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Abstract: A novel class of asymmetric mono-carbonyl analogs of curcumin (AMACs) were 

synthesized and screened for anti-inflammatory activity. These analogs are chemically stable 

as characterized by UV absorption spectra. In vitro, compounds 3f, 3m, 4b, and 4d markedly 

inhibited lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines tumor 

necrosis factor-α and interleukin-6 in a dose-dependent manner, with IC
50

 values in low micro-

molar range. In vivo, compound 3f demonstrated potent preventive and therapeutic effects 

on LPS-induced sepsis in mouse model. Compound 3f downregulated the phosphorylation 

of extracellular signal-regulated kinase (ERK)1/2 MAPK and suppressed IκBα degradation, 

which suggests that the possible anti-inflammatory mechanism of compound 3f may be through 

downregulating nuclear factor kappa binding (NF-κB) and ERK pathways. Also, we solved 

the crystal structure of compound 3e to confirm the asymmetrical structure. The quantitative 

structure–activity relationship analysis reveals that the electron-withdrawing substituents on 

aromatic ring of lead structures could improve activity. These active AMACs represent a new 

class of anti-inflammatory agents with improved stability, bioavailability, and potency com-

pared to curcumin. Our results suggest that 3f may be further developed as a potential agent for 

prevention and treatment of sepsis or other inflammation-related diseases.

Keywords: asymmetric mono-carbonyl analogs of curcumin (AMACs), stability, anti-inflammatory 

property, sepsis, QSAR

Introduction
Emerging evidence indicates that inflammation is involved not only in diseases caused 

by microbial pathogens but also in many chronic diseases such as heart disease, hyper-

tension, cancer, and diabetes.1–3 Appropriate inflammatory response is beneficial for 

the host to protect against injuries caused by harmful stimuli, including pathogens and 

poisons, but uncontrolled inflammation leads to extensive tissue damage and manifesta-

tion of pathological states such as sepsis, which is initiated by Gram-negative bacteria 

and mediated by the pro-inflammatory cytokines and becomes the most common cause 

of morbidity and mortality in intensive care units.4,5 Pro-inflammatory cytokines such as 

tumor necrosis factor (TNF)-α and interleukin (IL)-6 are critically involved in inflamma-

tion and related disorders.6 Overexpressions of TNF-α and IL-6 are responsible for the 

initiation and extension of pathological disorders including ulcerative colitis, diabetes, 

multiple sclerosis, atherosclerosis, and septic shock.7–9 Thus, anti-inflammatory agents 

that inhibit the overexpression of pro-inflammatory cytokines are of great interest for 

the clinical treatment of many inflammatory diseases including sepsis.

Curcumin (diferuloylmethane) (Figure 1), a major component of the popular 

spice turmeric (Curcuma longa) in Southeast Asia, has been found to have various 
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profiles. Several representative MACs, such as FLLL12, 

PAC, UBS109, EF24, and HO-3867, have showed remark-

able bioactivity both in vitro and in vivo (Figure 1).17–21

This class of MACs is structurally symmetric. Studies also 

suggest that aromatic regions of these symmetric MACs might 

be critical for bioactivities.22–24 Although reports on biological 

evaluations of the symmetric MACs have been published in 

recent years, studies on the asymmetric MACs (AMACs) as 

anti-inflammatory agents remain scarce. It would be interest-

ing to investigate the AMACs with two asymmetric aromatic 

moieties and different substituents for their anti-inflammatory 

effects and structure–activity relationship (SAR). Further-

more, the asymmetrical structure may improve the specificity 

of the active compound. Herein, a series of new AMACs 

with two different aromatic groups, separated by five carbon 

spacers, were designed, synthesized, and evaluated for their 

anti-inflammatory activities in vitro and in vivo.

bioactivities including anti-inflammatory, antioxidant, 

antiproliferative, immunomodulatory, and neuroprotec-

tive activities.10–12 In recent years, the anti-inflammatory 

properties of curcumin have been suggested on the basis 

of a number of in vitro and in vivo studies.13 Although 

curcumin exhibits good bioactivities and low toxicity, the 

clinical application of curcumin is limited due to its low 

stability and poor bioavailability.14,15 Thus, active and clini-

cally promising curcumin analogs have been highly desired. 

During the last decade, synthetic curcumin analogs have 

been intensively investigated to enhance the bioactivities 

and bioavailability.13,16 Among the analogs, mono-carbonyl 

analogs of curcumin (MACs) were designed by deleting the 

reactive β-diketone moiety, which is considered to be the 

major contributor to the instability and rapid degradation of 

curcumin. This class of analogs has received much attention 

due to their improved chemical stability and pharmacokinetic 
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Figure 1 Design and chemical structures of published Macs.
Abbreviation: Macs, mono-carbonyl analogs of curcumin.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2015:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1665

Curcumin analogs as anti-inflammatory agents

Materials and methods
general procedure for the synthesis 
of compounds
All chemical reagents were obtained from Sigma-Aldrich, 

Fluka, or Aladdin, and were used without purification. Silica 

gel (GF254) for thin-layer chromatography and column 

chromatography (100–200 mesh and 200–300 mesh) were 

obtained from Aladdin. Melting points were determined on 

a Fisher-Johns melting apparatus and were uncorrected. 1H 

nuclear magnetic resonance (NMR) spectra were recorded 

on a Bruker 500-MHz instrument. The chemical shifts 

were presented in terms of parts per million with tetram-

ethylsilane as the internal reference. Data of electron-spray 

ionization mass spectra (ESI-MS) in positive mode were 

recorded on a Bruker Esquire 3000+ spectrometer. All 

reagents, including newly synthesized compounds, have 

95% purity as determined by high-performance liquid 

chromatography.

To the mixture of (E)-4-phenylbut-3-en-2-one (3 series) 

or (E)-4-(p-tolyl)but-3-en-2-one (4 series) (1.0 mmol) and 

aromatic aldehyde (1.0 mmol) in 6 mL EtOH and 3 mL 

H
2
O, was added 1.2 mL of 10% NaOH. The reaction was 

stirred at room temperature for 30 minutes and monitored by 

thin-layer chromatography to determine completion. Upon 

completion, ice water is added into the reaction mixture to 

precipitate the product. The solid products were purified by 

recrystallization. The oily compounds were purified by silica 

gel column chromatography (elutant: EtOAc/hexane). Their 

structures were determined by spectral data from ESI-MS 

and 1H NMR. The spectral data of the unreported compounds 

are shown below.

(1E,4E)-1-(2-Methoxyphenyl)-5-phenylpenta- 
1,4-dien-3-one (3a)
Yellow oil, 67.35% yield. 1H NMR (500 MHz, CDCl

3
) 

δ 8.10 (d, J =16.1 Hz, 1H, Ar (OCH
3
) -CH=), 7.76 (d, 

J =15.9 Hz, 1H, Ar–CH=), 7.66–7.64 (m, 3H, Ar–H2,6, 

Ar(OCH
3
)–H6), 7.44–7.39 (m, 4H, Ar–H3–5, Ar(OCH

3
) –H4), 

7.16 (d, J =16.0 Hz, 2H, Ar–C=CH×2), 7.03 (d, J =7.5 Hz, 

1H, Ar(OCH
3
)–H5), 6.97 (d, J =8.3 Hz, 1H, Ar(OCH

3
)–H3), 

3.81 (s, 3H, OCH
3
). ESI-MS m/z: 264.9 (M+H)+, 286.9 

(M+Na)+, calcd for C
18

H
16

O
2
: 264.12.

(1E,4E)-1-(2-Fluorophenyl)-5-phenylpenta- 
1,4-dien-3-one (3b)
Yellow oil, 56.42% yield. 1H NMR (500 MHz, CDCl

3
) δ 7.88 

(d, J =16.1 Hz, 1H, Ar(F)–CH=), 7.78 (d, J =16.0 Hz, 1H, 

Ar–CH=), 7.67-7.64 (m, 3H, Ar–H2,6, Ar(F)–H4), 7.45-7.38 

(m, 4H, Ar–H3–5, Ar(F)–H6), 7.32 (m, 2H, Ar(F)–H3,5), 7.21 

(d, J =16.1 Hz, 1H, Ar–C=CH), 7.12 (d, J =15.9 Hz, 1H, 

Ar(F)–C=CH). ESI-MS m/z: 252.9 (M+H)+, 274.9 (M+Na)+, 

calcd for C
17

H
13

FO: 252.10.

(1E,4E)-1-(2-Bromophenyl)-5-phenylpenta- 
1,4-dien-3-one (3c)
Yellow powder, 32.69% yield, mp 105.23°C–106.50°C. 
1H NMR (500 MHz, CDCl

3
) δ 7.83 (d, J =16.0 Hz, 1H, 

Ar(Br)–CH=), 7.78 (d, J =16.0 Hz, 1H, Ar–CH=), 7.75–7.69 

(m, 3H, Ar–H2,6, Ar(Br) -H3), 7.68–7.59 (m, 6H, Ar–H3–5, 

Ar(Br)–H4–6), 7.15 (d, J =15.9 Hz, 1H, Ar–C=CH), 7.02 

(d, J =16.0 Hz, 1H, Ar(Br)–C=CH). ESI-MS m/z: 334.9 

(M+Na)+, calcd for C
17

H
13

BrO: 312.01.

(1E,4E)-1-(3,4-Dimethoxyphenyl)-5-phenylpenta- 
1,4-dien-3-one (3d)
Yellow oil, 56.24% yield. 1H NMR (500 MHz, CDCl

3
) δ 7.76 

(d, J =15.9 Hz, 1H, Ar–CH=), 7.72 (d, J =15.9 Hz, 1H, 

Ar–CH=), 7.64 (dd, J =6.5, 2.9 Hz, 2H, Ar–H2,6), 7.59–7.54 

(m, 1H, Ar–H4), 7.49 (dd, J =8.2, 1.9 Hz, 1H, Ar(OCH
3
)–H2), 

7.44 (d, J =1.8 Hz, 2H, Ar–H3,5), 7.23 (dd, J =8.3, 1.9 Hz, 

1H, Ar(OCH
3
)–H6), 7.13 (d, J =15.9 Hz, 2H, CO–CH=×2), 

7.02–6.98 (m, 1H, Ar(OCH
3
)–H5), 3.97 (s, 6H, -OCH

3
×2). 

ESI-MS m/z: 295.2 (M+H)+, 317.0 (M+Na)+ calcd for 

C
19

H
18

O
3
: 294.13.

(1E,4E)-1-(3,4-Dichlorophenyl)-5-phenylpenta- 
1,4-dien-3-one (3e)
Yellow powder, 86.72% yield, mp 131.2°C–132.57°C. 
1H NMR (500 MHz, CDCl3) δ 7.77 (d, J =16.0 Hz, 1H, 

Ar(Cl)–CH=), 7.73 (s, 1H, Ar–CH=), 7.66–7.63 (m, 3H, 

Ar–H2,6, Ar(Cl) -H6), 7.51 (d, J =8.3 Hz, 1H, Ar(Cl)–H5), 

7.45 (m, 4H, Ar–H3–5, Ar(Cl)–H2), 7.10 (d, J =11.4 Hz, 1H, 

Ar–C=CH), 7.07 (d, J =11.5 Hz, 1H, Ar(Cl)–C=CH). ESI-MS 

m/z: 324.8 (M+Na)+, calcd for C
17

H
12

Cl
2
O: 302.03.

(1E,4E)-1-(2-nitrophenyl)-5-phenylpenta- 
1,4-dien-3-one (3f) 
Brick red powder, 46.65% yield, mp 90.4°C–91.57°C. 1H NMR 

(500 MHz, CDCl
3
) δ 7.80 (d, J =16.0 Hz, 1H, Ar (NO

2
) -CH=), 

7.75 (dd, J =7.8, 1.4 Hz, 1H, Ar (NO
2
)–H3), 7.71 (t, J =7.5 Hz, 

1H, Ar(NO
2
)-H6), 7.67–7.64 (m, 2H, Ar (NO

2
)–H4, Ar–CH=), 

7.62–7.56 (m, 1H, Ar(NO
2
)–H5), 7.46–7.44 (m, 5H, Ar–H), 

7.15 (d, J =16.0 Hz, 1H, Ar(NO
2
)–C=CH), 6.94 (d, J =15.9 Hz, 

1H, Ar–C=CH). ESI-MS m/z: 279.8 (M+H)+, 301.8 (M+Na)+. 

calcd for C
17

H
13

NO
3
: 279.09.
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(1E,4E)-1-Phenyl-5-[4-(pyrrolidin-1-yl)phenyl]penta-
1,4-dien-3-one (3i)
Brick red powder, 36.12% yield. mp 66.45°C-68.55°C. 

1H NMR (500 MHz, CDCl
3
) δ 7.86 (d, J =16.2 Hz, 2H, 

Ar–CH=×2), 7.73–7.67 (m, 4H, Ar-H2,6×2), 7.54–7.40 (m, 5H, 

Ar–H3–5, Ar(N) -H3,5), 7.19 (d, J =16.1 Hz, 2H, Ar–C=CH×2), 

3.39 (t, J =5.6 Hz, 4H, N–CH
2
×2), 2.06 (m, 4H, CH

2
–CH

2
). 

ESI-MS m/z: 304.1 (M+H)+, calcd for C
21

H
21

NO: 303.16.

(1E,4E)-1-[4-(tert-Butyl)phenyl]-5-phenylpenta- 
1,4-dien-3-one (3j)
Yellow powder, 68.28% yield, mp 64.20°C-66.57°C. 

1H NMR (500 MHz, CDCl
3
) δ 7.72 (d, J =16.4 Hz, 2H, 

Ar–CH=×2), 7.63 (d, J =8.0 Hz, 2H, Ar(C(CH
3
)

3
-H2,6), 

7.57 (d, J =8.0 Hz, 2H, Ar–H2,6), 7.51 (d, J =8.4 Hz, 2H, 

Ar–H3,5), 7.40 (m, 1H, Ar–H4), 7.32 (d, J =8.0 Hz, 2H, 

Ar(C(CH
3
)

3
-H3,5), 7.12 (d, J =15.6 Hz, 2H, Ar–C=CH×2), 

1.36 (s, 9H, -C(CH
3
)

3
). ESI-MS m/z: 291.0 (M+H)+, calcd 

for C
21

H
22

O: 290.17. 

(1E,4E)-1-phenyl-5-(thiophen-2-yl)penta- 
1,4-dien-3-one (3m)
Yellow powder, 76.2% yield, mp 87.0°C-89.95°C. [92°C-
96°C, lit.25].

(1E,4E)-1-(2-Methoxyphenyl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4a)
Yellow oil, 57.20% yield. 1H NMR (500 MHz, CDCl

3
) δ 8.09 

(d, J =16.2 Hz, 1H, Ar(OCH
3
)CH=), 7.74 (d, J =15.9 Hz, 1H, 

Ar(CH
3
)CH=), 7.64 (dd, J =7.7, 1.4 Hz, 1H, Ar(OCH

3
) -H6), 

7.55 (d, J =8.0 Hz, 2H, Ar(CH
3
)–H2,6), 7.39 (d, J =6.9 Hz, 

1H, Ar(OCH
3
)–H4), 7.24 (d, J =7.8 Hz, 2H, Ar(CH

3
)–H3,5), 

7.17 (s, 1H, Ar(CH
3
)C=CH), 7.13 (d, J =6.2 Hz, 1H, 

Ar(OCH
3
)–H5), 7.02 (s, 1H, Ar(OCH

3
)–H3), 6.96 (d, J =16.3 

Hz, 1H, Ar(OCH
3
)C=CH), 3.95 (s, 3H, -OCH

3
), 2.41 (s, 

3H, -CH
3
). ESI-MS m/z: 279.0 (M+H)+, calcd for C

19
H

18
O

2
: 

278.13.

(1E,4E)-1-(2-Fluorophenyl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4b)
Yellow powder, 72.93% yield, mp 68.80°C-69.76°C. 1H 

NMR (500 MHz, CDCl
3
) δ 7.87 (d, J =16.1 Hz, 1H, Ar(F)

CH=), 7.75 (d, J =15.9 Hz, 1H, Ar(CH
3
)CH=), 7.65 (td, 

J =7.6, 1.6 Hz, 1H, Ar(F)–H4), 7.55 (d, J =8.1 Hz, 2H, 

Ar(CH
3
)–H2,6), 7.40 (d, J =8.0 Hz, 1H, Ar(F)–H6), 7.25 (d, 

J =8.0 Hz, 2H, Ar(CH
3
)–H3,5), 7.22 (s, 1H, Ar(F)–H3), 7.19 

(s, 1H, Ar(F)–H5),7.14 (d, J =16.4 Hz, 1H, Ar(CH
3
)C=CH), 

7.08 (d, J =15.9 Hz, 1H, Ar(F)C=CH), 2.42 (s, 3H, –CH
3
). 

ESI-MS m/z: 266.9 (M+H)+, calcd for C
18

H
15

FO: 266.11.

(1E,4E)-1-(2-Bromophenyl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4c)
Yellow oil, 69.43% yield. 1H NMR (500 MHz, CDCl

3
) δ 8.09 

(d, J =16.0 Hz, 1H, Ar(Br)CH=), 7.77 (d, 1H, Ar(CH
3
)CH=), 

7.72 (dd, J =7.8, 1.6 Hz, 1H, Ar(Br)-H3), 7.66 (dd, J =8.0, 

1.1 Hz, 1H, Ar(Br)–H5), 7.55 (d, J =8.1 Hz, 2H, Ar(CH
3
)–

H2,6), 7.38 (t, J =7.3 Hz, 1H, Ar(Br)–H6), 7.27–7.26 (m, 1H, 

Ar(Br)–H4), 7.25 (d, J =8.0 Hz, 2H, Ar(CH
3
)–H3,5), 7.10 

(d, J =15.9 Hz, 1H, Ar(CH
3
)C=CH), 7.01 (d, J =15.9 Hz, 

1H, Ar(Br)C=CH), 2.42 (s, 3H, -CH
3
). ESI-MS m/z: 326.9 

(M+H)+, calcd for C
18

H
15

BrO: 326.03.

(1E,4E)-1-(3,4-Dimethoxyphenyl)-5-(p-tolyl) 
penta-1,4-dien-3-one (4d)
Yellow powder, 39.29% yield, mp 128.50°C-129.40°C. 

1H NMR (500 MHz, CDCl
3
) δ 7.73 (d, J =15.7 Hz, 2H, 

ArCH=×2), 7.54 (d, J =8.1 Hz, 2H, Ar(CH
3
)–H2,6), 7.24 

(d, J =8.1 Hz, 2H, Ar(CH
3
)–H3,5), 7.22 (d, J =1.8 Hz, 1H, 

Ar(OCH
3
)–H2), 7.17 (d, J =1.9 Hz, 1H, Ar(OCH

3
)–H6), 7.08 

(d, J =15.9 Hz, 1H, Ar(CH
3
)C=CH), 6.97 (d, J =15.9 Hz, 1H, 

Ar(OCH
3
)C=CH), 6.92 (d, J =8.3 Hz, 1H, Ar(OCH

3
)–H5), 

3.97 (s, 6H, -OCH
3
×2), 2.41 (s, 3H, -CH

3
). ESI-MS m/z: 

309.0 (M+H)+,calcd for C
20

H
20

O
3
: 308.14.

(1E,4E)-1-(3,4-Dichlorophenyl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4e)
Light yellow powder, 85.76% yield, mp 137.30°C-138.57°C. 

1H NMR (500 MHz, CDCl
3
) δ 7.74 (d, J =16.0 Hz, 2H, 

ArCH=×2), 7.63 (d, J =8.9 Hz, 1H, Ar(Cl)–H6), 7.54 (d, 

J =8.1 Hz, 2H, Ar(CH
3
)–H2,6), 7.51 (d, J =8.3 Hz, 1H, 

Ar(Cl)–H5), 7.45 (dd, J =8.3, 1.9 Hz, 1H, Ar(Cl)–H2), 7.25 

(d, J =8.0 Hz, 2H, Ar(CH
3
)–H3,5), 7.09 (d, J =15.9 Hz, 1H, 

Ar(CH
3
)C=CH), 7.02 (d, J =15.9 Hz, 1H, Ar(Cl)C=CH), 2.42 

(s, 3H, -CH
3
). ESI-MS m/z: 319.0 (M+H)+, 338.9 (M+Na)+, 

calcd for C
18

H
14

Cl
2
O: 316.04.

(1E,4E)-1-(2-nitrophenyl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4f)
Invisible green, 19.11.% yield, mp 106.63°C-107.97°C. 

1H NMR (500 MHz, CDCl
3
) δ 8.13 (d, J =15.9 Hz, 1H, 

Ar(NO
2
)CH=), 8.10 (d, J =8.1 Hz, 1H, Ar(NO

2
)–H3), 7.78 

(d, J =15.9 Hz, 1H, Ar(CH
3
)CH=), 7.75 (d, J =6.7 Hz, 1H, 

Ar(NO
2
)–H6), 7.70 (t, J =7.4 Hz, 1H, Ar(NO

2
)–H4), 7.61–7.56 

(m, 1H, Ar(NO
2
)–H5), 7.56 (d, J =7.9 Hz, 2H, Ar(CH

3
)–H2,6), 
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7.25 (d, J =7.9 Hz, 2H, Ar(CH
3
)–H3,5), 7.10 (d, J =15.9 Hz, 

1H, Ar(CH
3
)C=CH), 6.94 (d, J =15.9 Hz, 1H, Ar(NO

2
)

C=CH), 2.42 (s, 3H, -CH
3
). ESI-MS m/z: 294.0 (M+H)+, 

calcd for C
18

H
15

NO
3
: 293.11.

(1E,4E)-1-Phenyl-5-(p-tolyl)penta-1,4-dien-3-one (4g)
Yellow powder, 91.08% yield, mp 98.97°C-100.23°C. 

[110°C–111°C, lit.26].

(1E,4E)-1-(4-(diethylamino)phenyl)-5-(p-tolyl)penta-
1,4-dien-3-one (4h)
Tangerine oil, 76.2% yield. 1H NMR (500 MHz, CDCl

3
) 

δ 7.72 (d, J =16.2 Hz, 2H, ArCH=×2), 7.62 (d, J =8.3 Hz, 2H, 

Ar(N)–H2,6), 7.56 (d, J =8.4 Hz, 2H, Ar(CH
3
)–H2,6), 7.54–7.42 

(m, 4H, Ar(N)–H3,5, Ar(CH
3
)–H3,5), 6.69 (d, J =15.6 Hz, 2H, 

ArC=CH×2), 3.44 (m, 4H, N–CH
2
×2), 2.38 (s, 3H, Ar–CH

3
), 

1.22 (m, 6H, -CH
3
×2). ESI-MS m/z: 320.1 (M+H)+, calcd 

for C
22

H
25

NO: 319.19.

(1E,4E)-1-(4-(pyrrolidin-1-yl)phenyl)-5-(p-tolyl) 
penta-1,4-dien-3-one (4i)
Tangerine oil, 26.34% yield. 1H NMR (500 MHz, CDCl

3
) 

δ 7.73 (d, J =16.4 Hz, 2H, ArCH=×2), 7.53–7.50 (m, 4H, 

Ar(N)–H2,6, Ar(CH
3
)–H2,6), 7.44 (d, J =8.0 Hz, 2H, Ar(CH

3
)–

H3,5), 7.21 (d, J =7.8 Hz, 2H, Ar(N)–H3,5), 6.57 (d, J =15.6 

Hz, 2H, ArC=CH×2), 3.39 (t, J =6.6 Hz, 4H, N–CH
2
×2), 

2.38 (s, 3H, Ar–CH
3
), 1.96 (m, 4H, CH

2
–CH

2
). ESI-MS m/z: 

318.1 (M+H)+, calcd for C
22

H
23

NO: 317.18.

(1E,4E)-1-[4-(tert-Butyl)phenyl]-5-(p-tolyl)penta- 
1,4-dien-3-one (4j)
Yellow powder, 78.95% yield, mp 140.97°C-142.27°C. 
1H NMR (500 MHz, CDCl

3
) δ 7.76 (d, J =15.8 Hz, 2H, 

ArCH=×2), 7.58 (d, J =8.3 Hz, 2H, Ar(C(CH
3
)

3
-H2,6), 7.54 

(d, J =8.0 Hz, 2H, Ar(CH
3
)–H2,6), 7.46 (d, J =8.4 Hz, 2H, 

Ar(C(CH
3
)

3
-H3,5), 7.25 (d, J =8.0 Hz, 2H, Ar(CH

3
)-H3,5), 

7.09 (d, J =15.6 Hz, 2H, ArC=CH×2), 2.42 (s, 3H, –CH
3
), 

1.36 (s, 9H, -C(CH
3
). ESI-MS m/z: 305.1 (M+H)+, calcd 

for C
22

H
24

O: 304.18.

(1E,4E)-1-[4-(Benzyloxy)phenyl]-5-(p-tolyl)penta- 
1,4-dien-3-one (4k)
Yellow powder, 24.28% yield, mp 143.13°C-149.17°C. 
1H NMR (500 MHz, CDCl

3
) δ 7.75 (d, J =15.8 Hz, 2H, 

ArCH=×2), 7.60 (d, J =8.7 Hz, 2H, Ar(OCH
2
Ar)–H2,6), 

7.54 (d, J =8.0 Hz, 2H, Ar(CH
3
)–H2,6), 7.46 (d, J =7.0 Hz, 

2H, -OCH
2
Ar–H2,6), 7.43 (d, J =7.2 Hz, 2H, -OCH

2
Ar–H3,5), 

7.38 (d, J =7.0 Hz, 1H, -OCH
2
Ar–H4), 7.24 (d, J =7.9 Hz, 2H, 

Ar(CH
3
)–H3,5), 7.06 (d, J =16.3 Hz, 2H, ArC=CH×2), 7.01 (d, 

J =7.9 Hz, 2H, Ar(OCH
2
Ar)–H3,5), 5.14 (s, 2H, ArOCH

2
Ar), 

2.42 (s, 3H, -CH
3
). ESI-MS m/z: 355.1 (M+H)+, calcd for 

C
25

H
22

O
2
: 354.16.

(1E,4E)-1-(furan-2-yl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4l)
Lignt yellow powder, 83.16% yield, mp 81.10°C-82.20°C. 
1H NMR (CDCl

3
) δ 7.66 (d, J =16.0 Hz, 1H, Ar–CH=C), 

7.51 (d, J =15.7 Hz, 1H, Furan–CH=C), 7.49–7.54 (m, 

3H,  Furan–H5, Ar–H2,6), 7.38 (d, J =8.2 Hz, 2H, Ar–H3,5), 

6.97 (d, J =15.7 Hz, 2H, Ar–C=CH×2), 6.71 (d, J =3.0 Hz, 

1H, Furan–H3), 6.52 (s, 1H, Furan–H4), 2.42 (s, 3H,–CH
3
). 

ESI-MS m/z: 238.9 (M+H)+, calcd for C
16

H
14

O
2
: 238.10.

(1E,4E)-1-(thiophen-2-yl)-5-(p-tolyl)penta- 
1,4-dien-3-one (4m)
Yellow powder, 88.95% yield, mp 78.27°C-79.23°C. 
1H NMR (CDCl

3
) δ 7.86 (d, J =15.5 Hz, 1H, Ar-CH=C), 

7.70 (d, J =15.9 Hz, 1H, Thiophene–CH=C), 7.51–7.52 

(d, J =8.0 Hz, 2H, Ar–H2,6), 7.41 (d, J =5.0 Hz, 1H, 

 Thiophene–H5), 7.34 (d, J =3.5 Hz, 1H, Thiophene–H3), 

7.22 (d, J =7.9 Hz, 2H, Ar–H3,5), 7.09 (dd, J =4.9, 3.7 Hz, 

1H, Thiophene–H4), 6.98 (d, J =15.9 Hz, 1H, ArC=CH), 6.89 

(d, J =15.5 Hz, 1H, ArC=CH), 2.39 (s, 3H, -CH
3
). ESI-MS 

m/z: 255.0 (M+H)+, calcd for C
16

H
14

OS: 254.08.

animals
Male C57BL/6 mice weighing 18–22 g were obtained from the 

Animal Center of Wenzhou Medical University (Wenzhou, 

People’s Republic of China). Animals were housed at a 

constant room temperature with a 12-hour/12-hour light–

dark cycle and fed with a standard rodent diet and water. 

The animals were acclimatized to the laboratory for at least 

7 days before being used in the experiments. Protocols 

involving the use of animals were approved by the Wenzhou 

Medical University’s Animal Policy and Welfare Committee 

(approval documents: 2009/APWC/0031).

reagents
Lipopolysaccharides (LPSs) were purchased from Sigma-

Aldrich (St Louis, MO, USA). In addition, eBioscience (San 

Diego, CA, USA) was the source of the mouse IL-6 enzyme-

linked immunosorbent assay (ELISA) kit and mouse TNF-α 

ELISA kit. Anti-glyceraldehyde 3-phosphate dehydrogenase, 

anti-IκBα (nuclear factor of kappa light-polypeptide gene 
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enhancer in B-cells inhibitor alpha), and anti-extracellular 

signal-regulated kinase (ERK) antibodies were obtained from 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).

Ultraviolet–visible (UV–vis) absorption 
spectra of curcumin and its analogs
Absorbance readings were taken from 250 nm to 600 nm 

on a spectraMax M5 (Molecular Devices, Sunnyvale, CA, 

USA). In the experiments where degradation of compounds 

was recorded, the absorption spectra were collected for over 

25 minutes at 5-minute intervals. A stock solution of 1 mM 

curcumin or the new compounds was prepared and diluted 

with phosphate buffer solution (pH 7.4) to a final concentra-

tion of 20 μM. All spectral measurements were carried out 

in a 1 cm path-length quartz cuvette at 25°C.

crystal structure determination of 3e by 
X-ray crystallography
Crystals of compound 3e suitable for X-ray diffraction were 

obtained by slowly evaporating a solution of the solid com-

pound in mixed solvent at room temperature for 3 days. Single 

crystals were collected and mounted on the top of glass fibers 

in a random orientation. X-ray single crystal diffraction mea-

surement was carried out at 293(2) K on a Bruker Smart CCD 

(charge-coupled-device) area diffractometer equipped with a 

graphite-monochromatic MoKα radiation (λ=0.71073 Å) for 

data collection. The unit cell dimensions were obtained with 

the least-squares refinements, and the structures were solved 

by direct methods with SHELXS-97.27 The final refinement 

was performed by full-matrix least-squares techniques with 

anisotropic thermal parameters for the nonhydrogen atoms 

on F2 (SHELXL-97).27 All the hydrogen atoms were placed 

in the calculated positions and constrained to ride on their 

parent atoms.

Mouse primary peritoneal macrophages 
preparation
C57BL/6 mice were stimulated by an intraperitoneal (ip) 

injection of 6% thioglycollate solution (0.3 g beef extract, 

1 g tryptone, and 0.5 g NaCl dissolved in 100 mL ddH
2
O, 

and filtrated through 0.22 mm filter membrane, 3 mL per 

mouse) and kept in a pathogen-free condition for 3 days 

before mouse primary peritoneal macrophages (MPMs) 

isolation. Total MPMs were harvested by washing the 

peritoneal cavity with phosphate-buffered saline (PBS) 

containing 30 mM of EDTA (8 mL per mouse), centrifuged, 

and suspended in Roswell Park Memorial Institute (RPMI)-

1640 medium (Gibco/BRL life Technologies, Eggenstein, 

Germany) with 10% fetal bovine serum (FBS) (Hyclone, 

Logan, UT, USA), 100 U mL-1 penicillin and 100 mg/mL 

streptomycin. Non-adherent cells were removed by washing 

with medium 3 hours after seeding. Before treatment, MPMs 

were cultured in 35 mm plates (4×105 cells per plate with 

1 mL RPMI-1640 medium) and incubated overnight at 37°C 

in a 5% CO
2
-humidified air.

MPM cell treatment and elisa
LPS purchased from Sigma-Aldrich was dissolved in PBS. 

Curcumin and the obtained compounds were dissolved in 

dimethyl sulfoxide (DMSO) for in vitro experiments. 3f was 

prepared as a soluble preparation for in vivo experiments as 

described in our previous study.28 After cells were treated 

with each of the above compounds and LPS, the TNF-α and 

IL-6 levels in medium were determined with an ELISA kit 

(eBioscience) according to the manufacturer’s instructions. 

The total protein in cultural plates was collected, and the 

concentrations of protein were determined using Bio-Rad 

protein assay reagents. The total amount of the inflammatory 

factor in the media was normalized to the total amount of 

protein in the viable cell pellets.

Quantitative structure–activity 
relationship
The molecular structures of all the AMACs were built 

using Maestro (Version 9.1, Schrödinger, LLC). The full 

geometry of molecular structures was further optimized 

with MOPAC2009 version 9.01. All the calculations 

were based on the semiempirical parameterized model 6 

(PM6) method.29 The molecular descriptor calculation was 

performed on MODEL (Molecular Descriptor Lab: http://

jing.cz3.nus.edu.sg/cgi-bin/model/model.cgi), a web-based 

server for computing structural and physicochemical fea-

tures of compounds, according to the methods described 

in the literature.30 The optimized molecular structures were 

uploaded to MODEL. About 4,000 molecular descriptors 

based on molecular 3D structures were obtained. After cal-

culation, molecular descriptors remaining constant for all 

molecules were eliminated. Variable pairs with a correlation 

coefficient greater than 0.85 were classified as intercorrelated. 

Multiple linear regression analysis and leave-one-out cross-

validation procedure of R program were used to build the 

quantitative SAR (QSAR) model. The details are provided 

in the Supplementary materials.

Western blot analysis
MPMs were pretreated with vehicle (DMSO) or the new 

compounds of interest at 10 μM for 2 hours followed by 

incubation with LPS (0.5 μg/mL) for 30 minutes. The protein 
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levels of phosphorylated ERK (p-ERK), ERK, and IκB were 

detected by Western blot.

compound 3f protection in mouse 
model of sepsis induced by lPs
Compound 3f was firstly dissolved with macrogol 15 

hydroxystearate (a nonionic solubilizer for injection from 

Baden Aniline and Soda Factory [BASF]) with or without 

medium-chain triglycerides (MCTs, from BASF) in water 

bath at 37°C. The concentration of 3f was 2 mg/mL. The 

concentration of solubilizer ranged from 5% to 10%, and 

MCT from 0.5% to 2% in final solution. For the vehicle, the 

mixture of solubilizer and MCT was prepared at 10% and 2%, 

respectively. In preventive group (3f + LPS), male C57BL/6 

mice weighing 18–22 g were pretreated with 3f in a water 

solution (10 mg/kg) by intravenous (iv) injection 15 minutes 

before the ip injection of LPS (20 mg/kg). In therapeutic treat-

ment group (LPS + 3f), male mice received ip injection of 

LPS (20 mg/kg) 15 minutes prior to the treatment with 3f in 

a water solution (10 mg/kg) by iv injection. Control animals 

received a similar volume (100 μL) of vehicle. Mortality was 

recorded for 7 days.

statistical analysis
The results are presented as means ± standard deviation. 

Student’s t-test was employed to analyze the differences 

between sets of data. Statistics were performed using 

GraphPad Prism software (GraphPad, San Diego, CA, 

USA). P-values less than 0.05 were considered indicative 

of significance. All in vitro experiments were repeated at 

least three times.

Results and discussion
chemistry
These AMACs (3a–m, 4a–m) were prepared via aldol conden-

sation of substituted aromatic aldehydes and the intermediates 

(E)-4-phenylbut-3-en-2-one (2a) or (E)-4-(p-tolyl)but-3-en-2-

one (2b), which were obtained by coupling the commercially 

available benzaldehyde (1a) or p-tolualdehyde (1b) with 

acetone in an alkaline medium, respectively. Different 

substituents with opposing electronic properties in the benzene 

rings were designed and used. The structures of compounds 

3a–m and 4a–m are shown in Figure 2. The whole reaction 

gave the respective products in a yield ranging from 19.11% 

to 91.08%. The synthetic yields, melting points, 1H NMR, and 

ESI-MS analysis of unpublished compounds are described in 

the “Materials and methods” section. Analytical and spectral 

data of all synthesized compounds are in full agreement with 

the proposed structures. The purities of all newly synthesized 

compounds were analyzed by high-performance liquid chro-

matography, with the purity of all being higher than 95%. In 

addition, the single crystal of compound (3e) suitable for X-ray 
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Figure 3 X-ray structure of compound 3e.
Notes: selected bond distances (Å): c(1)–O(1)=1.134(13), c(1)–c(2)=1.435(5), c(2)–
c(3)=1.340(5), c(1)–c(10)=1.528(6), c(10)–c(11)=1.320(6), and c(16)–cl(1)=1.756(5). 
selected bond angles (°): c(2)–c(3)–c(4)=129.9(4), O(1)–c(1)–c(2)=131.6(7), O(1)–
c(1)–c(10)=109.0(7), c(1)–c(10)–c(11)=124.3(5).

Figure 2 Synthesis scheme, chemical structures, and anti-inflammatory activities of AMACs (3a–f, 3i–j, 3m, and 4a–m).
Notes: MPM cells were pretreated with aMacs (10 μM) for 2 hours, and then treated with lPs (0.5 μg/ml) for 22 hours. TnF-α and il-6 levels in the culture medium were 
measured by elisa and were normalized to the total amount of protein. The percent inhibition of TnF-α and il-6 is represented. *P0.05 and **P0.01.
Abbreviations: aMacs, asymmetric mono-carbonyl analogs of curcumin; MPM, mouse primary peritoneal macrophage; lPs, lipopolysaccharide; TnF-α, tumor necrosis 
factor-α; il-6, interleukin-6; elisa, enzyme-linked immunosorbent assay; DMsO, dimethyl sulfoxide; cur, curcumin.
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diffraction study was obtained from CH
2
Cl

2
–CH

3
CH

2
OH 

mixture (v/v =3:1) by a slow-evaporation method at room 

temperature. The 3D crystal structure of 3e was determined 

using X-ray crystallography. The selected bond lengths and 

bond angles are described in Figure 3. Importantly, 3e crystal 

structure confirmed the expected trans–trans confirmation in 

the structure of AMAC.

UV–vis absorption spectra of curcumin 
and its analogs in phosphate buffer
It is reported that curcumin undergoes rapid decomposition 

in the physiological buffer solution (pH 7.4), which limits 

its bioavailability in clinical application.31 To investigate the 

stability of these AMACs, we measured the UV–vis absorp-

tion spectra of representative AMACs in phosphate buffer, 

pH 7.4. Figure 4 shows the UV–vis absorption spectra of 

curcumin and active compounds 3f, 3m, 4b, and 4d. The 

intensity of UV spectra of these AMACs demonstrated very 

little change over time in phosphate buffer solution (PBS, 

pH 7.4). For comparison, the UV absorption intensity of 

curcumin decreased significantly over time in the buffer 

solution (pH 7.4). Within 25 minutes of incubation, curcumin 

lost more than 60% of its original intensity (Figure 4). These 
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Figure 4 UV–vis absorption spectra of aMacs in PBs (ph 7.4).
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results indicate that AMACs are stable in the buffer at physi-

ological pH 7.4 (Figure 4). Our previously reported MACs 

also showed chemical stability and demonstrated signifi-

cantly improved pharmacokinetic profiles.13,32 As such, these 

new AMACs could significantly improve their bioavailability 

as potential anti-inflammation therapeutic agents.

inhibitory screening against lPs-induced 
TnF-α and il-6 release
We screened these obtained novel AMACs for their inhibi-

tory activity on the TNF-α and IL-6 expression stimulated 

by LPS. MPM cells extracted from C57BL/6 mice were 

used for in vitro anti-inflammatory studies. Briefly, MPM 

cells were pretreated with curcumin, analogs (10 μM), or 

vehicle control (DMSO, 0.1%) for 2 hours, followed by the 

treatment with LPS (0.5 μg/mL) for 22 hours. The levels of 

TNF-α and IL-6 in culture medium were determined through 

ELISA. As shown in Figure 2, among these 22 compounds, 

the majority demonstrated various degrees of inhibition of 

TNF-α and IL-6 expression induced by LPS. Compounds 3f, 

3m, 4f, and 4m exhibited a high degree of inhibitory effects 

on TNF-α expression, and compounds 3d, 3f, 4a, 4b, 4d, 4l, 
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and 4m showed remarkable downregulation (50%) of IL-6 

expression stimulated by LPS. The most potent compound 

3f, a 2-nitro-substituted compound, showed an inhibition rate 

of 54.53% and 91.20% on LPS-induced IL-6 and TNF-α, 

respectively. For a comparison, compounds 3f, 3m, 4f, and 

4m showed significantly more potent (greater than threefold) 

inhibition on TNF-α expression than curcumin. The analogs 

are more potent than curcumin (Figure 2).

Quantitative structure–activity 
relationship
To analyze the SAR of different chemical groups of these 

compounds and their biological activity, a QSAR model was 

calculated (Figure 5). In QSAR model study, the structure–

properties of compounds are typically represented by their 

molecular descriptors.33 Moran, solvent-accessible surface 

(SAS), weighted holistic invariant molecular (WHIM), and 

Geary molecular descriptors were used in our QSAR model. 

A more detailed description of these molecular descriptors 

is provided in the Supplementary materials. The statistically 

significant QSAR models, Equations 1 and 2, were obtained, 

with regression coefficients (R2) of 0.85 and 0.83, respectively. 

These two models fit relatively well the observed inhibitory 

activities of these compounds against TNF-α and IL-6 expres-

sions. The SAR analysis revealed that compounds with an 

electron-withdrawing substituent (3e, 3f, and 4f) on aromatic 

ring are likely to exert higher TNF-α inhibition than those with 

an electron-donating group (3i, 4h, and 4k). Compounds with 

highly electron-withdrawing nitro group showed the highest 

inhibitory activity (3f). Substitution of benzene ring with thio-

phene (3m, 4m) in compounds also increased the inhibitory 

activity against TNF-α. In addition, the QSAR results indicate 

that the molecular surface may play a significant role in the 

anti-inflammatory activity of the AMACs. As for the correla-

tion between chemical structures of these compounds and their 

inhibitory effects on IL-6 expression, however, the SAR model 

is not statistically significant from the present data.

active compounds inhibit TnF-α and il-6 
release in a dose-dependent manner
Four active AMAC compounds, 3f, 3m, 4b, and 4d, which 

showed low cytotoxicity in human umbilical vein  endothelial 

cells (data not shown), were chosen for further biological 

evaluation in a dose-dependent manner. MPM cells were 

pretreated with 3f, 3m, 4b, or 4d in escalating doses (2.5 μM, 

5.0 μM, 10 μM, or 20 μM) for 2 hours. After treatment, the 

cells were then incubated with LPS (0.5 μg/mL) for 22 hours. 

As shown in Figure 6, compounds 3f, 3m, 4b, and 4d dose-

dependently inhibited LPS-induced TNF-α and IL-6 release 

in macrophage with IC
50

 values in low micromolar range. 

Compound 3f demonstrated the most potent activity for 

inhibiting TNF-α and IL-6 expression. Consistent with our 

previous report,34 these analogs are more potent than cur-

cumin. The results suggest that these compounds effectively 

downregulated the expression of both TNF-α and IL-6 and 

could be potential anti-inflammatory agents.

Figure 5 Plots of predicted activity against the observed inhibitory activity on (A) TnF-α and (B) il-6.
Notes: The F-value is related to the F-test statistical analysis (Fischer test). The numbers in parentheses mean the standard deviation of the coefficients. (TNF-α – equation 1: 
irTnF-α =243.12 (±35.30)–76.79 (±10.14) Moran +249.34 (±40.49) sas +455.04 (±77.92) WhiM, n=22, R2=0.85, Radj

2=0.82, s=9.63, F3,18=33.50, P=1.41e–07; il-6 – equation 2: 
iril-6 =-236.79 (±42.95) +53.96 (±7.87) geary +5022.22 (±797.58) sas -0.63 (±0.14) sas, n=22, R2=0.83, Radj

2=0.80, s=9.57, F3,18=8.36, P=4.89e–07.
Abbreviations: Per, predicted; eXP, experimental; sas, solvent-accessible surface; WhiM, weighted holistic invariant molecular; TnF-α, tumor necrosis factor-α; il-6, 
interleukin-6; ir, inhibition rate; n, the number of compounds taken into account in the regression; R2, the multiple correlation coefficient; Radj

2, adjusted multiple correlation 
coefficient; s, residual standard error.
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Figure 6 aMac compounds 3f, 3m, 4b, and 4d inhibited lPs-induced TnF-α and il-6 release in MPMs in a dose-dependent manner.
Notes: MPMs were plated at a density of 4×105/plate for overnight in 37°c and 5% cO2. Cells were pretreated with specific compound at indicated concentrations for 
2 hours, followed by lPs (0.5 μg/ml) treatment for 22 hours. The levels of TnF-α (A) or il-6 (B) in the culture medium were measured by elisa and were normalized to the 
total amount of protein. The bars represent percent TnF-α or il-6 level as compared to the lPs control. each bar represents mean ± sD of three independent experiments. 
Statistical significance relative to the LPS group was indicated, *P0.05 and **P0.01.
Abbreviations: aMac, asymmetric mono-carbonyl analog of curcumin; lPs, lipopolysaccharide; TnF-α, tumor necrosis factor-α; il-6, interleukin-6; MPM, mouse primary 
peritoneal macrophage; elisa, enzyme-linked immunosorbent assay; sD, standard deviation; DMsO, dimethyl sulfoxide.

effects of active compounds on the 
MaPK/erK signaling pathway
Studies have shown that elevated expressions of IL-6 and 

TNF-α induced by LPS are associated with the activation of 

multiple signal transduction pathways, including ERK1/2 

and transcriptional factor nuclear factor kappa binding 

(NF-κB).35,36 In NF-κB signaling, IκB degradation frees 

NF-κB p65 subunit and allows it to translocate into the 

nucleus, followed by activating the transcription of inflam-

matory genes. Curcumin has been shown to inhibit the activa-

tion of ERK1/2 and NF-κB and exert anti-inflammatory or 

anticancer effects in various cells.37,38 To study the molecular 

mechanism underlying the downregulation of these signal-

ing pathways, we investigated the inhibitory effects of these 

AMAC compounds (3f, 3m, 4b, and 4d) on ERK1/2 and 

NF-κB stimulated by LPS. MPM cells were pretreated with 

compounds 3f, 3m, 4b, and 4d (10 μM) or DMSO (vehicle 

control) for 2 hours, respectively, followed by the treatment 

with LPS (0.5 μg/mL) for 30 minutes. Western blot assay 

was used to detect the levels of ERK1/2 phosphorylation 

and IκB degradation. As shown in Figure 7, 3f significantly 

inhibited LPS-induced ERK1/2 phosphorylation and IκB 

degradation, while 3m, 4b, and 4d showed no effects on the 

activation of ERK1/2 and NF-κB. The anti-inflammatory 

activity of compound 3f is likely via downregulating NF-κB 

and ERK pathways, and blocking IκB degradation. However, 

the bioactivities of 3m, 4b, and 4d may be NF-κB/ERK inde-

pendent. Curcumin has been shown to serve as a multi-target 

agent to modulate multiple signaling pathways implicated in 

inflammation and cell proliferation. Our results demonstrated 

that these active AMACs, though sharing similar structural 

skeleton, exert anti-inflammatory activities by different 

mechanisms, which are worth further investigation.

Preventive and therapeutic effects of 
3f on mice with the lPs-induced sepsis
In vivo, we evaluated the anti-inflammatory effects of lead 

compound 3f in mouse model of sepsis. LPS, a commonly 
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used endotoxin, was used to induce sepsis. C57BL/6 male 

mice were randomly divided into three groups: vehicle (iv), 

LPS (20 mg/kg, ip), and LPS + 3f (10 mg/kg 3f, iv). To 

test therapeutic effect, mice received ip injection of LPS 

(20 mg/kg), followed 15 minutes later by the injection of 3f. 

The survival was recorded for 7 days after the LPS injection 

at the interval of 1 day. As shown in Figure 8A, all animals 

treated with LPS alone died within 3 days as a result of the 

septic shock, while 50% of the 3f-treated animals (LPS + 3f 

group) survived (therapeutic effect). To further evaluate the 

preventive effect of 3f on acute sepsis, mice were treated 

with 3f (10 mg/kg) 15 minutes prior to the LPS injection. 

Figure 8B shows that only 10% of the 3f-untreated mice (LPS 

group) survived after 7 days of LPS injection, while around 

60% of the 3f-treated animals (3f + LPS group, note the 

order is reversed here) survived. The survival rates were 

significantly increased as compared to that of the control 

group (50% survivals in both the prevention group and 

the therapeutic treatment group, P0.01 in both groups vs 

LPS group). In both therapeutic treatment and preventive 

treatment experiments, 3f markedly improved the survival 

in mice with LPS-induced sepsis. In the previous in vitro 

experiments, 3f inhibited the LPS-induced TNF-α and IL-6 

expression via NF-κB and ERK pathways. The in vivo results 

suggest that 3f treatment may effectively reduce TNF-α and 

IL-6 expression induced by LPS, which results in a prolonged 

survival in mice model. Thus, 3f treatment effectively pro-

longs survival in mice model with the acute inflammatory 
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Figure 8 compound 3f improved survival of mice subjected to a lethal dose of lPs.
Notes: (A) Male c57Bl/6 mice were treated with 3f (10 mg/kg, iv) 15 minutes after an ip injection of 20 mg/kg of lPs (lPs + 3f, the therapeutic group). (B) Mice were 
pretreated with 3f (10 mg/kg, iv) 15 minutes before an ip injection of 20 mg/kg of lPs (3f + lPs, prevention treatment group). survival was recorded for 7 days after the lPs 
injection at the interval of 1 day. **P0.01 vs lPs group.
Abbreviations: lPs, lipopolysaccharide; iv, intravenous; ip, intraperitoneal; vs, versus.

κ

Figure 7 active aMac compounds 3f, 3m, 4b, and 4d inhibited lPs-induced erK phosphorylation and nF-κB signaling activation.
Notes: Macrophages were pretreated with vehicle (DMsO) or the test compound (3f, 3m, 4b, 4d) at 10 μM for 2 hours, followed by incubation with lPs (0.5 μg/ml) for 
30 minutes. The protein levels of p-erK, erK, and iκBα were examined by Western blot. representative pictures from three independent experiments are shown.
Abbreviations: aMac, asymmetric mono-carbonyl analog of curcumin; lPs, lipopolysaccharide; erK, extracellular signal-regulated kinase; iκBα, nuclear factor of kappa 
light-polypeptide gene enhancer in B-cells inhibitor alpha; comps, compounds; gaPDh, glyceraldehyde 3-phosphate dehydrogenase; p-erK, phosphorylated erK; DMsO, 
dimethyl sulfoxide.
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shock. The results provide further in vivo evidence for the 

anti-inflammatory effects of the novel AMACs.

Conclusion
In this study, we designed and synthesized a series of novel 

AMACs, and evaluated their anti-inflammatory activity 

both in vitro and in vivo. Compounds 3f, 3m, 4b, and 4d 

significantly suppressed the production of TNF-α and IL-6 

in LPS-stimulated macrophages. Further investigation into 

the possible mechanism reveals that the anti-inflammatory 

activity of 3f might be associated with its inhibition against 

LPS-induced NF-κB and ERK pathway activation. In vivo, 

treatment with 3f effectively prolonged the survival in mice 

model of LPS-induced sepsis. These AMACs show improved 

stability, bioavailability, and potency compared to curcumin. 

Our results suggest that lead compound 3f, a novel AMAC, 

may serve as a potential agent targeting NF-κB and ERK 

pathways for prevention and treatment of sepsis or other 

inflammation-related diseases.
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Table S1 The calculated descriptors in present work

Variables Descriptor class Description

Moran Topological descriptors atomic mass-weighted Moran lagged 8
sas geometrical descriptors N-MEP-weighted first MS-WHIM Eigenvalue proportion by SAS surface
WhiM geometrical descriptors second directional WhiM density by VDW
geary Topological descriptors e-state-weighted geary lagged 8
sas geometrical descriptors local polarity of molecule by VDW surface
sas geometrical descriptors P-MeP-weighted second Ms-WhiM skewness by sas surface

Abbreviations: Ms, molecular surfaces; n-MeP, negative molecular electrostatic potential; P-MeP, positive molecular electrostatic potential; sas, solvent-accessible surface; 
VDW, van der Waals; WhiM, weighted holistic invariant molecular. 

Supplementary materials
Quantitative structure–activity 
relationship
Multiple linear regression analysis
Multiple linear regression (MLR) analysis is a statistical 

technique that uses several explanatory variables to predict 

the outcome of a response variable.1–3 The goal of MLR is to 

model the relationship between the explanatory and response 

variables. In our present study, MLR was performed using 

R program, a powerful tool for statistical computing and 

graphics, to derive quantitative structure−activity relation-

ship models. The biological data used in this study were 

their tumor necrosis factor (TNF)-α or interleukin (IL)-6 

inhibitory rates when compared to lipopolysaccharide-alone 

group. Compounds with negative values were abandoned 

because of their pro-inflammatory activities. The inhibition 

rates against TNF-α and IL-6 release, named as IR
TNF-α and 

IR
IL-6

, respectively, were used as dependent variables in the 

linearization procedure. Subsequently, stepwise MLR was 

used to select the significant descriptors. The most relevant 

descriptors were used as independent variables.

Validation of the models
Validation of the lineal models is required for testing 

the predictive ability and generalizing the methods by 

cross-validation. The leave-one-out (LOO) procedure was 

employed. When a data point was removed from the analyzed 

set, the regression was recalculated, and then the predicted 

value for that point was compared to its actual value. This 

process was repeated until each datum had been omitted once, 

and then the sum of squares of these deletion residuals could 

be used to calculate q2, an equivalent statistic to R2.

Results
One-variable and multivariable regressions between the dif-

ferent activities and the abundant descriptors were studied. 

The statistically significant models were obtained with three 

variables for anti-TNF-α and anti-IL-6 activities (Equa-

tions 1 and 2 in Figure 5). The involved molecular descriptors 

and their corresponding definition are listed in Table S1.

Equation 1 was the best quantitative structure–activity 

relationship model obtained with the Moran, SAS, and 

WHIM descriptors, which had a high adjusted squared 

regression coefficient (R2
adj

=0.82). The variables in Model 1 

included the topological descriptors and geometrical molecu-

lar descriptors. Two of those, SAS and WHIM descriptor, 

belong to geometrical molecular descriptors. Another vari-

able is Moran descriptor that is an autocorrelation index 

descriptor. Analogously, Equation 2 was obtained for 

anti-IL-6 activities. Other three molecular descriptors were 

employed to construct Model 2. Geary topological autocor-

relation descriptors are classified as topological descriptors. 

Molecular volume and molecular surface-derived descriptors, 

labeled as SAS in Table S1, belong to geometrical molecular 

descriptors.

Based on the statistical analysis, two satisfactory mod-

els for anti-TNF-α and anti-IL-6 activities were obtained. 

The correlation between compound activities and structure 

information could be illustrated from different perspectives 

by using various descriptors. R2 was a common parameter 

to test the validity of models, while it could be increased 

artificially by adding more variables (descriptors). To better 

test the validity of the models, the q2 values were adopted as 

a more reliable statistic parameter, which means the square 

of the correlation coefficient of the cross-validation and are 

calculated from LOO test. The q2 values could be used as a 

measure of the predictive ability of a regression equation. The 

q2 values of Equations 1 and 2 are 0.71 and 0.70, respectively, 

indicating the stability of these models. The scatter plot of 

predicted vs experimental values is illustrated in Figure X. 

As can be seen, Equations 1 and 2 have the modest quality, 

and the variables used in these equations can explain the 

variance in the anti-TNF-α and anti-IL-6 activities of the 

asymmetric mono-carbonyl analogs of curcumin.
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