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Abstract: The β-thalassemias are a group of hereditary hematological diseases caused by over 

300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes 

are among the most impactful diseases in developing countries, in which the lack of genetic 

counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency 

of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen 

steadily accelerating progress and has reached a crossroads in its development. Presently, data 

from past and ongoing clinical trials guide the design of further clinical and preclinical studies 

based on gene augmentation, while fundamental insights into globin switching and new technol-

ogy developments have inspired the investigation of novel gene-therapy approaches. Moreover, 

human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of 

choice to date whereas future gene-therapy studies might increasingly draw on induced pluripo-

tent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene 

therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia 

model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches 

including the latest results of clinical trials; and for novel approaches, such as transgene-mediated 

activation of γ-globin and genome editing using designer nucleases.

Keywords: Thalassemia, gene therapy, HbF induction, transcription factors, induced pluripotent 

stem cells, genome  editing, TALEN, CRISPR, ZFN

Introduction
The β-thalassemias are a group of hereditary hematological diseases caused by over 

300 mutations of the adult β-globin gene,1 with excellent reviews providing background 

information outlining genetics,2–4 pathophysiology,5,6 and therapeutics7 of β-thalassemia 

that is beyond the scope of this review. In brief, β-thalassemia is brought about by 

mutations reducing or abrogating β-globin expression, which thus lead to reduced adult 

hemoglobin ([HbA] an α
2
β

2
 heterotetramer) and excess α-globin content in erythroid 

cells, in turn resulting in ineffective erythropoiesis and apoptosis in the erythroid lin-

eage.3,8,9 Most β-thalassemia patients therefore require lifelong clinical management 

by blood transfusion and chelation therapy,10–12 with a few having the option of cura-

tive but potentially hazardous allogeneic transplantation of hematopoietic stem and 

progenitor cells (HSPCs) instead.13,14 This indicates the need for alternative therapies, 

and the observation that high levels of the fetal β-globin-like γ-globin chain result in an 

ameliorated β-thalassemia phenotype15 has prompted the search for γ-globin-inducing 

chemical agents.16–21 Patient response to known γ-globin inducers, however, is varied,22 

Jo
ur

na
l o

f B
lo

od
 M

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/JBM.S46256
mailto:gam@unife.it


Journal of Blood Medicine 2015:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

70

Finotti et al

and the search continues for reagents with higher efficiency, 

consistency, and tolerability in chronic application,23 if not 

to cure the disease, then to reduce transfusion requirements 

and the significant cost of disease management. Of note, 

hemoglobinopathies, such as the thalassemia syndromes 

and sickle cell anemia (SCA; caused by the toxic β-globinE6V 

mutation), most severely affect low-income countries, where 

the lack of prevention programs and an underlying high 

carrier rate bring about high disease frequencies,24 although 

global migration has now turned hemoglobinopathies into a 

concern for many nonendemic countries as well.25 Globally, 

β-thalassemia mutations introducing gene deletions, aberrant 

splicing, or premature stop codons have the greatest impact in 

terms of global disease burden and clinical severity.26,27 Recent 

progress in the research of disease modifiers,28 chemical 

modulation of gene expression,22,29 and tools and approaches 

for DNA-based therapies30,31 have opened new avenues toward 

novel and more personalized strategies to manage or cure 

β-thalassemia, as we have reviewed recently.23,32 Particularly 

with regard to curative approaches by gene therapy, the field 

has come to a crossroads, with the initiation of clinical trials, 

the possible plateauing off of incremental improvements to 

gene augmentation therapy, and the increasing preclinical 

application of novel genome-editing tools. The objective 

of the present manuscript is to review the most relevant 

findings published in the period 2005–2014 concerning 

the preclinical and clinical application of gene therapy for 

β-thalassemia. To this end, we will describe the pertinent 

model systems, β-like-globin gene-addition strate gies, gene 

addition in combination with chemical inducers of γ-globin, 

transgene-mediated activation of endogenous γ-globin, and 

the emerging use of designer nucleases for β-thalassemia gene 

therapy. The general flow of gene-therapy-based approaches 

for β-thalassemia is outlined in Figure 1.

Experimental model systems
Several experimental systems have been developed to establish 

the suitability of and provide proof of principle for gene- therapy 

approaches to β-thalassemia. Erythroid cell lines, such as 

human and murine erythroleukemia cells, allow cost-effective 
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Figure 1 General view of a gene-therapy approach for β-thalassemia.
Notes: Adult hematopoietic stem and progenitor cells (HSPCs) or induced pluripotent stem cells (iPSCs) can be the object of gene-therapy approaches. (A) The commonly 
used CD34+ HSPCs and subpopulations may be corrected directly by gene therapy. (B) Alternatively, somatic cells can be isolated and reprogrammed to pluripotency, 
with the resulting iPSCs then being a patient-specific substrate for gene therapy, clonal selection, and lineage-specific differentiation. Excepting circular arrows, solid arrows 
indicate procedures for HSPCs and hollow arrows those for iPSCs. Circular arrows apply to HSPCs and iPSCs alike. Application of β-thalassemia iPSCs to patients is still 
pending, as indicated by dashed arrows.
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high-throughput assessments in the erythroid lineage,33–36 and 

cancer-prone mouse models have been instrumental in gaug-

ing the genotoxicity of integration and genome-modification 

events for vector classes applied to β-thalassemia.37–39 The most 

informative functional studies of candidate therapies toward 

their clinical application, however, instead rely on thalassemic 

human stem cells for in vitro assessments of authentic human 

responses and on thalassemic murine models for long-term 

systemic assessments in vivo.

in vitro experimental systems:  
erythroid precursor cells from  
β-thalassemia patients
HSPCs are the substrate for clinical gene-therapy applica-

tion, so that in vitro assessment of HSPC-derived erythroid 

precursor cells (ErPCs) is highly informative for toxicity and 

efficacy of any therapeutic intervention (Figure 1A). ErPCs 

from peripheral blood are widely used, while access to bone 

marrow and mobilized blood,40,41 which, incidentally, contain 

the cells preferentially used in clinical applications,42,43 is 

more restricted. Using peripheral-blood-derived ErPCs, it 

is possible to obtain large cultures of relatively pure and 

synchronized erythroid cell populations in which compounds 

can be added at specific stages of maturation. In the proce-

dure developed by Fibach et al,44,45 the culture is divided 

into two phases: first, an erythropoietin (EPO)-independent 

proliferation phase, in which peripheral blood cells are first 

cultured in the presence of a combination of growth factors, 

but in the absence of EPO; and, second, a differentiation 

phase, when the culture, supplemented with EPO, generates 

orthochromatic normoblasts and enucleated erythrocytes, 

with cells decreasing in size and accumulating hemoglobin 

(Hb) and large cellular clusters assuming a reddish color and 

giving brown-red pellets upon centrifugation.45,46 This system 

recapitulates many aspects of in vivo erythropoiesis, includ-

ing globin RNA metabolism, cell cycle kinetics, expression 

of cell surface antigens, iron and ferritin metabolism, and 

recruitment of transcription factors,45 and allows analysis 

of Hb content by a variety of techniques, such as alkaline 

denaturation, benzidine staining, capillary electrophoresis, 

cation-exchange high-performance liquid chromatography 

for hemoglobins, and reversed-phase high-performance 

liquid chromatography for globin chains.45,46

in vitro experimental systems: human 
embryonic stem cells and induced 
pluripotent stem cells
Human embryonic stem cells (hESCs) have been used 

extensively to study the early phases of hematopoietic and 

erythroid development.47 In this approach, after 5 to 7 days 

of in vitro cell culture, a blastocyst is generated, showing a 

clearly visible and easily accessible inner cell mass, from 

which pluripotent stem cells can be isolated, giving rise to 

in vitro hESC lines. From these cell lines, embryoid bodies 

can be developed and used for further tissue-specific differ-

entiation. hESCs themselves have only a minor role in the 

preclinical study of therapies for hemoglobinopathies,48,49 

and their clinical application would suffer due to the ethical 

repugnance of their origin and from the same incompatibili-

ties seen for allogeneic HSPC transplantations. However, the 

underlying hESC methodology is being reemployed in the 

culture of induced pluripotent stem cells (iPSCs),50–53 which 

closely mimic hESCs and represent a potential cornucopia 

for cell-based therapies in general. The creation of iPSCs 

from somatic cells with the use of reprogramming factors 

(originally Oct3/4, Sox2, c-Myc, and Klf450) represented a 

paradigm shift in our understanding of developmental biology 

and in the conception of novel therapeutic approaches, not 

least because their use avoids the ethical concerns associated 

with hESCs and creates a patient-specific, histocompatible 

substrate for cell therapy. Human iPSCs retain embryonic and 

fetal characteristics of gene expression even upon erythroid 

differentiation in vitro, so that the hope arose that patient-

derived iPSCs for β-thalassemia or SCA might be therapeu-

tic in their own right via the maintenance of high levels of 

γ-globin expression (Figure 1B).54,55 However, according to 

recent in vivo findings after transplantation into immunode-

ficient mice, in which a gradual switch to the adult β-globin 

gene was observed,56,57 this hope appears to be unfounded. 

Notwithstanding this apparent setback, iPSCs are a promis-

ing substrate for gene therapy, as they can be amplified in 

vitro indefinitely (where they are, alas, still subject to the 

same mutation rates and potentially undesirable changes as 

any other cell type) and thus allow the clonal selection of 

rare events of therapeutic interest. Since its inception, iPSC 

technology has been used extensively in innovative studies 

on β-thalassemia and other hemoglobinopathies, as will 

be detailed for specific gene-addition and genome-editing 

approaches.

in vivo experimental  
systems: mouse models
Thalassemic mouse models provide the most economical 

option for gauging the putative and systemic effects of gene-

therapy approaches in thalassemic patients. Of note, the regula-

tion of β-like globin chains in humans comprises a switch in 

utero from the embryonic (ε) to the fetal (γ) chain, followed 

by an HbA switch perinatally up to 6 months after birth,58,59 
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which also allows the birth and early postnatal development 

of homozygous β0 patients without disease management. In 

contrast, the murine β-globin locus encodes four functional 

β-like globin genes: βh1 and εy (transcribed only during the 

embryonic phase of development up to E14–E15 of a total 

gestation period of approximately 21 days), and the b1 (βmajor) 

and b2 (βminor) genes, which are transcriptionally activated in 

utero around 11 days after conception.59 Accordingly, mice 

homozygous for (β0) mutations that prevent expression of 

the adult β-globin genes die perinatally, owing to a complete 

lack of expression of any Hb.59 The most widely used, non-

humanized adult murine models of β-thalassemia therefore 

need to retain some β-globin expression and thus show fea-

tures similar to those observed for β-thalassemia intermedia 

patients, who carry moderate to mild (β+) mutations,60 although 

a β0 surgical model of murine β-thalassemia major has also 

been developed.60,61

In order to test the activity of novel mutation-specific 

approaches in vivo, humanized mouse models needed to be 

developed,58 with those combining absence of murine β-like 

globin genes with the presence of a human β-globin gene 

cluster and mutated β-globin gene being of the greatest utility. 

For instance, Vadolas et al62 reported generation of a humanized 

mouse model carrying the common β+ IVSI-110 splicing muta-

tion on a bacterial artificial chromosome carrying the human 

β-globin locus. Comparison of heterozygous β-globin knock-

out mice carrying either the IVSI-110 or the normal human 

β-globin locus showed a 90% decrease in human β-globin 

chain synthesis in the IVSI-110 mouse model. The model, 

moreover, accurately recapitulates the splicing defect found in 

β-thalassemia patients and is thus a suitable platform on which to 

test approaches for the restoration of normal splicing. Similarly, 

a humanized mouse model carrying the common G26A 

(HbE) mutation, frequently co-inherited with β-thalassemia 

in Southeast Asia, has been developed, which allows in vivo 

analysis in mouse of therapies for HbE/β-thalassemia.63 Mouse 

models (whether of a wild-type or thalassemic background) 

carrying all or parts of the human β-globin locus have also 

proven an essential resource for the analysis of globin switch-

ing and therapeutic approaches for β-thalassemia.64–66 Finally, 

a keen interest in the study of developmental gene regulation, 

γ-globin induction, and therapies for β-thalassemia major has 

prompted the development of further humanized transgenic 

mice as models for β-thalassemia major.67 These mice carry a 

mutated human β-globin gene and are born viable due to the 

prolonged expression of human fetal hemoglobin (HbF), but 

require chronic transfusion for survival and are not yet widely 

available in the community.67–69

Globin gene addition
Over the last 2 decades, major efforts have been made to 

achieve therapeutic levels of exogenous β-like globin chains 

in β-thalassemia and SCA. These finally came to fruition 

when a switch from γ-retroviral vectors to lentiviral vec-

tors allowed the efficient transduction of nondividing cells 

with a sufficiently large expression cassette,70 encouraging 

numerous research groups to work toward vectors expressing 

β-globin, anti-sickling variants of β-globin and γ-globin.

Lentiviral expression  
of exogenous β-globin
The efforts of the groups working in this field have been 

dedicated to achieving highly efficient and stable transduction 

of HSPCs, to optimizing transgene expression (erythroid- and 

stage-specific, elevated, position-independent, and sustained 

over time), and to correcting the β-thalassemia phenotype 

in preclinical models with minimal genotoxicity.35,36,40,42,71–75 

While the field has reached a high level of optimization, incre-

mental improvements to procedures and vectors continue to 

be made. These include the use of rapamycin to enhance LV 

transduction76 and the recent inclusion of chromatin opening 

elements77–79 or an ankyrin insulator72 for improved vector-

derived expression, with an ongoing search for and evaluation 

of alternative insulators80 to prevent transgene silencing and 

minimize host gene perturbation while avoiding the reduction 

of vector titer during production that is associated with the 

most widely used chicken HS4 insulator.81 It has also been 

demonstrated that, in order to avoid insertional mutagenesis, 

it is possible to select suitable clones with insertions in inert 

(“safe harbor”) genome sites, in combination with iPSC 

technology.82 Several recent reviews on gene therapy of thala-

ssemia and related hemoglobinopathies point out the state 

of the art with respect to the structure of β-globin-carrying 

lentiviral vectors,70,83,84 and Figure 2A depicts a number 

of therapeutic lentiviral vectors that produce high levels 

of β-globin in human or murine β-thalassemic erythroid 

cells.35,36,40,42,71–75 Figure 2B and C illustrates how one such 

vector, T9W, generates high-level HbA production in ex vivo 

culture of HSPC-derived cells isolated from a β0-thalassemia 

patient upon differentiation.46

Lentiviral expression of anti-sickling 
β-globin and exogenous γ-globin
With a view to applying the same vector for β-thalassemia 

and SCA, β-globin vectors have also been modified to 

approach or even exceed the anti-sickling activity shown 

by γ- and δ-globin. Of note are the HPV569 and BB305 
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LentiGlobin® vectors,85,86 which feature in βE/β0 clinical 

trials86–89 (see Clinical trials below) and carry β-globinT87Q, 

and which are expected to provide some anti-sickling 

activity90 and thus be suitable for SCA therapy. Particularly 

important in this context, however, are the anti-sickling 

β(AS3) β-globin designed by Townes et al91,92 and pertain-

ing lentiviral vectors.93 The combination of three amino 

acid changes (creating the artif icial β-globinG16D, E22A, 

T87Q variant) confers anti-sickling activity exceeding that 

of γ-globin to β(AS3) and therefore renders the mutant 

transgene  particularly  suitable for the therapy of SCA 

and β-thalassemia/β-globinE6V compound heterozygotes. 

Independently, and primarily with clinical application 

for SCA in mind, numerous groups have also developed 

retroviral vectors encoding γ-globin instead of β-globin 

(Figure 3).41,94–101 Of note, Wilber et al41 used lentiviral vec-

tors encoding the human γ-globin gene with or without an 

insulator, which were tested on erythroid progeny of normal 

CD34+ cells and resulted in high levels of HbF produc-

tion, suggesting that lentiviral-mediated treatments have 
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the potential to  provide therapeutic HbF levels to patients. 

These findings are corroborated by several independent 

research groups that work on γ-globin-based lentiviral (and 

γ-retroviral) therapy of SCA and β-thalassemia.41,94–101 Fig-

ure 3A shows the structure of some of the corresponding 

vectors.41,96–99 All vectors intended for gene augmentation 

described here, be it for the expression of β-globin, anti-

sickling β-globin, or γ-globin, have overlapping fields of 

application. Further preclinical and clinical studies will 

show which vector may be most suitable for specific disease 

conditions, with the vector itself as a key factor, but with 

all components of the treatment protocol, including condi-

tioning, HSPC source and isolation, transduction protocol, 

and general culture conditions, playing a critical role in the 

outcome and in the comparison of vector performance.

Combination therapy of gene  
addition with HbF inducers
Induction of endogenous HbF is one of the most widely 

applied therapeutic strategies for β-thalassemia and SCA, 

as indicated by several recent studies and reviews.102–110 

Lending additional significance to preclinical studies, it 

has been shown that the level of γ-globin mRNA and in 

vitro induction of HbF in primary ErPCs isolated from 

β-thalassemia patients is predictive of the hydroxyurea 

response in vivo.111,112 While most of the recent studies in 

the field still focus on low-molecular-weight HbF induc-

ers,102–110,113 the innovative strategy of combining them with 

vector-derived β-globin has lately been investigated and 

reviewed.30,114 The combined treatment induces an increase 

of both HbA (by gene addition) and HbF (by chemical HbF 

induction) with important therapeutic implications, given that 

β-like globin transfer in some β-thalassemia major ErPCs has 

been unable to reach physiological levels of Hb in vitro and 

might thus only lead to partial phenotypic correction in vivo 

as well. Since increased production of HbF in β-thalassemia 

is undoubtedly beneficial, the one-off application of gene 

therapy combined with chronic application of HbF inducers 

appears to be a pertinent strategy to achieve clinical benefits 

not achievable with either strategy alone. Representative 

results for this approach are depicted in Figure 4 on ErPCs 

from a β0-thalassemia patient carrying the codon-39 stop 

codon mutation (β039) (Figure 4A) and a β039/β-IVSI-110-

thalassemia patient (Figure 4B). The results demonstrate that 

this combination strategy achieves high levels of functional 

Hb in β-thalassemic cells and a concomitant sharp decrease of 

excess α-globin, with significant scope for further improve-

ments for what is as yet a nascent field of research.
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Clinical trials
To date, there are a total of seven patients who have been 

treated successfully or for whom longer follow-up is pending 

in three clinical trials for β-thalassemia, all of which have 

used β-globin-expressing lentiviral vectors. The first success-

ful gene therapy trial for β-thalassemia85 was reported in the 

manuscript published by Cavazzana-Calvo et al in 201087 and 

commented on by Kaiser.115 The pertaining β-globinT87Q vector 

(LentiGlobin® HPV569) holds a tandem copy of the 250-bp 

cHS4 insulator in its 3′ long terminal repeat (LTR) as a safety 

feature and bears a T87Q amino acid, which, besides its con-

ferring anti-sickling activity,90 makes it distinguishable from 

transfusion-derived β-globin and thus allows the quantification 

of vector-derived β-globin during follow-up. Three patients with 

severe βE/β0-thalassemia have been treated to date. In the first 

patient, engraftment of treated bone marrow failed after full 

myeloablation, requiring reinfusion of backup bone marrow. 

For the second patient, however, transfusion independence was 

achieved at 12 months after treatment and continues to date. 

At 36-month follow-up, of 24 detectable clones in peripheral 

blood, one clone with cross-lineage dominance held a proviral 

integration in the high mobility group AT-hook 2 (HMGA2) 

gene, whose expression is associated with tumor metastasis and 

proliferation,116,117 in a position that removed posttranscriptional 

control elements and thus increased HMGA2 mRNA stability. 

This clone, moreover, showed a recombination event that had 

removed one of the cHS4 copies and possibly exacerbated 

transcriptional enhancement of HMGA2 from the proviral 

β-globin locus control region (LCR), with transcriptional and 

posttranscriptional effects combined resulting in 10,000-fold 

HMGA2 expression. Clonal dominance of this clone  (peaking 

at 22% of nucleated cells after 48 months) dropped to 6.8% 

7 years after treatment. Notably, at 36 months, only one-third 

of the total Hb was vector derived, with endogenous HbE and 

unexpectedly high HbF constituting the other two-thirds, so that 

the patient might have failed to become transfusion independent 

in the absence of endogenous HbE and elevated γ-globin expres-

sion and if mild conditioning instead of full myeloablation 

had been applied. Finally, engraftment with HPV569-treated 

cells of the third adult patient for this trial was also successful. 

However, the patient remains transfusion dependent, with a 

low vector copy number (VCN) in the originally engrafted cell 

material (VCN 0.3) and a low VCN in nucleated cells (VCN 

in neutrophils 0.016), and with vector-derived Hb accounting 

for only approximately 5% of total Hb more than 2 years after 

engraftment.88 Engraftment failure for the first patient, a low 

VCN for the third patient, and oligoclonal reconstitution, vec-

tor recombination, and low vector-derived gene expression for 

the second patient provide important pointers for necessary 

improvements in future trials and vectors and, moreover, call 

for ex vivo preclinical assessment in cells from prospective trial 

participants, as we argue elsewhere.72

A second clinical study (HGB-205) and follow-up to the trial 

described above has been initiated by bluebird bio Inc. in France 

and utilizes the third-generation lentiviral LentiGlobin® BB305 

vector.86 Compared to HPV569, BB305 holds a cytomegalovirus 

(CMV) promoter instead of the U3 promoter/enhancer in its 

5′ LTR and no longer bears cHS4 insulator elements in its 3′ 
LTR. Preliminary results obtained for two βE/β0-thalassemia 

patients, who had both been transfusion-dependent for most 

of their lives, were encouraging, with a VCN of 1.5 and 2.1, 

respectively, in the engrafted material and with a reported trans-

fusion independence at 3.5 and 6.5 months, respectively, after 

treatment.88 This success has most recently also prompted the 

application of BB305 for gene therapy of SCA.89

Finally, an independent trial for globin gene transfer in 

adult patients with β-thalassemia major has been initiated 
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Figure 4 Combination therapy using lentiviral-vector-derived β-globin expression 
and chemical γ-globin induction.
Notes: Combination of gene therapy and HbF induction leads to high production 
of both HbA and HbF and reduction of excess α-globin chains, as shown for 
representative experiments performed with erythroid precursor cells from  
(A) a β0-thalassemia patient homozygous for the codon-39 stop codon mutation 
(genotype β039/β039) and (B) a β039/β+ivSi-110-thalassemia patient. Cells were 
cultured without treatment (-) and in the presence of T9w, mithramycin (MTH), and 
T9w with MTH, respectively, as indicated. The % of HbF (white boxes), HbA (black 
boxes), and α-globin peak (gray boxes) is shown (Zuccato et al, unpublished data, 
2014; and data from Zuccato C, Breda L, Salvatori F, et al. A combined approach for 
β-thalassemia based on gene therapy-mediated adult hemoglo bin (HbA) production 
and fetal hemoglobin (HbF) induction. Ann Hematol. 2012;91:1201–1213.)114
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(NCT01639690) by the Sadelain group and associates118,119 

to study safety and efficacy, representing the first US trial 

for β-thalassemia. The β-globin vector used for the trial, 

TNS9.3.55, holds the cHS4 insulator and minor unpublished 

modifications compared to TNS9.60,71 A preclinical study test-

ing TNS9.3.55 in patient HSPCs in vitro, by BFU-E assays, 

and, in vivo, using NOD-scid IL2rγ null mice, indicated high 

vector-derived expression (73% to 100% of normal hem-

izygous levels) and long-term repopulation potential (69% 

retention after 7 months) for vector-positive cells.42 In the 

ongoing clinical trial, five patients have been enrolled and 

three treated to date, using G-CSF-mobilized CD34+ cells 

and mild conditioning (8 mg/kg busulfan). Possibly owing 

to the latter, which reduces the risk for patients but also the 

level of donor chimerism and thus the overall efficiency 

of the approach, transfusion independence had not been 

reached 12 months after treatment in the first three patients, 

albeit with an ongoing rise of the average VCN in peripheral 

blood mononuclear cells (from, initially, 1% to 7%–9%) 

and without the emergence of clonal dominance. As of this 

writing, treatment of additional patients has been postponed 

until fuller evaluation of the first three patients can indicate 

whether dose escalation of the conditioning treatment might 

be required.

Transgene-mediated activation  
of endogenous γ-globin genes
Inspired by chemical induction of HbF as a therapeutic 

approach,102–109 and enabled by the burgeoning fields of 

engineered transcription factors and RNA interference,23,32 

a relatively novel approach to the therapy of β-thalassemia 

is the transgenic activation of γ-globin, either by the over-

expression of γ-globin-activating transcription factors or by 

the stable knockdown of γ-globin repressors.

Overexpression of γ-globin-activating 
transcription factors
The β-type globin genes are activated through dynamic 

interactions with a distal upstream enhancer, the LCR. 

The LCR physically contacts the developmental stage-

appropriate globin gene via chromatin looping, a process 

partially dependent on the protein Ldb1. Deng et al showed 

that tethering Ldb1 to the murine β-globin promoter with a 

custom-designed zinc finger protein (ZF-Ldb1) can induce 

loop formation and β-globin transcription in an erythroid cell 

line.120 Further work using a similar approach showed that 

forced chromatin looping can be exploited to potently reac-

tivate fetal globin gene expression in adult human erythroid 

cells.121 For this work, a fusion protein that brings together a 

zinc finger protein, which recognizes a specific sequence at 

the γ-globin promoter, and Ldb1 was created.120,122 Insertion 

of a lentiviral vector carrying this fusion protein into adult 

primary human erythroid cells strongly activated the γ-globin 

gene, whose transcription accounted for nearly 90% of total 

β-like globins and led to concomitant reduction of β-globin. 

This approach would therefore be particularly suitable for the 

therapy of SCA, by increasing anti-sickling γ-globin, while 

at the same time reducing βS expression (see also97).

Alternatively, engineered zinc-finger-based transcription 

factors can be used to reactivate developmentally silenced 

γ-globin genes in adult cells. Figure 3B shows the structure of 

a lentiviral vector expressing the artificial zinc finger protein 

GG1-VP64, which was designed to interact with the -117 

region of the Aγ-globin gene proximal promoter and led to 

a significant increase in γ-globin gene expression in K562 

cells.123 Moreover, Wilber et al124 and Costa et al64 reported 

increased γ-globin gene expression following transfection 

with GG1-VP64 constructs, with significantly increased 

HbF levels in CD34+ erythroid progenitor cells from normal 

human donors and β-thalassemia patients. These results pro-

vide new insights into the mechanism of γ-globin silencing 

and may translate into mechanism-based, improved therapies 

for β-thalassemia and related SCA.

Transgene-mediated silencing  
of β-thalassemia modifiers
With the advent of the concept of RNA interference, efforts 

began to utilize short interfering RNAs (siRNAs) and short 

hairpin RNAs (shRNAs) in the therapy of β-thalassemia. 

Early efforts, mindful of the amelioration of β-thalassemia 

pathology by a reduction in α-globin excess, knocked down 

α-globin mRNA to achieve a moderate but significant reduc-

tion in disease parameters,34,125–127 an approach superior to 

the alternative strategy of sequestering excess α-globin 

protein by overexpression of its private chaperone, AHSP.128 

Recently, regulation by RNA interference has also become an 

option for the activation of endogenous γ-globin expression. 

This was made possible through a growing understanding 

of the regulation of globin switching, also by regulatory 

microRNAs (miRNAs), and of transcriptional repressors of 

γ-globin as therapeutic targets (see Figure 5).129–144 Among 

the candidate target genes for knockdown is the zinc finger 

transcription factor Krüppel-like factor 1 (KLF1, also known 

as the erythroid Krüppel-like factor, EKLF), which acts as an 

erythroid-specific master switch of globin gene expression145 

and whose autonomy in directing globin gene expression is 
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underlined by the observation that the mere insertion of a 

KLF1 binding site into the human δ-globin promoter confers 

developmental inducibility and a reduction of the thalassemia 

phenotype in mice.146 Besides KLF1, Oct-1,138 MYB,139 and 

BCL11A129,133,140 have been identified as repressors of γ-globin 

gene transcription. For instance, the zinc finger transcription 

factor BCL11A has recently been shown to function as a 

repressor of HbF expression, with transgenic deactivation of 

BCL11A reactivating HbF and correcting a humanized sickle 

Hb mouse model147 and with BCL11A knockdown leading to 

significant HbF induction in human cells,129,133,140,144 similar 

to knockdown of its positive regulator KLF1.132 Moreover, 

compound Klf1::Bcl11a mutant mice that carry the human 

β-globin locus showed further enhanced γ-globin expres-

sion compared to single-mutant animals,148 indicating that 

a strategy targeting both genes together (without affecting 

non-erythroid functions of BCL11A) might have additional 

therapeutic benefits in β-thalassemia. In order to move 
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transgene-mediated activation of γ-globin from concept to 

therapeutic application, shRNA expression from constitutive 

RNA polymerase III promoters, such as the commonly used 

U6 promoter (see Figure 3C), needs to be avoided. To this 

end, Renella et al has surrounded a BCL11A-specific shRNA 

with the flanking sequences of a naturally occurring miRNA 

(miR223), allowing its (potentially regulated) expression from 

RNA polymerase II-driven promoters.149 Using lentiviral vec-

tors for spleen focus-forming virus (SFFV)-promoter-driven 

BCL11A shRNAmiR expression in murine erythroleukemia 

cells, approximately 50% of control embryonic εy levels were 

achieved compared to the equivalent positive U6 shRNA 

control,150 so that controlled and stable shRNA-mediated HbF 

induction has achieved an efficiency of potential clinical rele-

vance. Figure 5, in addition to transcription factors negatively 

regulating the expression of the γ-globin genes,151,152 shows 

examples of miRNAs validated as regulators of γ-globin 

gene expression,153–156 either directly155 or through interac-

tions with relevant target transcription- factor mRNA,153,154,156 

such as miR-15a and miR-16-1 (targeting MYB),153 miR-23 

and miR-27a (targeting KLF3 and Sp1, respectively),156 and 

miRNA-486-3p (targeting BCL11A).154 Lentiviral vectors 

carrying sequences of these miRNAs are expected to lead 

to inhibition of γ-globin gene transcription-factor repressors 

and induction of HbF.41

Genome editing
In contrast to gene-augmentation approaches, the direct 

DNA-level repair of primary mutations would achieve 

physiological levels of gene expression for each corrected 

cell and, in the absence of off-target activity, would alto-

gether avoid the risk of insertional mutagenesis inherent to 

integrating vectors. Genome-editing approaches, however, 

still suffer from low efficiencies in HSPCs, which, without 

selection (eg, of iPSC clones) or enrichment steps, mostly 

precludes their clinical application for gene therapy. However, 

Genovese et al157 have recently achieved high-efficiency tar-

geted DNA replacement in HSPC from controls and patients 

with X-linked severe combined immunodeficiency, reaching 

efficiencies of 3%–11% depending on the subpopulation, 

thus moving homology-directed gene repair of HSPCs into 

the realm of clinical application.

Repair of causative mutations
Endogenous genomic loci can be altered efficiently and spe-

cifically using engineered zinc finger nucleases (ZFN)158–163 

and transcription activator-like effector nucleases (TAL-

ENs), as recently reported by Voit et al for the human globin 

locus.164 Moreover, besides ZFN and TALEN, clustered 

regularly interspaced short palindromic repeats (CRISPR) 

linked to Cas9 nuclease are now also being investigated for 
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their  utility in modifying β-globin.165,166 ZFN (Figure 6A), 

ΤALEN ( Figure 6B), and CRISPR (Figure 6C) comprise 

a specifically engineered DNA binding domain fused to a 

nuclease.31 Binding of a ZFN or TALEN pair at contiguous 

sequences flanking a target site leads to the dimerization of 

the FokI (a double-stranded DNA nickase) domain, resulting 

in a targeted DNA double-strand break, while CRISPR/Cas9 

introduces double-strand breaks as a monomer.31 To increase 

target-site specificity and thus reduce off-target activity, 

CRISPR linked to nickases and thus requiring dimerization 

for genome modification are also being investigated.167 The 

resulting double-strand break (Figure 6D) can be repaired by 

error-prone nonhomologous end joining or by high-fidelity 

homology-directed repair in the presence of a homologous 

DNA donor template (Figure 6E and F). In their study, Voit 

et al engineered a pair of highly active TALENs that induce 

modification of about 50% of human β-globin alleles near the 

site of the sickle mutation. These TALENs stimulate targeted 

integration of therapeutic, full-length β-globin complemen-

tary DNA to the endogenous β-globin locus in about 20% of 

K562 erythroleukemia cells.164

Using patient-specific iPSCs, Ma et al168 have recently 

applied this technology to β-thalassemia, with Sun and Zhao169 

likewise applying it to SCA patient-specific iPSCs, both groups 

following the idea that correction of disease-causing mutations 

offers an ideal therapeutic solution when iPSCs are available. 

In the β-thalassemia study, Ma et al described a robust process 

combining efficient generation of integration-free patient-

specific β-thalassemia iPSCs and TALEN-based universal 

correction of HBB mutations in situ. Integration-free and gene-

corrected iPSC lines from two patients carrying different types 

of homozygous mutations were generated. These iPSCs are 

pluripotent, have normal karyotype, and, more importantly, can 

be induced to differentiate into hematopoietic progenitor cells 

and then further to erythroblasts expressing normal β-globin. 

Interestingly, and of importance for any clinical application of 

genome-editing tools, the correction process did not generate 

TALEN-induced off-target mutations.168 

HbF activation by genome editing
In contrast to SCA, wherein a single mutation is present in 

all patients, β-thalassemia is caused by a large variety of 

mutations, each of which would have to be corrected by an 

individually validated designer nuclease. The alternative and 

universally applicable approach of using designer nucleases 

to induce HbF instead is therefore an attractive option. While 

results for this strategy as a gene-therapy approach have, to 

our knowledge, not yet been published in peer-reviewed jour-

nals, it is already being employed, as patent applications for 

corresponding ZFN and TALEN indicate.170,171 Intriguingly, 

and depending on the target (such as a γ-globin repressor or 

its binding site), this approach might use nonhomologous 

end joining to disrupt the target sequence in HSPCs and thus 

achieve high levels of efficiency that would allow a direct 

translation to clinical applications for β-thalassemia.

Toward personalized  
therapy of thalassemia
With hundreds of primary mutations, disease modifiers, and 

polymorphisms linked to hereditary persistence of HbF,1 

β-thalassemia patients can be stratified into clinically distinct 

subgroups. It is expected, therefore, that the management of 

β-thalassemia patients will increasingly be customized for 

stratified classes of β-thalassemia patients, which will also 

hold for intervention by gene therapy. For instance, with 

the objective of reaching therapeutic levels of hemoglobins, 

an optimized gene-therapy protocol might differ between 

patients with β0 genotypes (without endogenous β-globin 

expression, such as β039 and β0-IVSI-1 homozygotes or 

compound heterozygotes) and those with β+ genotypes 

(with residual β-globin expression, such as β+-IVSI-110 and 

β+-IVSI-6 homozygotes or compound heterozygotes). In this 

respect, the response of patients with compound heterozygote 

β0/β+ genotypes to exogenous β-globin expression might 

need careful study. Moreover, in the case of mutation-

specific genome editing, considerations of personalization 

are inherent in the approach, while, for other approaches, 

these considerations might be less obvious but similarly 

critical. For instance, the efficiency of gene therapy based 

on exogenous γ-globin gene expression or on the activation 

of endogenous γ-globin by any of the means discussed above 

may be in doubt in cases where the patients involved are 

already expressing high endogenous levels of HbF. These 

considerations also hold for the combination of gene therapy 

and pharmacological induction of HbF detailed in the sec-

tion titled “Combination therapy of gene addition with HbF 

inducers”, because the individual genetic composition is an 

important cause of variations in the response and tolerance 

to drug treatment, as recently reviewed.30 Pharmacogenomic-

based studies have clearly demonstrated that several genomic 

variations (not restricted to the human β-globin gene cluster) 

are significantly associated with differential responses of 

β-globinopathy patients to treatment with chemical HbF 

inducers, such as hydroxyurea.172 This insight renders the 

use of genomic/transcriptomic analysis to predict the in 

vivo response and to guide the personalization of any such 

therapy a logical conclusion.111,112 With the same rationale, 

the analysis of patient-specific responses in cell culture before 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Blood Medicine 2015:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

80

Finotti et al

therapy, and, in particular, before permanent therapeutic 

intervention, is strongly recommended83 and will become 

increasingly common. This trend, combined with the ex vivo 

approach used for the therapy itself and with an increasing 

use and creation of patient-specific iPSCs (in particular for 

gene-correction approaches), is expected to lead to a dramatic 

increase in biobanking of patient-derived cells, with all the 

regulatory, management, and ethical issues involved.173

Conclusion
In summary, gene therapy is one of the most promising 

approaches for the future treatment of β-thalassemia patients 

and comprises several, at times complementary, strategies. 

The clinically most advanced approach, that of substituting 

nonfunctional endogenous β-globin genes with a normal 

β-globin gene carried by lentiviral vectors, leads to de 

novo production of HbA. This approach can be enhanced, 

as in vitro evidence indicates, by additional treatment with 

inducers of endogenous HbF, which is firmly established 

as clinically beneficial. In the same vein, numerous gene-

therapy approaches also draw on HbF as a positive disease 

modifier, either by expressing exogenous HbF from a lenti-

viral vector or by inducing endogenous HbF with a variety of 

approaches, including the expression of exogenous artificial 

transcription factors or the disruption of γ-globin repres-

sors or their binding sites. This latter approach has been 

made possible by an increasingly detailed understanding of 

globin gene regulation and by the development of rationally 

designed artificial nucleases for genome editing. Designer 

nucleases in turn now also allow gene editing of the human 

globin locus and thus the correction of altered β-globin 

genes as the most direct gene-therapy approach. As for the 

cellular targets of gene therapy, human erythropoietic stem 

cells have been considered in most studies and are still the 

substrate of choice for clinical applications. However, it can 

be expected that iPSCs from β-thalassemia patients will play 

an increasing role in preclinical, and possibly clinical, gene-

therapy studies in the future.

As a result of all these developments, and after decades in 

the making, gene therapy of β-thalassemia has reached a criti-

cal phase and is beginning to live up to its long-held promise. 

At this privileged moment in time, the model systems and 

protocols are in place to test gene-therapy approaches, and 

the first clinical trials show therapeutic efficiency and guide 

our decisions for future developments, such as the choice of 

conditioning regimen (full or mild), the HSPC source (bone-

marrow-derived or mobilized), and the inclusion of  insulators 

for gene augmentation. Ongoing optimization of extant 

gene-augmentation tools and combinatorial approaches with 

chemical reagents are approaching therapeutic efficiency, 

even for severe forms of the disease. At the same time, 

fundamental insights into globin switching and new tools 

for cellular reprogramming, transcriptional regulation, post-

transcriptional silencing, and genome editing have opened up 

as-yet uncharted territory in what has become a fast-moving 

and highly competitive field of research. While there is no 

telling which approach will win out for widespread clinical 

application in the course of time, vigilance, widespread 

competence in shared methodology, and the availability of 

diametrically different treatment strategies will provide the 

pressure and scope for fast improving efficacy and safety, for 

the good of the field and for the benefit of the patients.
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