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Abstract: Nanoparticles (NPs) are advantageous for the delivery of diagnosis agents to brain 

tumors. In this study, we attempted to develop an l-cysteine coated FePt (FePt-Cys) NP as 

MRI/CT imaging contrast agent for the diagnosis of malignant gliomas. FePt-Cys NPs were 

synthesized through a co-reduction route, which was characterized by transmission electron 

microscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, Fou-

rier transform infrared spectroscopy, and dynamic light scattering. The MRI and CT imaging 

ability of FePt-Cys NPs was evaluated using different gliomas cells (C6, SGH44, U251) as the 

model. Furthermore, the biocompatibility of the as-synthesized FePt-Cys NPs was evaluated 

using three different cell lines (ECV304, L929, and HEK293) as the model. The results showed 

that FePt-Cys NPs displayed excellent biocompatibility and good MRI/CT imaging ability, 

thereby indicating promising potential as a dual MRI/CT contrast agent for the diagnosis of 

brain malignant gliomas.

Keywords: CT, glioma, MRI

Introduction
Malignant brain gliomas are the fourth most common cause of cancer death because 

of their extremely high rate of morbidity and mortality.1 In the past decade, numer-

ous novel strategies based on various nanomaterials have been developed to conquer 

the highly mortal brain tumors.2–5 Interesting topics in this field include the targeted 

and controlled delivery system of anticancer drugs;6–9 photodynamic, photothermal, 

and magnetothermal therapy of tumors;10–16 and MRI, CT, and fluorescent imaging of 

brain tumors.17–22 Among various nanomaterials, magnetic nanoparticles (NPs) such 

as superparamagnetic iron oxide NPs (SPIONs) are the most extensively studied. 

Applications of these SPIONs range from the drug delivery system to MRI contrast 

agent and magnetothermal therapy for brain gliomas.23–26 Thus, studying novel mag-

netic nanomaterials other than SPIONs for application in the diagnosis and therapy 

of brain gliomas is of great interest.

FePt NPs with chemically disordered face-centered cubic structure have been well 

studied because of their promising potential in biomedical applications, including as 

an anticancer agent and for hyperthermic ablation, magnetic separation of bacteria and 

biomolecules (such as DNA and proteins), and MRI/CT imaging, due to their excellent 

chemical stability and magnetic properties.27–29 In particular, the theoretical magnetic 

moment of FePt NPs is as high as ~1,000 emu/cc, which is much higher than that of 

iron oxide (300–400 emu/cc). Recently, FePt NPs coated with iron oxides, SiO
2
, and 

cysteamine have been demonstrated to have promising potential for application as 
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MRI and CT contrast agents.30–33 Although good biocompat-

ibility of SiO
2
 and iron oxides has been suggested, one of the 

crucial concerns is the possibility of introducing the exog-

enous coatings into various tissues and organs (especially 

the brain) when these nanomaterials are used as therapeutic 

and diagnostic reagents.34–38

In our previous work,39 FePt NPs showed high activity in 

suppressing the proliferation of glioma cells depending on 

their surface coatings. Lipophilic FePt NPs coated with oleic 

acid/oleylamine significantly suppressed the proliferation 

of different gliomas cells (U251, U87, and H4) in time- and 

dose-dependent manners, but no obvious suppressing effect 

was observed when glioma cells were treated with l-cysteine 

(Cys)-coated FePt NPs under the same conditions. Further-

more, FePt NPs coated with either oleic acid/oleylamine or 

Cys were effectively uptaken by different glioma cells. There-

fore, it is interesting to explore the potential of FePt-Cys NPs 

as a MRI/CT imaging agent for the diagnosis of malignant 

gliomas. In the present work, the use of Cys-coated FePt NPs 

as MRI/CT contrast agent was evaluated in three glioma cells 

(C6, SGH44, and U251). The biocompatibility of FePt-Cys 

NPs was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay on different cells 

(ECV304, L929, and HEK293). The results demonstrated that 

FePt-Cys NPs showed favorable biocompatibility and strong 

signals for dual MR/CT contrast imaging. Therefore, FePt-

Cys NPs can potentially be utilized as a dual MRI/CT contrast 

agent for the diagnosis of malignant brain gliomas.

Materials and methods
Materials
K

2
PtCl

6
, FeCl

2
⋅H

2
O, and NaBH

4
 were of analytical grade 

(Sinopharm Chemical Reagent Co., Ltd, Shanghai, People’s 

Republic of China) and were used without further purifica-

tion. l-cysteine (Cys) was of biochemical grade. Deionized 

water (16 MΩ⋅cm) was supplied by a Nanopure water system 

(Thomas Scientific, Swedesboro, NJ, USA).

The glioma cell lines (C6, SGH44, and U251) and normal 

cell lines (ECV304, L929, and HEK293) were purchased 

from the China Center for Type Culture Collection (CCTCC, 

Wuhan, People’s Republic of China) and preserved in our 

laboratory.

synthesis of cys-coated FePt NPs
FePt-Cys NPs were synthesized according to our previous 

work.39 In brief, 0.0183 g of Cys (0.15 mmol), 0.3651 g of 

K
2
PtCl

6
 (0.75 mmol), and 0.0497 g of FeCl

2
⋅H

2
O (0.25 mmol) 

was successively dissolved in 90 mL deionized water in N
2
 

atmosphere under magnetic stirring. Subsequently, 0.1892 g  

of NaBH
4
 (5 mmol) was dissolved in another 10 mL of deion-

ized water and added dropwise into the solution containing 

Cys and metal salts. The reaction was performed for 2 hours. 

The black precipitate was collected by adding 200 mL of 

ethanol and centrifuging at 9,000 rpm for 3 minutes. The 

product was dried in a vacuum at 30°C overnight.

characterization of cys-coated FePt NPs
The phase structure of the sample was identified by powder 

X-ray diffraction (XRD) on an X’Pert PRO diffractometer 

(PANalytical B.V., Almelo, the Netherlands) using Cu Kα 

radiation (λ=1.5406 Å). The surface information was ana-

lyzed using Fourier transform infrared spectroscopy (FT-IR) 

on a Nexus Fourier transform infrared spectrophotometer 

(Thermo Nicolet, Waltham, MA, USA). Atomic absorp-

tion spectrometry (GBC AVANTA M; GBC Scientific 

Equipment Pty Ltd., Melbourne, SA, Australia) was used to 

analyze the molar ratio of Fe/Pt in the sample. High-resolution 

transmission electron microscopy (HRTEM) (JEM-2100F; 

JEOL, Tokyo, Japan) was used to observe the morphology, 

the particle size, and detailed information on the lattice of 

the samples. The size of FePt NPs was measured using a 

dynamic light scattering instrument (Zetasizer Nano ZS90; 

Malvern Instruments, Malvern, UK). In order to assess the 

stability of FePt NPs in solution, the change of particle size 

was measured in different media (deionized H
2
O and cell 

culture media) in the period of 7 days.

relaxivity measurements
In a typical measurement, the sample was dissolved in 

deionized water and diluted at an iron concentration range of 

0–20 μg/mL. The samples were transferred to a 96-well plate, 

and T
2
 relaxation time was determined by using a whole-body 

magnetic resonance (MR) scanner (SignaHDx 3.0T; GE 

Healthcare Bio-Sciences Corp., Piscataway, NJ, USA).

cT imaging capability
The as-synthesized FePt-Cys NPs were diluted in distilled 

water at a Pt concentration range of 0–40 mg/mL. Samples 

were transferred to a 96-well plate. Iohexol was used as the 

control. CT imaging ability of the FePt-Cys NPs was deter-

mined by using the IVIS Lumina XR system.

MRI and CT imaging of Cys-coated 
FePt NPs in cells
Different glioma cells (C6, SGH44, and U251) were used to 

evaluate the MRI and CT imaging ability of FePt-Cys NPs. 
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These glioma cell lines were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Thermo Fisher Scientific, 

Waltham, MA, USA) supplemented with 10% fetal bovine 

serum (Thermo Fisher Scientific) and antibiotics penicillin 

(100 U/mL) and streptomycin (100 μg/mL) in a humidified 

atmosphere with 5% CO
2
 at 37°C.

In a typical MRI measure, glioma cells were incubated 

with FePt-Cys NPs dissolved in DMEM at different iron 

concentrations (0, 5, 10, 15, and 20 μg/mL) at 37°C for  

3 hours. After that, the cells were washed with phosphate-

buffered saline (0.1 M, pH =7.4) three times. Subsequently, 

the cells were dispersed and suspended in 300 μL of agarose 

gel (0.5%). The samples were then quickly transferred to a 

96-well plate. MRI imaging was performed by using the 

3.0-T whole-body MR scanner.

In a typical CT imaging measurement, glioma cells were 

incubated with FePt-Cys NPs dissolved in DMEM at differ-

ent platinum concentrations (0, 2, 5, 10, and 20 mg/mL) at 

37°C for 3 hours. After that, the cells were washed with 

phosphate-buffered saline (pH =7.4) three times. Subse-

quently, the cells were dispersed and resuspended in deion-

ized water. The samples were then transferred to a black 

96-well plate. CT images were acquired by using an IVIS 

Lumina XR system.

Biocompatibility studies
The cytotoxicity of FePt-Cys NPs was evaluated using dif-

ferent cell lines (ECV304, L929, and HEK293) via MTT 

assays. In brief, these cells were treated with FePt-Cys NPs 

at different concentrations (25, 50, 75, and 100 μg/mL Fe) 

and incubated for different times (24, 48, and 72 hours). The 

control well contained culture medium without the FePt-Cys 

NPs. Then, 20 μL of MTT (5 mg/mL) was added to each 

well and incubated for another 4 hours. Formazan crystal was 

dissolved in 150 μL of dimethyl sulfoxide. The absorbance 

of each well was measured by a microplate reader (1420 

multilabel counter; Perkin Elmer Inc., Waltham, MA, USA) 

at 490 nm to determine the relative cell viability.

Results and discussion
Transmission electron microscopy (TEM) and HRTEM 

images of as-synthesized FePt-Cys NPs are shown in Figure 1.  

The homogeneous NPs were obtained with slight aggrega-

tion (Figure 1A), which could be attributed to low surface 

protection. The size of as-synthesized FePt-Cys NPs obtained 

from TEM image was ~4.8±0.6 nm. The perfectly aligned 

lattice planes, as shown in the upper-right inset of Figure 1B,  

exhibited a well-crystallized structure. The interplanar 

spacing of ~0.22 nm obtained from HRTEM image can be 

ascribed to the adjacent (111) planes of FePt.

XRD pattern of as-synthesized FePt-Cys NPs is shown 

in Figure 2. The diffraction peaks in XRD pattern were 

indexed to the (111), (200), (220), and (311) planes of FePt. 

The diffraction peaks derived from planes (111), (220), and 

(311) were significantly broadened, which could be attrib-

uted to the extremely small size of FePt-Cys NPs. The Fe/Pt  

molar ratio in FePt-Cys NPs was Fe
28

Pt
72

 according to the 

atomic absorption spectrometry measurement.

A B

50 nm 5 nm

d =0.22 nm
(111)

Figure 1 TeM (A) and hrTeM (B) images of as-synthesized FePt-cys NPs.
Note: The arrows in the inset of B indicate the distance between the two adjacent planes.
Abbreviations: d, interplanar distance; FePt-cys, l-cysteine coated FePt; hrTeM, high-resolution TeM; NPs, nanoparticles; TeM, transmission electron microscopy.
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The surface information of FePt-Cys NPs was charac-

terized by FT-IR spectra. Figure 3 shows the FT-IR spectra 

of pure Cys and FePt-Cys NPs. The absorption bands at 

3,200–2,900 cm-1 and ~1,580 cm-1 in Figure 3A were 

designated as the stretching vibrations of NH
3

+ and COO-, 

respectively. These absorption bands were shifted to the 

higher wavenumbers of ~3,420 cm-1 and 1,605 cm-1 in FT-IR 

spectrum of FePt-Cys NPs (Figure 3B), respectively, because 

of the change in the dipole moment when Cys was adsorbed 

on the surface of NPs with high electron density.40–42 It is 

noteworthy that the absorption at ~2,550 cm-1 derived from 

the S–H stretching vibration of the Cys molecules disap-

peared in the FT-IR spectrum of FePt-Cys NPs (Figure 3B), 

indicating the interactions between Cys molecules and FePt 

NPs because of the high affinity of the mercapto group to 

the Pt atoms.

The size distribution and stability of FePt-Cys NPs 

dispersed in different media were measured. As shown in 

Figure 4A, the dynamic light scattering hydrodynamic size 

of FePt-Cys NPs in deionized H
2
O was ~254 nm, which was 

larger than that obtained from TEM image (Figure 1). The 

size of FePt-Cys NPs was slightly increased in a cell culture 

medium (DMEM +10% fetal bovine serum) compared with 

that in H
2
O. FePt-Cys NPs could be aggregated together 

in different media and the accuracy of hydrodynamic size 

measured by the light scattering method strongly depends 

on knowing the optical parameters of the particles (such as 

refractive index and light absorption characteristics).43 The 

stability of FePt-Cys NPs in different media was studied by 

monitoring the change of hydrodynamic size in the period 

of 7 days. Figure 4B shows that the hydrodynamic size of 

FePt-Cys NPs was slightly increased from ~252.3 nm to 

259.1 nm in H
2
O and from ~258.0 nm to 267.4 nm in cell 

culture media at the end of 7 days, respectively, implying a 

good stability of FePt-Cys NPs in different media.

The magnetic property of the as-synthesized FePt-Cys 

NPs was measured by vibrating sample magnetometer at 

room temperature. Figure 5 shows the characteristic super-

paramagnetic curve of FePt-Cys NPs. The saturated mass 

magnetization value was ~16.1 emu/g Fe, which was approxi-

mate to that of cysteamine-coated FePt NPs (12.3 emu/g Fe), 

but was lower than those of Fe
2
O

3
-, SiO

2
-, and tetraethylene 

glycol-coated FePt NPs.30–33 The magnetic property of FePt 

NPs is not only strongly correlated with the degree of chemi-

cal ordering of the alloy, but also influenced by the composi-

tion and surface coating of the alloy.44–46 The surface iron sites 

are the primary contributors to the magnetization in FePt. 
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Figure 2 XrD pattern of FePt-cys NPs.
Abbreviations: FePt-cys, l-cysteine coated FePt; NPs, nanoparticles; XrD, powder  
X-ray diffraction.
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Figure 3 FT-Ir spectra of pure cys molecules (A) and FePt-cys NPs (B).
Abbreviations: cys, l-cysteine; FePt-cys, l-cysteine coated FePt; FT-Ir, Fourier transform infrared spectroscopy; NPs, nanoparticles.
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The strong bonding interaction between the surfactant and 

the surface iron sites results in the decrease of magnetization. 

For example, theoretical calculations showed that the charge 

is transferred to the surface iron sites from oleylamine and 

lowers the atomic magnetization by about 60% at the iron 

site in oleylamine-coated FePt NPs.44

The T
2
 weighted image for FePt-Cys NPs was examined 

in a 3.0 T MR imager at various Fe concentrations. Figure 6A  

shows the T
2
 weighted images of FePt-Cys NPs in the Fe 

concentration range of 0–20 μg/mL in deionized water. A sig-

nificant concentration-dependent inverse MR image contrast 

was observed. Figure 6B shows the linear correlation of the 

T
2
 relaxation rates (1/T

2
) against the iron concentration. The 

calculated relaxation rate (r
2
) value was ~16.9 mM-1⋅s-1.

The CT imaging capability of FePt-Cys NPs was evalu-

ated by using an IVIS Lumina XR system. FePt-Cys NPs 

were dissolved in deionized water at a Pt concentration 

range of 0–40 mg/mL, and were subsequently transferred 

to a black 96-well plate. Iohexol at an iodine concentration 

range of 0–80 mg/mL was used as the control. As shown in 

Figure 7A and B, the concentration-dependent enhancement 

of contrast effect was observed in both iohexol and FePt-Cys 

NPs. The calculated CT signal contrast intensities were plot-

ted against the concentration of iohexol (Figure 7C) and Pt 

(Figure 7D). The CT signal intensity of FePt-Cys NPs at a Pt 

concentration of 40 mg/mL was significantly similar to that of 

iohexol at an iodine concentration of 80 mg/mL. These results 
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Figure 6 Mr contrast imaging of FePt-cys NPs.
Notes: (A) The T2-weighted Mr images of FePt-cys NPs at different Fe concentrations. 
(B) T2 relaxation rates (1/T2) plotted against the Fe concentration of FePt-cys NPs.
Abbreviations: FePt-cys, l-cysteine coated FePt; Mr, magnetic resonance; NPs, 
nanoparticles; r2, relaxation rate.
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demonstrated the significantly enhanced CT contrast imaging 

of FePt-Cys NPs, which was due to the high X-ray absorption 

coefficient of Pt contained in FePt-Cys NPs.32

The MR imaging of FePt-Cys NPs was further evalu-

ated using different glioma cells (C6, SGH44, and U251), 

as shown in Figure 8A. When FePt-Cys NPs were incu-

bated with C6 glioma cells at different Fe concentrations, 

a gradual MR signal decay was observed with increasing 

of the Fe concentration from 0 μg/mL to 20 μg/mL. The Fe 

concentration-dependent MR signal decay was also observed 

on SGH44 cells and U251 cells. The CT imaging of FePt-Cys 

NPs was evaluated using three glioma cells (C6, SGH44, and 

U251) at different Pt concentrations. As shown in Figure 8B, 

a significant enhancement of the gray-scale signal can be 

observed with increasing Pt concentration on three glioma 

cells. These results suggested that FePt-Cys NPs could be 

used as MR and CT contrast agents in glioma cells.

In order to evaluate the biocompatibility of FePt-Cys 

NPs as an MRI/CT imaging agent, cytotoxicity was mea-

sured by MTT assay using different cells (ECV304, L929, 

and HEK293 cells) as the model. As shown in Figure 9, these 

cells were treated with FePt-Cys NPs at different concentra-

tions ranging from 25 μg/mL to 100 μg/mL for 72 hours. 

No significant differences in the viability of these cells were 

×

×

×

×

×

×

×

×

×

×

Figure 7 cT imaging evaluation of different samples.
Notes: (A) The cT images of iohexol at different iodine concentrations; (B) The cT images of FePt-cys NPs at different Pt concentrations; (C) The signal intensity of 
iohexol plotted against the concentration of iodine; (D) The signal intensity of FePt-cys NPs plotted against the concentration of Pt.
Abbreviations: cT, computed tomography; FePt-cys, l-cysteine coated FePt; NPs, nanoparticles.

Figure 8 Imaging of different gliomas cells (c6, sgh44, and U251) treated with FePt-cys NPs.
Notes: (A) Mr imaging of different gliomas cells at different Fe concentrations; (B) cT imaging of different gliomas cells at different Pt concentrations.
Abbreviations: cT, computed tomography; FePt-cys, l-cysteine coated FePt; Mr, magnetic resonance; NPs, nanoparticles.
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Figure 9 Viabilities of different cell lines treated with FePt-cys NPs at different Fe concentrations and time intervals.
Notes: (A) ecV 304 cells; (B) l929 cells; and (C) heK293 cells.
Abbreviations: FePt-cys, l-cysteine coated FePt; NPs, nanoparticles.

found between the FePt-Cys NP-treated group and the con-

trol group. For example, when ECV304 cells were treated 

with FePt-Cys NPs at a concentration of 100 μg/mL for  

72 hours, the viability was ~110.2% compared with that 

of the control. Similarly, no significant decrease in cell 

viability was observed in L929 cells and HEK293 cells 

treated with FePt-Cys NPs at the same concentrations. 

These results indicated a good biocompatibility of FePt-

Cys NPs, which is consistent with the results reported 

previously.39

Conclusion
In summary, the water-soluble FePt-Cys NPs have promis-

ing potential as a dual MRI/CT contrast agent for malignant 

brain gliomas. The CT contrast imaging of FePt-Cys NPs 

was significantly more sensitive than that of the commonly 

used iohexol, even if the r
2
 value of FePt-Cys NPs was lower 

than that of FePt NPs coated by Fe
2
O

3
 and SiO

2
. Moreover, 

surface coating of FePt NPs with Cys not only provided good 

biocompatibility for the FePt-Cys NPs, but also prevented 

the introduction of unnecessary coatings (such as Fe
2
O

3
,  

and SiO
2
) that may damage brain tissue.34–38 Therefore, based 

on our preliminary results, FePt-Cys NPs could possibly 

be used as a dual MRI/CT contrast agent for the diagnosis 

of brain malignant gliomas. Further optimization of the 

composition of FePt-Cys NPs is required. In addition, more 

studies, especially in vivo studies using the animal as the 

model are needed to further evaluate this agent before it 

can be developed as a dual-mode imaging agent for clinical 

application.
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