22.3% for the adsorption method 

and ≈49.3% for the entrapment technique. Phosphate buffered 

saline (PBS) (pH =7.4±0.1) maintained at 37.0°C±0.5°C was 

used as the release medium for all of the experiments. The 

dialysis bag (2,000 Da cutoff; Spectrum® Spectra/Por® 6 dialy-

sis membrane tubing, Spectrum Laboratories, Inc., Rancho 

Dominguez, CA, USA) retained the NPs and allowed the free 

DOX molecules to diffuse into the dissolution medium. About 

2 mL of a drug-loaded PBCA NP suspension (containing  

2 mg/mL of DOX) was poured into the bags (previously soaked 

in water for 12 h) with the two ends held by clamps. The bags 

were then placed in a conical flask containing 50 mL of the 

receiving phase (PBS, pH 7.4), which was stirred at 250 rpm. 

At predetermined times (0.08, 0.25, 0.50, 0.75, 1, 2, 3, 6, 12, 

and 24 hours), 3 mL samples of the receiving phase were 

withdrawn for UV–Vis analysis at 481 nm. An equal volume 

of PBS, maintained at the same temperature, was added to 

the release medium after sampling to ensure sink conditions.
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Figure 1 Doxorubicin-loaded PBca NPs.
Notes: scanning electron microscope picture of PBca NPs (A). Scale bar: 150 nm. DOX entrapment efficiency (%) (B), and DOX loading (%) (C) values on the surface of 
(adsorption procedure, open symbols: □), and within (entrapment procedure, full symbols: ■) PBca NPs, as a function of the initial drug concentration (the lines are guides 
to the eye). release of previously entrapped (full symbols: ■) or adsorbed (open symbols: □) doxorubicin from PBca NPs as a function of the incubation time in PBs, at 
ph =7.4±0.1 and 37.0°c±0.5°c (D).
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles; PBs, phosphate buffered saline.

cell culture
The MCF-7 human breast cancer cell line (European Collection 

of Cell Culture) and E0771 mouse breast cancer cell line (iso-

lated from an immunocompetent C57BL/6 mouse and provided 

by Robin Anderson from Peter MacCallum Cancer Center, East 

Melbourne, Australia) were used. Both estrogen receptor-pos-

itive cell lines were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) (Sigma-Aldrich) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS) and 10 mM HEPES 

(4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) buffer, 

then maintained in a monolayer culture at 37.0°C±0.5°C under 

a humidified atmosphere of 5% CO
2
 in air.

cytotoxicity assay
Cells were seeded into 24-well plates (104 cells/well for MCF-7, 

1.5×104 cells/well for E0771) and incubated with increasing 

concentrations of free DOX (0.05–5.00 μM), DOX-loaded 

PBCA NPs (equal to 0.05–5.00 μM of free DOX) and blank 

PBCA NPs (ie, with no DOX loading, and at similar dilutions 

to drug-loaded NPs). Cytotoxic activity was assessed by deter-

mining the 50% inhibitory concentration (IC
50

) values obtained 

from the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromide-based colorimetric assay (MTT assay). After 8, 24, and 

48 hours of incubation, 20 μL of an MTT solution (5 mg/mL of 

cell culture medium) was added to each well. After incubation 

for 4 hours at 37°C±0.5°C, the culture medium was removed, 

and the resultant formazan crystals were dissolved in 200 μL of 

dimethyl sulfoxide (DMSO). The absorbance of the converted 

dye, which is proportional to the number of viable cells, was 

measured at 570 and 690 nm using a Titertek Multiskan™ 

colorimeter (Flow Laboratories, Irvine, UK). The percentage of 

surviving cells was expressed as relative growth rates (RGR, %)  

and was calculated as follows:

 
RGR

Absorbance of thesample

Absorbance of the negativecontrol
(%) = ××100  (3)
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Intracellular uptake of doxorubicin
The intracellular distribution of free DOX and DOX derived 

from drug-loaded PBCA NPs was visualized by fluorescence 

microscopy. MCF-7 and E0771 cells were seeded into 8-well 

chamber slides (BD Biosciences, Erembodegem, Belgium) 

(5×103 cells/well) in 300 μL of DMEM. According to Li 

et al25 the cells were incubated with high doses of free DOX 

(10.0 and 43.1 μM) and DOX-loaded PBCA NPs (equal 

to 10.0 and 43.1 μM of free DOX) for different periods 

(from 1 to 24 h). A 100 nM solution of 4′,6-diamidino-2-

phenylindole, DAPI, (Invitrogen™, Thermo Fisher Scien-

tific, Waltham, MA, USA) was used for nuclear staining. The 

cells were then rinsed with PBS, mounted, and examined 

with fluorescent microscopy (Nikon Eclipse 50i microscope, 

Nikon Instruments Inc., Melville, NY, USA). DOX was 

excited at 570 nm and DAPI nuclear stains at 358 nm. 

In addition, FACScan (Becton Dickinson, San Jose, CA, 

USA) was used for the quantification of DOX incorporation 

by cells. Cells were seeded in 6-well plates (1.5×105 cells/

well) in 2 mL of DMEM. After short incubations with DOX 

and DOX-loaded PBCA NPs (for 0.5, 1, 1.5, 2, and 4 h), the 

cells were washed with PBS. They were then harvested with 

a solution of PBS-ethylene-diamine-tetraacetic acid (0.02%) 

(EDTA), transferred to universal screw cap tubes, centrifuged 

(600× g for 5 min), and washed twice with PBS. FACScan 

analysis was used to obtain the mean value of fluorescence. 

The increase in mean fluorescence (IMF, %) was calculated 

as follows:

 IMF

Mean fluorescence after treatment

basal mean fluorescenc
(%) =

−
ee

Basal mean fluorescence
×100  (4)

Transmission electron microscopy
Parental MCF-7 cells (control) and MCF-7 cells treated 

with DOX-loaded PBCA NPs (25 μg/mL) were fixed with 

2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) 

at 25.0°C±0.5°C for 1 hour. Postfixation was performed 

at 25.0°C±0.5°C for 2 hours with 1% osmium tetroxide 

(OsO
4
) in cacodylate buffer (pH 7.2), and sections were then 

dehydrated in 100% ethanol before a final dehydration in 

propylene oxide. Samples were then embedded in Epon 812 

resin. Ultrathin sections were stained with uranyl acetate and 

lead citrate, and then analyzed by optical and transmission 

electronic microscopy (Hitachi H7000 transmission electron 

microscope, Tokyo, Japan).24

Tumor induction and treatment
Female C57BL/6 mice (Scientific Instrumentation Center, 

University of Granada) were used in the in vivo study. All 

mice (body weight: 25–30 g) were maintained in a laminar 

airflow cabinet placed in a room maintained at 37.0°C±0.5°C 

and 40%–70% relative humidity, with a 12-hour light/dark 

cycle under specific pathogen-free conditions. The study was 

approved by the Ethics Committee of the School of Medi-

cine (University of Granada) and performed according to its 

guidelines. Pilot experiments were previously conducted to 

determine the number of malignant cells for subcutaneous 

injection. After that, tumors were induced by subcutane-

ous injection of 5×105 E0771 cells into the left flanks of 

C57BL/6 mice. When the tumor was palpable, animals were 

randomly divided into four groups (n=10) corresponding 

to the treatments with saline solution (group I), free DOX 

solution (group II), blank PBCA NPs (with no DOX loading) 

(group III), and DOX-loaded PBCA NPs (group IV). The 

doses of DOX administered were 10 mg/kg of body mass in 

all of the formulations containing the antitumor drug. Each 

mouse was intravenously administered the formulation every 

3 days up to a total number of 5 times. Weights and deaths 

were carefully recorded throughout the period, and the 

tumors’ largest diameter a plus the second largest diameter b 

perpendicular to a was measured using a digital calliper. The 

tumor volume (V, mm3) was calculated as follows:

 V
a b

( )mm3
2

6
=

⋅ ⋅ π
 (5)

statistical analysis
Statistical analysis was performed by using the Student’s 

t-test (SPSS version 7.5, SPSS, Chicago, IL, USA). Data 

with P0.05 and P0.001 were considered significant and 

very significant, respectively. A Kaplan–Meier method was 

used to determine the probability of mice survival, and the 

log-rank test was used to compare the fraction of surviving 

mice between groups (α=0.05).

Results
Particle geometry and surface electrical 
properties
The synthesis of PBCA NPs following an emulsion/

polymerization method allowed, in agreement with previous 

studies, the formation of highly stabile spherical particles 

with a narrow colloidal size distribution (average diameter of 

135±20 nm with a polydispersity index of 0.071, Figure 1A); 
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as such, they are well suited to parenteral administration.22,25 

DOX loading did not influence either the NP geometry or 

the quality of the nanoparticulate suspensions. Finally, PCS 

measurements after 1 month of storage at 4.0°C±0.5°C in 

water confirmed that the size of the particles did not change. 

In addition, there was no observation of the formation of 

bulky sediments or aggregates, NP aggregation or DOX 

precipitation, and/or release during this time period. There-

fore, if the (nano-)preparations were not used directly once 

prepared, they were kept under these storage conditions until 

used. Finally, the electrokinetic characterization of the PBCA 

NPs (≈0.1%, w/v aqueous suspension) (ζ=-3.6±0.2 mV, at 

pH 4, 25.0°C±0.5°C and 10-3 M KNO
3
) was in agreement 

with previous electrophoretic studies on PBCA NPs in which 

a negative surface charge was observed at pHs 3.26

Doxorubicin loading to 
poly(butylcyanoacrylate) nanoparticles
We first investigated the influence of the drug-loading pro-

cedure on the quantity of DOX incorporated by the PBCA 

NPs: drug entrapment within the PBCA (nano-)matrix, and 

DOX surface adsorption onto previously synthesized PBCA 

NPs (see above). Interestingly, compared with DOX adsorp-

tion onto the NP surfaces, both the entrapment efficiency (%) 

and the drug loading (%) were significantly enhanced when 

DOX was entrapped within the NP matrices, independent of 

the initial DOX concentration. For instance, when the initial 

drug concentration was 0.01 M, these parameters, respec-

tively, increased from 22.3%±2.4% and 3.6%±0.4%, when 

DOX was adsorbed onto the NP surface, to 49.3%±3.1% and 

14.8%±0.9%, when the drug was entrapped within the NP net-

work (Figure 1B and C). Finally, drug concentration positively 

influenced DOX incorporation to the PBCA NPs, for both of 

the drug-loading procedures employed (entrapment and sur-

face adsorption). In the case of the adsorption method, over 

the range of initial DOX concentrations from 10-5 to 10-2 M, 

the entrapment efficiency and drug loading values increased 

from 3.4%±0.8% and 0.006%±0.001% up to 22.3%±2.4% 

and 3.6%±0.4%, respectively. For the entrapment tech-

nique, the corresponding values rose from 7.2%±1.1% and 

0.022%±0.001% to 49.3%±3.1% and 14.8%±0.9%, respec-

tively, over the same initial DOX concentration range (10–5 to 

10–2 M). In any case, a tendency toward saturation at higher 

concentrations was apparent (Figure 1B).

Doxorubicin release from 
poly(butylcyanoacrylate) nanoparticles
DOX release from PBCA NPs at pH 7.4 and 37.0°C showed 

a biphasic, sustained process that was characterized by an 

initial rapid, burst phase (up to ≈37% and ≈64% drug released 

in 1 hour for the cases of DOX entrapment within NPs and 

surface adsorption onto NPs, respectively), followed by a 

more sustained release of the remaining DOX molecules 

over a period of 23 hours for DOX entrapment and 5 hours 

for surface adsorption (Figure 1D). Taking our results into 

consideration, we decided to perform all in vitro and in vivo 

antitumor studies using the PBCA NPs that had the high-

est DOX entrapment efficiency (ie, ≈49%, Figure 1B) and 

that were characterized by a sustained drug release profile 

(Figure 1D): therefore, we used DOX-loaded NPs that were 

synthesized by the entrapment procedure using a fixed initial 

drug concentration of 0.01 M.

cytotoxicity of doxorubicin-loaded 
poly(butylcyanoacrylate) nanoparticles
Before the antitumor tests, the toxicity of blank PBCA 

NPs (with no DOX loading) was investigated in MCF-7 

and E0771 cells. No significant differences were observed 

between the negative control and the cells exposed to increas-

ing concentrations of PBCA NPs (Figure 2). Thus, the lack of 

cytotoxicity of the PBCA NPs alone meant they could safely 

be used as drug carriers. On the other hand, the cytotoxicity 

of DOX-loaded PBCA NPs against MCF-7 breast carcinoma 

cells (IC
50

: 0.5 μM) was significantly greater than that of free 

DOX (IC
50

: 2 μM) (P0.001) after 8 hours of incubation. 

This difference between the IC
50 

of DOX-loaded PBCA 

NPs and free DOX could still be observed after 48 hours of 

incubation (Figure 3A). In addition, the IC
50

 of DOX-loaded 

Figure 2 In vitro cytotoxicity of PBca NPs in McF-7 and e0771 cell lines.
Notes: growth of McF-7 and e0771 cells was evaluated after 48 h of exposure to 
a wide range of PBca NP concentrations (0.1–5.0 μM). Data represented as the 
mean value ± sD of quadruplicate cultures.
Abbreviations: PBca NPs, poly(butylcyanoacrylate) nanoparticles; sD, standard 
deviation; h, hours; NPs, nanoparticles.
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Figure 3 In vitro cytotoxicity of DOX-loaded PBca NPs in McF-7 (A) and e0771 (B) cells. growth inhibition was evaluated after 8, 24, and 48 h exposure to DOX-loaded 
PBCA NPs in comparison with free DOX. The percentage of survival was determined by normalizing the absorbance of controls to 100%. Data represented as the mean 
value ± sD of quadruplicate cultures.
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles; DOX-NPs, DOX-loaded PBca NPs; rgr, relative growth rates; sD, standard 
deviation; h, hours.

PBCA NPs in E0771 cells was significantly lower than the 

IC
50

 of the free antitumor drug (P0.05). DOX loaded within 

PBCA NPs yielded an IC
50 

(0.2 μM) 15 times lower than 

that of free DOX (IC
50

: 3 μM) after 8 hours of exposure and 

21.7 times lower (0.06 μM) after 48 hours of exposure (free 

DOX IC
50

: 1.3 μM) (Figure 3B).

Distribution of doxorubicin-loaded 
poly(butylcyanoacrylate) nanoparticles
MCF-7 and E0771 cell lines treated with DOX-loaded 

PBCA NPs and free DOX at different times and concentra-

tions were visualized by fluorescence microscopy. At any 

given moment, DOX-loaded PBCA NPs induced a more 
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intense fluorescence (in both cytoplasm and nucleus) than 

free DOX, suggesting a greater DOX uptake by malignant 

cells (incorporation into the nucleus) when drug molecules 

were loaded within/onto NPs (Figure 4). Both cell lines were 

characterized by a similar drug incorporation and intracel-

lular drug localization.

Facscan analysis of doxorubicin 
location inside cells
To evaluate drug accumulation inside the malignant cells, we 

conducted a fluorocytometric analysis during the first hours of 

the treatment (Figure 5). When MCF-7 cells were incubated with 

high doses of DOX-loaded NPs for 0.5, 1, 1.5, 2, and 4 hours, 

relative increases in fluorescence were observed (51.9%, 42.7%, 

50.6%, 33.1%, and 34.2%, respectively) in comparison with 

tumor cells treated with free DOX (Figure 5A). Qualitatively, 

similar results were obtained for E0771 cells when comparing 

DOX-loaded NPs and free DOX, where the relative increases 

in fluorescence after the same periods of exposure were 53.0%, 

29.4%, 26.7%, 35.8%, and 15.5%, respectively (Figure 5B). 

This finding could be the consequence of a greater and 

more rapid DOX uptake when the drug is encapsulated within 

the PBCA NPs. As a result, a higher DOX concentration within 

the cell nucleus was maintained at all times.

′

′

′

′

′

′

Figure 4 Fluorescence microscopy analysis of the intracellular presence of DOX in McF-7 (A) and e0771 (B) cells.
Notes: Fluorescence studies showed that the accumulation of intracellular DOX in cells treated with DOX-loaded PBca NPs was always greater than intracellular DOX 
accumulation in cells treated with free DOX. The images are representative of treatment with the highest and lowest concentrations of free DOX (a, b, c) and DOX-loaded 
PBca NPs (a′, b′, c′): a and a′, 43.1 μM for 1 h; b and b′, 10 μM for 1 h; c and c′, 10 μM for 24 h. all images are at a 40× magnification.
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles; h, hours; DaPI, 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride.
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Figure 5 Fluorocytometric analysis of the intracellular presence of DOX in McF-7 (A) and e0771 (B) cells.
Notes: representative image of the Facscan analysis and mean values of untreated cells and cells treated with free DOX and DOX-loaded PBca NPs (DOX-NPs) at the 
highest concentration (43.1 μM) over a 4 h period.
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles; h, hours.

Ultrastructural changes in breast cancer 
cells treated with doxorubicin-loaded 
poly(butylcyanoacrylate) nanoparticles
MCF-7 cells were assessed using transmission electron 

microscopy to determine the nature of any ultrastructural 

changes. As shown in Figure 6, treatment with both free DOX 

and DOX-loaded PBCA NPs caused dramatic changes in the 

cell nucleus after 4 hours of exposure to the drug. However, 

only DOX-loaded PBCA NPs induced significant nuclear 

alterations even after just 1 hour of exposure. In addition, 

MCF-7 cells treated with DOX-loaded NPs showed higher 

levels of mitochondrial damage compared with cells treated 

with free DOX for the same period and at the same concen-

tration. Finally, neither of the treatments induced significant 

differences in other cytoplasm structures.

In vivo breast cancer growth suppression 
and mice survival
The potential of DOX-loaded PBCA NPs to improve in vivo 

tumor cell death rates was evaluated using subcutaneous 

E0117 tumor-bearing immunocompetent C57BL/6 mice. The 

intravenous administration of DOX-loaded NPs was able to 

induce a significant inhibition of tumor growth (Figure 7). 

In fact, tumor volumes of mice treated with DOX-loaded 

NPs were significantly smaller than those of control mice 

(P0.01). At the end of the in vivo study (day 33), tumor 

growth was inhibited by up to 40% in mice treated with DOX-

loaded NPs compared with mice treated with free DOX. The 

intravenous injection of blank NPs did not influence the typi-

cal growth of untreated control tumors. On the other hand, 

both treatments (free DOX and DOX-loaded NPs) permitted 
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Figure 6 Ultrastructural analysis of McF-7 cells.
Notes: McF-7 parental cells showed a large nucleus and a light cytoplasmic complexion containing well-preserved organelles including mitochondria (A). Treatment with 
free DOX (43.1 μM for 1 hour) induced nuclear alteration (arrows) (B). however, exposure of McF-7 to DOX-loaded PBca NPs at the same concentration and for the 
same time period resulted in major damage to the nuclei and produced a large number of altered mitochondria with disrupted cristae (arrows) (C and D). all images are at 
a 2,000× magnification.
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles.

Figure 7 effect of DOX-loaded PBca NPs on the growth of subcutaneous tumors induced by e0771 murine breast cancer cells in immunocompetent c57Bl/6 mice.
Notes: (A) Tumor volume variation after treatments. The DOX-loaded PBCA NPs demonstrated a significant increase in tumor inhibition (*P0.01, compared with the 
control and blank NPs; **P0.05, compared with free DOX). Data represented as the mean ± seM (n=10). (B) representative gross appearance of tumors excised from mice 
that died during treatment with DOX and with DOX-loaded NPs after 9, 24, and 33 d plus tumors taken from untreated mice after the same time intervals.
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles; seM, standard error of the mean; DOX-NPs, DOX-loaded PBca NPs; PBca, 
poly(butylcyanoacrylate); NPs, nanoparticles.
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a greater survival in comparison with the control group and 

the blank NPs group. The Kaplan–Meier curve also showed 

a 0.2-fold increase in the fraction of surviving mice when 

treated with DOX-loaded NPs in comparison with mice 

treated with free DOX (Figure 8). However, this increase 

was not significant according to the log-rank test.

In vivo toxicity
Body weight of the mice was monitored as a clinical sign of 

the in vivo toxicity of the treatment. According to Figure 9, 

mice treated with blank NPs showed neither increased mor-

tality nor noticeable losses of body weight compared with 

the controls. In contrast, mice treated with free DOX and 

DOX-loaded PBCA NPs showed a significant loss in body 

weight compared with the controls (P0.001). Interest-

ingly, during the treatment administration period (15 days), 

the weight loss was statistically lower (P0.001) in mice 

treated with DOX-loaded PBCA NPs than in those treated 

with free DOX, suggesting that NPs decreased drug toxic-

ity. After withdrawing the treatment, both groups recovered 

their body weight, resulting in similar values at the end of 

the experiment (33 days).

Discussion
In the present study, we reported a DOX-loaded PBCA 

nanoparticulate system that demonstrated significantly more 

in vitro activity against breast cancer tumor cells than the 

free antitumor drug, doxorubicin, inducing a 40% relative 

decrease in in vivo tumor growth when administered intra-

venously. Furthermore, the polymeric nanocarrier was able 

to reduce systemic toxicity, at least throughout the duration 

of the treatment. These results suggest that PBCA NPs may 

improve the efficacy of DOX therapies against advanced 

breast cancers.

We have developed a reproducible synthesis procedure 

for the formulation of DOX-loaded PBCA NPs to target 

breast cancer cells. The synthesis methodology is based on 

the emulsion/polymerization of butylcyanoacrylate monomer 

in an aqueous solution.18,19 The procedure afforded the syn-

thesis of spherical, stable DOX-loaded NPs with a number 

average diameter 160 nm (Figure 1A). These relatively 

small particles are expected to facilitate the uptake and accu-

mulation of DOX by and within malignant cells. In fact, it has 

been stated that drug carriers ranging from 100 to 200 nm in 

size enter cancer cells by receptor-mediated endocytosis.27 

The optimum synthesis conditions were taken as those that 

yielded the highest drug entrapment efficiencies and drug 

loading values (Figure 1B and C). In detail, the drug entrap-

ment procedure yielded the best DOX loading values, as is 

generally the case when drug molecules are added to the 

cyanoacrylate monomer solution before NP formation. This 

is probably due to the difficulty experienced by the antitumor 

drug in breaking away from the growing polymeric (nano-)

network once it is entrapped within it.19 In addition, a strong 

interaction between DOX molecules and the growing PBCA 

network has previously been described during emulsion/

polymerization synthesis, a consequence of hydrogen bond 

formation between the drug’s ammonium groups and the 

PBCA’s cyano groups.28

Despite the fact that an attractive electrostatic interaction 

may exist between the positively charged drug molecules 

and the negatively charged polymeric surface, DOX load-

ing values (%) for the surface adsorption method can be 

considered relatively low (4%) (Figure 1C).29,30 In fact, the 

approximation of this hydrophilic chemotherapy agent from 

the aqueous phase to the hydrophobic NP surface is expected 

to be thermodynamically unfavorable (when considering the 

decimal logarithm of the partitioning coefficient at pH 5.8 in 

an n-octanol/water system [log
10

D
oct/water

] =-0.45).26,31

Regarding the initial drug concentration, a positive effect 

on drug vehiculization was observed upon increasing [DOX] 

in the aqueous solution, as has been reported previously 

with other drugs.19,22 We did not investigate the influence of 

either monomer or stabilizing agent concentrations on drug 

entrapment because no relevant effect had previously been 

reported.22,25,32,33

Figure 8 Kaplan–Meier curves of mice bearing subcutaneous breast tumors.
Notes: Data were analyzed according to the mice survival in each group (n=10). 
comparison between treatment groups was performed with the use of the log-rank 
test (P0.05).
Abbreviations: DOX, doxorubicin; DOX-NPs, DOX-loaded PBca NPs; NP, 
nanoparticle.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1302

cabeza et al

With respect to previously published investigations into 

the development of DOX-loaded poly(alkylcyanoacrylate) 

NPs, although it has been demonstrated that 80% of the 

drug used in DOX loading experiments can be associated 

with the NPs, the mean particle size of these nanoformu-

lations (ie, 270±30 nm) is greater than the one obtained 

when following the synthesis described in this contribution 

(ie, 135±20 nm).8 Thus, a more favorable biological fate 

of the targeted drug-delivery system can be expected for 

the case of the nanoformulation developed by our research 

group.

DOX release from PBCA NPs at pH 7.4 and 37°C exhib-

ited a biphasic, sustained profile (Figure 1D), characteristic 

of this polymer family, which could be a consequence of NP 

disintegration via surface erosion, drug diffusion through 

the polymeric matrix, or both.19,22,34,35 More specifically, the 

rapid drug release during the first phase could be due to the 

loss of DOX–molecules that are surface associated and/or 

poorly entrapped (only adsorbed to the surface pores). These 

molecules rapidly diffused into the incubation medium. On 

the contrary, DOX release during the slower second phase 

may correspond to the fraction of the drug that is embedded 

deeply within the PBCA (nano-)matrix and that must follow 

a longer diffusion path before release into the surrounding 

medium. Finally, the faster release of DOX that occurs when 

the drug is adsorbed onto the NP surface may well be due 

to the weak physisorption of the hydrophilic drug onto the 

hydrophobic PBCA surface.

In order to define the antitumor activity of DOX-loaded 

PBCA NPs, they were tested in human MCF-7 and mouse 

E0771 breast cancer cell lines. No toxicity has been reported 

for the PBCA NPs, thus indicating that they provide a safe 

method for transporting biomolecules within living systems, 

and that any cytotoxic effects were only due to the loaded drug 

molecules. Interestingly, DOX-loaded PBCA NPs induced a 

greater inhibition of cell proliferation than free DOX in both 

cell lines, and in only a very short exposure time (8 h). After 

48 hours, DOX-loaded NPs induced a significant decrease of  

the IC
50 

in MCF-7 and E0771 cells in comparison with free DOX. 

To date, no significant increase in the antitumor DOX activity 

using poly(alkylcyanoacrylate) NPs has been described. Pre-

viously, DOX-loaded poly(isohexylcyanoacrylate) (PIHCA) 

NPs demonstrated some benefit in terms of cell cytotoxicity.36 

Recently, Wohlfart et al37,38 reported a significant but lesser 

increase in DOX activity in 101/8 rat glioblastoma cells using 

DOX-loaded PIHCA NPs. Duan et al39 also demonstrated a sig-

nificant decrease in the IC
50

 of DOX-loaded PBCA NPs in rela-

tion to free DOX, but only when the NPs were surface modified 

with folic acid. The same authors demonstrated a reduction 

in the viability of MCF-7 cells using DOX-cyanoacrylate, 

thanks to the down-regulation of P-glycoprotein and to the 

coadministration of curcumin.40 Although the cytotoxicity of 

Figure 9 evolution of body weight of immunocompetent c57Bl/6 mice during and after treatment.
Notes: Weight of mice was measured every 3 d. During and after treatment, treatment with blank NPs did not induce significant weight losses compared with the controls. 
In contrast, treatment with free DOX and DOX-loaded PBCA NPs always induced a significant mouse body weight loss with respect to the controls (P0.001). however, 
the loss induced by treatment with DOX-loaded PBCA NPs was significantly lower (*P0.001) than the loss caused by free DOX. Data represented as the mean value ± 
sD (n=10).
Abbreviations: DOX, doxorubicin; PBca NPs, poly(butylcyanoacrylate) nanoparticles; d, days; sD, standard deviation; DOX-NPs, DOX-loaded PBca NPs.
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anthracyclines has been observed to increase when entrapped 

within PBCA NPs, the mechanism of modulation of this drug 

activity has not yet been determined. One possibility is the 

use of surfactants that can act upon resistant mechanisms or 

enhance the plasma membrane permeability.41,42 In fact, it has 

been proposed that the presence of Pluronic® F-68 (Sigma-

Aldrich) (a nonionic surfactant), which was used to synthesize 

the DOX-loaded PBCA NPs in the present study, may lead to 

an increased cytotoxicity.43,44

Fluorescence microscopy and flow cytometry analysis 

were employed in an attempt to explain the enhancement of 

DOX cytotoxicity when the drug was incorporated within/

on the surface of PBCA NPs. A greater DOX concentration 

was observed within malignant cells compared with the use 

of free DOX, thus suggesting that the NPs can improve drug 

incorporation into the cells. In fact, different intracellular 

concentrations and locations (nucleus or cytoplasm) have 

been reported when DOX is loaded within/on the surface 

of the NPs compared with the concentrations attained when 

using free DOX–this has been attributed to a simple diffusion 

or endocytosis process.45,46 Free DOX and DOX-loaded NPs 

predominantly situated themselves within the nucleus of both 

MCF7 and E0771 cells. However, when the antitumor drug 

was loaded in NPs, DOX also accumulated in the cytoplasm 

after a short period of exposure. Reasons justifying the dif-

ferent DOX accumulation profiles inside malignant cells are 

lacking. Some authors have hypothesized that the presence of 

surfactants (eg, Pluronic® F-68, Sigma-Aldrich) could alter 

the membrane transport proteins, thus enhancing drug entry 

into tumor cells.43,44 Whatever the reason, the higher DOX 

concentration inside MCF-7 cells (when it is delivered via 

loaded NPs) could explain the significant mitochondrial dam-

age and nuclear alterations observed through transmission 

electron microscopy. In fact, morphological and ultrastruc-

tural changes caused by DOX in H9C2 rat myoblast cells 

(chromatin clumping, swollen mitochondria, disruption of the 

nuclear membrane structure, and cytoplasm vacuolization) 

were directly associated with the drug concentration.47 The 

actual mechanism(s) that results in the significantly higher 

cytotoxicity of DOX-loaded PBCA NPs against MCF-7 and 

E0771 cells compared with the cytotoxicity of free DOX is 

not clear. It is known that, whereas the free drug enters cells 

by simple diffusion, drug-loaded NPs may provide a different 

cell entry mechanism such as endocytosis, pinocytosis, or 

phagocytosis, which is still under discussion.48,49 It has been 

suggested that drug-loaded NPs are too large to pass through 

both the plasma and nuclear membranes. Thus, the presence 

of the drug within the cell nucleus must occur only once it 

has been released from inside the NPs.50,51 The significant 

decrease in DOX IC
50

 values in our cell lines after treatment 

with DOX-loaded PBCA NPs could be explained by the 

greater degree of drug incorporation into the cell when the NP 

biodegrades in the endosome and releases the DOX before 

finally reaching the nucleus.51,52

On the other hand, when DOX-loaded PBCA NPs were 

administered to tumor-bearing mice, a significantly greater 

inhibition of tumor growth (40%) was obtained in comparison 

with free DOX. This observation represents a substantial 

improvement in drug activity against breast cancer tumors. 

Our results demonstrated a similar or greater breast cancer 

growth inhibition when compared with the literature.53–55  

In the latter case, for example, a triblock N-(2-hydroxypropyl)

methacrylamide (HPMA) copolymer loaded with DOX 

molecules has demonstrated a 26-fold increase in the IC
50 

of 

the drug against 4T1 mammary carcinoma cells, but a mere 

21.4% tumor growth inhibition compared with the free drug.56 

The in vivo results reported here for DOX-loaded PBCA 

NPs can be directly related to the greater in vitro effect of 

DOX-loaded NPs. However, the use of NPs by itself could 

increase the concentration of drug inside the tumor tissue, 

where an enhanced permeability and retention (EPR) effect 

and a low lymphatic macromolecular clearance exist.57 Fur-

thermore, one of our main findings was the lower toxicity 

induced by the DOX-loaded PBCA NP treatment in relation 

to treatment with free DOX. Following the work of Yang 

et al56 who reduced DOX toxicity using a block copolymer 

DOX conjugate, we assessed the fluctuation of mice body 

weight to determine the toxicity of the in vivo treatment. 

Our results showed a similar weight evolution for both 

untreated mice and mice treated with blank NPs. In contrast, 

a 15-day treatment with DOX-loaded PBCA NPs resulted in 

the DOX causing a significant body weight loss in relation 

to the controls. Interestingly, this weight loss of body mass 

was statistically lower (P0.01) with DOX-loaded PBCA 

NPs than free DOX, suggesting that loading DOX within/

onto NPs decreased its toxicity. After withdrawing the treat-

ment, body weight was recovered by both groups, being 

similar at the end of the experiment (33 days). In contrast, 

others’ studies showed no significant differences in mice 

body weight between treatments with DOX-loaded PBCA 

NPs and those employing free DOX, although for the case 

in reference both treatments were assayed in intracranial 

gliomas.58 However, despite the positive results obtained in 

terms of reducing tumor growth and drug toxicity, the treat-

ment schedule described here was not enough to ensure a 

clear and significant modulation in mouse survival – probably 
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related to the relatively short treatment period. Nevertheless, 

the increased antitumor activity of DOX against breast cancer 

cells when loaded within/onto PBCA NPs could be used to 

reduce the therapeutic dose of the drug as part of a strategy 

to limit its side effects.

Certainly, other nanosystems for DOX release such 

as lipid vesicles or liposomes with a high biodegradabil-

ity and biocompatibility also offer advantages in breast 

cancer treatment.59 Strategies that include targeting ligands 

on DOX-loaded lipid vesicles, which are accessible by 

tumor acidification, have allowed the release of drugs after 

NP endocytosis. This system increased the percentage of in 

vitro cell death by almost threefold.60 In addition, in murine 

xenograft models, lipid vesicles with DOX-loaded pH-

triggered anti-HER2/neu cells showed a greater reduction in 

tumor volume compared with FDA-approved DOX-loaded 

vesicles.61 However, the clinical application of lipid vesicles 

or liposomes requires optimization in terms of both size and 

surface to resolve some of their disadvantages, such as their 

rapid renal clearance, recognition by the reticuloendothelial 

system, or low penetration in tumors. By contrast, polymeric 

NPs similar to those used here have already demonstrated a 

homogeneous size, a greater ability to solubilize hydropho-

bic drugs, a sustained release of the drug plus highly stable 

and customizable physicochemical properties, which means 

they will be accepted for clinical use in the near future.62 

Further assays involving both NP types will be necessary to 

obtain a quantitative improvement in the response of breast 

cancer patients.

Conclusion
We have reported the optimal preparation conditions required 

to synthesize DOX-loaded PBCA NPs suitable for parenteral 

administration. Compared with surface adsorption, DOX 

incorporation within the NP matrix during the polymerization 

process has led to greater drug loading values and a slower 

drug release profile. The preclinical in vitro results described 

here have demonstrated the efficacy of DOX-loaded NPs 

against human and mouse breast carcinoma cells, given the 

important reduction of the IC
50

. In vivo studies have shown 

that DOX-loaded NPs can induce a significant inhibition 

of tumor growth and that the use of PBCA NPs reduces 

DOX toxicity. These results suggest that PBCA NPs may 

be used to improve the efficacy of DOX therapies against 

advanced breast cancers. The greater antitumor activity of 

DOX-loaded PBCA NPs could be used to reduce the dose 

of DOX needed to obtain an adequate antitumor effect but 

with almost negligible toxicity.
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