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Abstract: Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in 

adults. It is a rapidly advancing neurodegenerative disease leading to progressive paralysis and 

death, with a mean time of survival from onset of symptoms to death of 2–5 years. The pathophys-

iology of ALS remains poorly understood. The only US Food and Drug  Administration–approved 

therapy for ALS is riluzole, a glutamatergic neurotransmission inhibitor, with modest benefits 

on survival. Many other agents have shown promising results in preclinical trials, but have yet 

to show benefit in human clinical trials. This review gives an overview of drugs that have been 

studied in clinical trials and their reported outcomes. This also includes more recent treatment 

strategies, including antisense oligonucleotides (ASOs) and stem cells. ASOs have the potential 

to target genes known to cause ALS by silencing their function. Many clinical trials are under 

way using these therapies. Different kinds of stem cells have been used in an attempt to either 

replace the lost motor neurons or to improve their metabolic supply and thus prolong their 

death. Given the limited therapeutic treatment options to date, the most important approach to 

improve the patient’s quality of life remains symptom-based management. Additionally, we 

give an overview of the current treatment offered in multidisciplinary clinics.

Keywords: motor neuron disease, symptom management, treatment and experimental therapies, 

stem cells, antisense oligonucleotides, clinical trials

Introduction
Amyotrophic lateral sclerosis (ALS) is a fatal disease in which the upper and lower 

motor neurons degenerate, leading to progressive muscle weakness and eventual 

respiratory failure. The incidence of ALS is about 2 in 100,000.1 It generally pro-

gresses rapidly, with a mean survival time of 2–5 years following symptom onset.2,3 

The clinical hallmark of the disease is death of the motor neurons leading to muscular 

atrophy, muscular weakness, dysarthria, and fasciculations as well as clinical findings 

of hyperreflexia and spasticity. The symptoms typically manifest as focal weakness 

in one limb; however, one-third of the cases have a bulbar presentation resulting in 

dysarthria, dysphagia, and respiratory dysfunction.4 About half the affected patient 

population will develop frontotemporal lobe dysfunction with cognitive and behav-

ioral abnormalities and pseudobulbar affect; a subgroup of these will go on and fulfill 

diagnostic criteria for frontotemporal dementia (FTD).5 As there is significant overlap 

in the pathogenesis and genetics of FTD and ALS,6 there is growing belief that these 

two diseases are different phenotypes of an ALS–FTD spectrum disorder.7

It is known that the pathogenesis of ALS has a genetic component.3 While most 

cases of ALS are sporadic, approximately 10% of cases report a family history 
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of ALS.8 Currently, about 68% of ALS patients with a family 

history of ALS (aka familial ALS) and 11% of ALS patients 

without a known family history of ALS (aka sporadic ALS) 

have an identifiable genetic cause.3 The first ALS mutation, 

Superoxide dismutase-1 (SOD1), was discovered in 1993,9 

and since then, many additional genes have been found. 

Mutations in SOD1 account for 10%–20% of familial ALS 

cases, and to date, .155 mutations have been identified.10 

Two genes that play a role in the pathological findings of 

ALS are TAR DNA binding protein (TARDBP)11 and fused 

in sarcoma (FUS),12 which account for ∼5% of familial ALS 

cases. The GGGGCC hexanucleotide expansion of C9orf72 

is a common cause of FTD and ALS.13 This mutation is the 

most common known cause of both sporadic and familial 

ALS, responsible for about 7% of all ALS cases in the Cau-

casian population.14 Mutations of many other genes have 

been reported, but the genetic cause of about 32% cases of 

familial ALS and the majority of sporadic ALS continue to 

be unknown.3

The pathophysiology of this devastating disease remains 

unclear. The pathological finding of ubiquitinated TDP-43 

aggregates is found in patients who carry a mutation in the 

TDP-43 gene (TARDBP), as well as in ALS patients without 

this mutation,11,15 except in cases caused by SOD1 or FUS 

mutations. Similar TDP-43 aggregates are also found in 

FTD, leading to speculation that both diseases are variations 

of a spectrum of TDP-43–associated disorders.16 Although 

TDP-43 pathology is common to most ALS cases, the 

pathomechanism causing this disease is unknown. Potential 

contributing factors include mitochondrial dysfunction, neu-

roinflammation, and oxidative stress. Additionally, glutamate 

toxicity is thought to play a role, because ALS patients have 

higher levels of glutamate in serum and cerebral spinal fluid 

(CSF) compared to healthy controls.17

Disease-modifying treatment
US Food and Drug  
Administration–approved treatment
Riluzole has several targets, although its proposed mechanism 

is as a glutaminergic neurotransmission inhibitor. It remains 

the only US Food and Drug Administration (FDA)–approved 

therapy for ALS that affects survival. Randomized trials show 

modest improvement in survival, possibly greater in patients 

with bulbar onset.18 It is likely that riluzole has less effect 

in advanced stage disease.19 A recent meta-analysis of all 

randomized controlled trials confirmed the modest increase 

in median survival of 2–3 months and a modest impact on 

functional measures.20 Given the relatively short duration of 

these randomized studies (#18 months), an analysis of ALS 

databases over a 5- to 10-year period was initiated, for which 

data are suggestive of a greater long-term improvement in 

survival, ranging from 6 up to over 21 months.20 Given these 

longer studies were not randomized, these results must be 

interpreted with caution.

Drugs in clinical trials
Over the past decades, a multitude of experimental pharma-

ceutical therapies were shown to delay disease progression 

in ALS animal models but failed to show efficacy in clinical 

trials or are still in Phase I–III trials. The mechanisms of 

these agents include antioxidants, neuroprotection, promo-

tion of growth factors, antiglutamate, induction of heat shock 

proteins, anti-inflammatory, mitochondrial-protective agents, 

maintenance of muscle, and reduction of SOD1. Several 

drugs that have been FDA-approved for other indications are 

currently in clinical trials for ALS, including rasagiline, fin-

golimod, anakinra, and tamoxifen (http://www.clinicaltrials.

gov). Of the agents that have completed clinical trials, none 

have been able to significantly modify disease progression or 

increase survival in humans with ALS (Table 1). The failure 

to translate from animals to humans is at least in part due 

to inherent limitations when using animal models to study 

human diseases. There are metabolic, anatomic, and cellular 

differences between humans and other organisms, laboratory 

animals are often heavily inbred, and negative study results 

are often not published leading to bias. Additionally, animal 

models often do not accurately mimic human disease.21 The 

most frequently used animal model to study ALS has been 

transgenic SOD1G93A rodents, which have multiple copies 

of the human coding sequence for SOD1 with the G93A 

 mutation.22 While this model appears to be a mimic of human 

ALS due to SOD1 mutations, it is unclear if the results from 

these rodents can be applied to non-SOD1 cases of ALS. 

Additional rodent models of ALS are currently being studied 

including TDP-43 mediated,23 which have the potential to be 

relevant for the majority of ALS cases.

Antisense oligonucleotides
Mutations in SOD1, associated with 10%–20% of familial 

ALS cases, cause the protein to misfold, leading to toxic 

effects on the cellular degradation machinery and forma-

tion and accumulation of SOD1 protein aggregates.10 This 

results in a cellular stress response and eventual cell death, 

although the exact mechanism is unknown.10,24 Reduction 

of toxic SOD1 proteins has been proposed using antisense 

oligonucleotides (ASOs).25 ASOs are short, synthetic 
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oligonucleotide sequences that bind to target mRNA in 

a sequence-specific manner through Watson–Crick base 

pairing; they are degraded by endogenous RNase.25,26 ASOs 

cannot cross the blood–brain barrier and must be infused 

intrathecally.27 Continuous intrathecal infusion of ASOs 

via osmotic pumps reduced SOD1 protein and mRNA 

levels throughout the brain and spinal cord and prolonged 

survival in both a rodent (SOD1 rat) and a primate (rhesus 

monkey) model.28 Initial human clinical trial results suggest 

that intrathecal infusion of ASOs via lumbar puncture is 

safe and tolerable.27

Similar strategies have been employed to target other 

toxic gain of function ALS genes. Sustained ASO-mediated 

lowering of C9orf72 RNA throughout the central nervous 

system of mice following an intrathecal (lateral ventricle) 

injection was found to be well tolerated.29 As it is currently 

unclear whether haploinsufficiency of C9orf72 is relevant to 

the disease process in ALS, it remains unclear if using ASOs to 

lower C9orf72 RNA is a viable treatment strategy. Currently, 

the only human ALS trial with ASOs is in SOD1, though this 

strategy might become an important and individually targeted 

approach, particularly as more ALS genes are discovered.

Cell-based treatments
In addition to pharmacological treatments, several clinical 

trials use stem cell transplantation, with two main therapeutic 

concepts behind this approach.30 These concepts include the 

potential replacement of motor neurons lost during the dis-

ease process and neural protection by improving metabolic 

support of the diseased motor neurons.

Neural stem cells
During development, pluripotent embryonic stem cells 

(ESCs) give rise to specific multipotent progenitor cell popu-

lations31 including neural stem cells (NSCs), which differenti-

ate into neurons, astrocytes, and oligodendrocytes.32 Human 

NSCs can be derived from human ESCs33 or isolated from 

fetal neurologic tissue.34 When grafted into rat spinal cord, 

they retain their ability to differentiate into motor neurons, 

which integrate into spinal circuits.35

NSCs may be useful for ALS treatment. Human 

motor neuron administration delayed disease onset and 

prolonged survival in mouse36 and rat37 SOD1G93A ALS 

models. In a Phase I clinical trial, human NSCs (NSI-455-

RSC cells)38 were injected into the lumbar and/or cervical 

spinal cord without major adverse events or accelerated 

disease progression.39 A Phase II trial is in progress 

(NCT01730716).
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Mesenchymal stem cells
Multipotent mesenchymal stem cells (MSCs) differentiate 

into osteoblasts, adipocytes, chondrocytes, and myocytes. 

They do not naturally differentiate into neural lineages but 

can be induced to do so.40 They can be isolated from bone 

marrow, cord, or peripheral blood and are thus more easily 

available than ESCs and, depending on the source, may not 

require immunosuppression.

MSCs may be useful for ALS treatment as a delivery 

vehicle to the central nervous system. Intraventricular injec-

tion of MSCs overexpressing glucagon-like peptide 1, an 

antioxidant with neuroprotective property, improved survival 

in the SOD1 mouse model.41 Injection of human MSCs over-

expressing growth factors into the musculature of SOD1 rats 

reduced neuromuscular junction denervation and delayed 

disease progression.42 A synergistic effect was observed in 

overexpression of both vascular endothelial growth factor 

and glial cell line-derived neurotrophic factor.43 Injections of 

unmodified MSCs have also shown benefits on survival and 

disease progression in the SOD1 mouse model,44 possibly 

due to endogenous production of neuroprotective factors, 

which improves motor neuron metabolic support. Human 

autologous MSCs can be differentiated into neurotrophic 

factor secreting cells. A recent study showed that injection 

of these cells intrathecally and intramuscularly in an ALS 

patient treated on a compassionate basis was safe and clini-

cally beneficial.45 A Phase I/II study in Israel was completed 

but no study results have been published (NCT01777646).

Several ALS clinical trials assessed the safety of MSC 

transplantations into the spinal cord46,47 or brain of ALS 

patients.48,49 These injections were safe without a clear clini-

cal benefit. Postmortem pathological analysis of patients’ 

spinal cords showed more motor neurons and fewer degen-

erative ubiquitin deposits, suggesting neurotrophic activity 

in the grafted cells.49 Intrathecal MSC application has been 

shown to be safe via lumbar puncture50 as well as Ommaya 

reservoir.51

Another approach utilizing MSCs is subcutaneous injec-

tion of granulocyte colony-stimulating factor to mobilize 

endogenous MSCs, with52 or without53 collection and reinfu-

sion of peripheral blood stem cells. Long-term administration 

of granulocyte colony-stimulating factor is safe54 and leads 

to persistent mobilization of hematopoietic stem cells55 but 

has no effect on the disease course.56

Olfactory ensheathing cells
Mammalian olfactory neurons regenerate throughout life 

from a stem cell layer at the base of the epithelium57 and are 

enfolded and guided by olfactory ensheathing cells (OECs) 

in the olfactory bulb.58

Based on findings in rodent spinal cord injury models59 

and spinal cord injury clinical trials,60 OECs were applied for 

ALS treatment. Spinal grafts showed increased survival of 

SOD1 rats and slowing of motor neuron loss.61 Before there 

was clear evidence of benefit in an animal model, a labora-

tory in People’s Republic of China grafted OECs in ALS 

patients based on spinal cord injury clinical trials.62 OECs 

extracted from human fetal olfactory bulbs were injected 

into the bilateral corona radiata in 15 patients who were 

compared to 20 untreated controls. Over a 4-month follow-up 

period, a five-point difference in the ALS functioning rating 

scale–revised (ALSFRS-R) was detected. The study was 

halted as the authors felt there was “conclusive proof of 

positive and beneficial results”.63 Simultaneously, this group 

enrolled 327 patients in a noncontrolled trial that compared 

injection of OECs into the spinal cord, the bilateral corona 

radiata, or both. They reported improved ALS functioning 

rating scale and normalized electromyographical findings 

4 weeks after transplantation, with no differences between 

the three groups.64 These results are largely contested and no 

further follow-ups were conducted. Despite this, hundreds 

of additional patients underwent OEC grafting in People’s 

Republic of China based on these results, some with multiple 

injections. The authors reported improved ALS functioning 

rating scale after each injection but diminished response 

after repeated injections.65 Independent follow-up studies on 

patients who received OEC transplants in People’s Republic 

of China could not confirm the reported observations.66 

 Postmortem studies did not suggest neuroprotection or axonal 

regeneration.67

induced pluripotent stem cells
The discovery of induced pluripotent stem cells (iPSCs) showed 

that pluripotency can be induced in adult somatic mouse cells 

via introduction of transcription factors.68  Similarly, human 

iPSCs can be generated from human  fibroblasts.69 iPSCs differ 

from human ESCs in gene expression and DNA methylation 

patterns but are germline-competent,70 generate all three 

germ layer cell types,71 and form active motor neurons.72 The 

potential for iPSC technology is enormous as it allows for a 

limitless supply of autologous pluripotent cells that can be 

reintroduced into the patient without immunosuppression. 

However, the current knowledge about these cells and ability 

for clinical application is limited.73

iPSCs have several important potential applications in 

ALS. Neural progenitor cells derived from human iPSCs 
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survived and showed neuronal phenotypes when grafted into 

the spinal cord of SOD1 rats.74 Intrathecal or tail vein cell 

injection in SOD1 mice significantly improved survival and 

neurological function.75 Transplantation of glial-restricted 

precursor cells derived from human iPSCs targets astrocytic 

dysfunction observed in ALS and prolongs the lifespan of 

SOD1 mice.76

Besides possible clinical applications, it is important to 

emphasize the role that iPSCs play in modeling diseases 

in vitro. Several groups used either iPSCs derived from ALS 

patients77,78 or motor neurons derived from these iPSCs79,80 

to further study ALS pathophysiology.

Symptomatic treatment
As the treatment options for ALS continue to be limited, 

symptomatic treatment is very important in the care of ALS 

patients. Specialized clinics provide multidisciplinary care 

by neurologists, specialty nurses, physical, occupational, 

respiratory, and speech therapists, dieticians, and social 

workers. The benefits of multidisciplinary clinics have been 

demonstrated in several studies, including survival81–83 and 

quality of life84 when compared to patients seen in general 

neurology clinics. Both American85 and European guide-

lines86 recommend multidisciplinary care.

Dyspnea
Dyspnea and respiratory compromise are common pro-

gressive symptoms, with several possible interventions. 

Respiratory muscle training is often recommended, but the 

evidence to support its benefit is limited.87 Noninvasive 

positive pressure ventilation (NIV) has been shown to not 

only improve quality of life88 but also prolong life, espe-

cially in patients without significant bulbar dysfunction 

and in those who are able to tolerate daily use of at least 

4 hours.89,90 A potential additive to NIV is diaphragmatic 

pacing, especially in patients with bulbar symptoms, as the 

effectiveness of NIV correlates inversely with the severity 

of bulbar symptoms.91 In diaphragmatic pacing, electrodes 

are implanted in each hemidiaphragm, helping to provide 

maximal contraction of the diaphragm. In an open-label pilot 

study, 16 patients were implanted and showed benefits on 

survival (when compared to historical controls) and quality 

of life (as sleep dysfunction was reduced).92 Results of small 

follow-up studies have been mixed.93,94 Large, randomized 

controlled trials comparing NIV and diaphragmatic pacing 

are ongoing in the United States and Europe.95 Invasive 

ventilation remains another option to prolong survival.96 

This is generally well tolerated97 but is rarely selected for a 

variety of reasons, including patient’s wishes and difficul-

ties in home care.

Medications including opiates and benzodiazepines can 

be helpful in symptomatic treatment of dyspnea and dyspnea-

related anxiety.98

Sialorrhea
About 25% of patients with motor neuron disease suffer from 

sialorrhea due to pseudohypersalivation.99 The majority of 

the treatments used for sialorrhea in ALS patients have not 

been studied in randomized controlled trials so there are no 

clear guidelines. Anticholinergic medications are generally 

recommended first.85 There are several oral agents, includ-

ing atropine, glycopyrrolate, and amitriptyline. Transdermal 

application of hyoscyamine or scopolamine has the advantage 

of a constant concentration of drug in the circulation.100 For 

patients with sialorrhea refractory to medical therapy, saliva-

tory gland botulinum toxin injections are an option, which 

lead to a significant decrease in saliva volume101 and have 

been shown to improve quality of life.102 Another alternative 

for treatment of refractory sialorrhea is radiation therapy of 

salivary glands.103

Respiratory secretions
Management of respiratory secretions and thick mucus can 

additionally become a major issue. Thick mucus production 

can be a symptom of ALS, medication side effect, or due 

to dehydration. Following insurance of good hydration and 

adjustment of medications, specific medication treatments 

can be added including mucolytics like N-acetylcysteine.85 

Cough-assist and suction devices can be used to reduce the 

difficulty many patients experience with clearing respiratory 

secretions.104 Besides improving quality of life, these inter-

ventions have the potential to reduce hospitalizations.105

Dysarthria
Dyspnea often coincides with dysarthria. Speech  therapy along 

with assistive devices is recommended.85  Communication 

devices greatly improve the patients’ mood and quality of 

life.106

Dysphagia and weight loss
Nutrition management is another important goal in the treat-

ment of ALS, as patients will develop dysphagia due to bulbar 

muscular weakness. In the early stages, this can be managed 

by modifying the consistency of food and fluids and teaching 

swallowing techniques. To ensure adequate nutrition and 

hydration as well as to stabilize weight loss, placement of a 
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percutaneous endoscopic gastrostomy (PEG) tube is offered 

to many ALS patients with dysphagia.107 Nutritional status 

is an independent prognostic factor for survival in patients 

with ALS.108 However, there is inconclusive data whether 

placement of a PEG tube actually provides significantly 

improved nutrition, quality of life, or survival.109 For patient 

safety, a PEG tube should be placed before the patient’s vital 

capacity falls below 50% of predicted,85 even if no significant 

dysphagia is present at that time, as post-PEG deaths have 

been associated with reduced vital capacity.107

Muscular symptoms
Muscle issues including progressive weakness, cramps, and 

spasticity are cardinal features of ALS. Regular exercise of 

moderate intensity is generally recommended and has been 

found to improve quality of life, although the long-term ben-

efit is unclear.110 Muscular cramps are a common complaint 

of ALS patients in all stages of the disease. Despite a number 

of medications undergoing trials so far, there has been no 

evidence supporting any specific intervention for muscle 

cramps in ALS.111 In practice, baclofen and gabapentin are 

frequently used to treat these. Baclofen is also often used to 

treat spasticity and is equally effective as tizanidine.112

Fatigue
Fatigue can be debilitating and is a common symptom of 

ALS. It is often associated with malnutrition or early respi-

ratory failure. Fatigue is a potential medication side effect 

of many medications including riluzole,85 and medication 

adjustment should be considered. Multiple factors contrib-

ute to poor sleep which should be addressed throughout 

the disease course, and particularly with new complaints 

of fatigue. Depression should also be considered, as it is a 

common cause of fatigue and can benefit from treatment.113 

Modafinil has been shown to have a positive effect on fatigue 

and sleepiness.114,115

Pseudobulbar affect
Pseudobulbar affect manifests as sudden episodes of uncon-

trollable laughter or crying without a provoking stimulus and 

is common in ALS. Dextromethorphan/quinidine has been 

shown to be effective in reducing the frequency and sever-

ity of emotional lability.116 The combination is necessary as 

dextromethorphan is rapidly metabolized if administered 

alone; quinidine reduces the metabolism via CYP2D6 

inhibition. This combination has been approved by the FDA 

for pseudobulbar affect in ALS and represents the second 

FDA-approved drug specifically for ALS.

Summary
ALS remains a progressive motor neuron disease with a 

mean survival of 2–5 years. Symptom-based management 

of ALS in the setting of multidisciplinary clinics remains 

the most important current treatment strategy for the indi-

vidual patient, as no curative therapies exist. Two decades 

after the first publication on using riluzole for treatment in 

ALS, this remains the only FDA-approved disease-modifying 

therapy. A large number of studied drugs showed promising 

results in animal models but failed translation to the human 

patient. One of the many difficulties in finding a treatment 

is the lack of understanding of pathophysiology of ALS. 

Yet, we remain optimistic about the medication treatments 

in developmental stages.

Novel therapeutic approaches with ASOs and stem cells 

have yet to show clear efficacy in humans; however, these 

remain exciting future directions of the field. Both have 

promising results in rodent and primate models of ALS. 

Early human trials have confirmed the safety of several of 

the potential methods. Preclinical studies showed the most 

convincing results in studies using NSCs. However, MSCs 

are more frequently used as they are more readily available 

and can easily be harvested and reintroduced into the patient 

without necessary immunosuppression.
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