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Background and purpose: Little is known about the functional and structural connectivity 

(FC and SC) of the hippocampus and amygdala, which are two important structures involved in 

cognitive processes, or their involvement in relapsing–remitting multiple sclerosis (RRMS). In 

this study, we aimed to examine the connectivity of white-matter (WM) tracts and the synchrony 

of intrinsic neuronal activity in outer regions connected with the hippocampus or amygdala in 

RRMS patients.

Patients and methods: Twenty-three RRMS patients and 23 healthy subjects participated 

in this study. Diffusion tensor probabilistic tractography was used to examine the SC, the FC 

correlation coefficient (FC-CC) and combined FC strength (FCS), which was derived from the 

resting-state functional magnetic resonance imaging used to examine the FC, of the connection 

between the hippocampus or the amygdala and other regions, and the correlations of these 

connections with clinical markers.

Results: Compared with healthy subjects, the RRMS patients showed significantly decreased SC 

and increased FCS of the bilateral hippocampus, and left amygdala. Their slightly increased FC-CC 

was positively correlated with WM tract damage in the right hippocampus (ρ=0.57, P=0.005); 

an increased FCS was also positively correlated with WM tract damage in the right amygdala. 

A relationship was observed between the WM lesion load and SC alterations, including the lg(N 

tracts) of the right hippocampus (ρ=-0.68, P,0.05), lg(N tracts) (ρ=-0.69, P,0.05), and fractional 

anisotropy (ρ=-0.68, P,0.05) and radial diffusivity of the left hippocampus (ρ=0.45, P,0.05). 

A relationship between WM lesion load and FCS of the left amygdale was also observed.

Conclusion: The concurrent increased functional connections and demyelination-related 

structural disconnectivity between the hippocampus or amygdala and other regions in RRMS 

suggest that the functional–structural relationships require further investigation.

Keywords: relapsing–remitting multiple sclerosis, hippocampus, limbic system, functional 

connectivity, structural connectivity, fiber tractography

Introduction
Memory1 decline and emotion recognition deficits2 commonly occur in patients with 

multiple sclerosis (MS), as the clinical manifestations of the disease contribute to 

cognitive dysfunction.1–5 The hippocampus and amygdale, which serve as the main 

structures of the limbic system, are separately involved in memory- and emotion-

related cognitive processing. Evidence for hippocampal6 or amygdala demyelination7 

in MS has been reported in recent histopathological studies.6–8 Advanced magnetic 
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resonance imaging (MRI) studies have also shown regional 

alterations, including structural damage,9,10 atrophy,11 and 

functional decreases,1,9,12 in the hippocampus or amygdala 

of MS patients. However, the relationship between the 

structural damage to the hippocampus or amygdala and 

functional alterations in MS and the correlations between 

such disturbances and clinical indices is not well established. 

Knowledge of the connections of the hippocampus and 

amygdala with the other brain structures will improve our 

understanding of the pattern of cognitive-related information 

processing, the functional and cognitive outcomes of MS, 

and development of novel therapeutic strategies that may be 

highly beneficial for these patients.

Although much is known about functional and structural 

connectivity (FC and SC), classic resting-state functional 

connectivity (rsFC) and diffusion tensor tractography13,14 can 

provide crucial information about the connections that may 

complement this knowledge. Diffusion tensor tractography 

can describe anatomical white-matter (WM) tracts to char-

acterize the diffusivity of water,15,16 which has been reported 

as a component of SC to provide critical information to fully 

understand MS-related functional alterations.14 In  classic 

rsFC analysis, quantitative FC correlation coefficient 

(FC-CC) studies have begun to provide important informa-

tion concerning the communication between regions under 

normal and pathological conditions.9,14 However, quantita-

tive FC-CC analyses ignore the cortical reorganization that 

occurs due to the increased connectivity of specific structures. 

Functional connectivity strength (FCS), a novel index is a 

strength property that is determined by counting the number 

of direct functional connections at the voxel level to provide 

crucial information on the connectivity architecture.17 FCS 

could provide additional information on the connectivity 

quantity, which is used to evaluate the FC.

Presently, whether the SC and FC of the hippocampus 

and amygdala are related to minimally disable relapsing–

remitting MS (RRMS) remains unclear. Investigating 

the structural–functional relationship may be particularly 

important for understanding the impact of this disease on the 

hippocampus and amygdala. In this study, we hypothesized 

that both SC and FC of the hippocampus or amygdala and 

their correlated clinical indices are disrupted in RRMS. To 

test this hypothesis, we used probabilistic tractography to 

characterize WM tract connectivity, and FC-CC combined 

with FCS to characterize the intrinsic functional commu-

nication of the hippocampus or amygdala and to examine 

the mechanisms that might underlie the observed altera-

tions. Studying the structural–functional relationship of the 

hippocampus and amygdala may enrich our understanding 

of the neural underpinnings of RRMS.

Materials and methods
subjects
The present study was approved by the Medical Research 

Ethics Committee and the Institutional Review Board of 

the First Affiliated Hospital of Nanchang University. This 

study was performed according to the approved guidelines 

and was conducted in compliance with the principles of the 

Declaration of Helsinki. All subjects signed written consent 

forms for participation in the study.

Patients with clinically definite MS at the First Affiliated 

Hospital of Nanchang University participated in this study 

from May 2010 to December 2013. All patients received 

a series of clinical and MRI examinations, including the 

Expanded Disability Status Scale (EDSS). After diag-

nosis, the recruited patients were confirmed as follows: 

RRMS course;18 EDSS score ,2.5, which corresponds to 

minimal disability;19 and treatment with immunomodulatory 

medication (20 with b-interferons, 3 with Glatiramer acetate). 

None of the recruited patients experienced any relapses or 

received corticosteroid treatment during the month preceding 

MRI acquisition. Twenty-three healthy control (HC) partici-

pants from the local community were individually matched to 

the patients by sex, age, education level, and lack of history 

of neurological or psychiatric disorders. After excluding 

patients due to excessive head motion during scanning (see 

“rs-fMRI data preprocessing”), 23 RRMS and 23 HC subjects 

remained in this study.

image acquisition
All MRI data were obtained from a Trio 3.0-tesla MRI scan-

ner (Siemens Medical Systems, Erlangen, Germany). During 

acquisition, all subjects were instructed to remain as still as 

possible in the scanner, to keep their eyes closed, to not think 

systematically and to stay awake. Resting-state functional 

MRI (rs-fMRI), diffusion tensor imaging (DTI), T
2
-weighted 

imaging (T
2
WI), and T

1
WI scans were performed using the 

following sequences:

1) An echo planar imaging sequence for rs-fMRI scan with 

the following parameters: repetition time (TR)/echo 

time (TE) =2,000/30 ms, flip angle =90°, field of view 

(FOV) =200×200 mm, matrix =64×64, 30 interleaved 

axial slices with 4 mm thickness and an interslice gap of 

1.2 mm, and number of time points =240;

2) Spin echo single-shot echo planar imaging for DTI: TR/

TE =7,200/104 ms, FOV =230×230 mm, matrix =128×128, 
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number of excitations (NEX) =2, 49 axial slices with 

2.5 mm thickness, 64 non-linear diffusion weighting 

gradient directions with b=1,000 s/mm2 and 1 additional 

image without diffusion weighting (ie, b=0 s/mm2);

3) Three-dimensional high-resolution T
1
WI brain scans 

with 1 mm3 isotropic voxels: TR/TE =1,900/2.26 ms, 

FOV =215×230 mm, matrix =240×256, NEX =1, slice 

thickness =1.0 mm, and 176 sagittal slices;

4) Turbo spin echo imaging sequence for conventional 

T
2
WI scans: TR/TE =5,100/117 ms, FOV =240×240 mm, 

matrix =416×416, NEX =3, echo train length =11, 22 axial  

slices with 6.5 mm thickness.

During MRI scanning, head motion was minimized by 

placing foam padding around the patients’ head, and noise 

was attenuated with earplugs.

Data processing
rs-fMri data preprocessing
The rs-fMRI data were preprocessed using the Data Pro-

cessing Assistant for Resting-State fMRI Advanced Edition 

(DPARSFA) V2.320 in MATLAB 2012a (The Math Works, 

Inc, Natick, MA, USA) platform. The first ten images from 

each subject were discarded during data acquisition to 

eliminate magnetic saturation effects, and the remaining 

230 images were corrected for slice timing and realigned 

for intervolume head motion. Subjects were included if their 

head movement was less than 2 mm of translation along any 

axis and less than 2.0° of angular rotation along any axis 

during rs-fMRI scanning. The high-resolution individual 

T
1
WI images were coregistered to the mean functional 

image after motion correction using a linear transformation, 

and the images were segmented into gray matter (GM), 

WM, and cerebrospinal fluid (CSF) tissue maps using a 

priori statistical parametric mapping (SPM) tissue maps as a 

reference and a unified segmentation algorithm.21 The resul-

tant GM, WM, and CSF images were further non-linearly 

registered in Montreal Neurological Institute space using 

estimates from the unified segmentation, and the images 

were averaged across all of the patients to create custom 

GM, WM, and CSF templates and for the measurement of 

whole-brain atrophy, amygdala atrophy, and hippocampal 

atrophy. Next, the coregistered T
1
 images were resegmented 

using the custom tissue templates as reference images and 

the unified segmentation algorithm21 to reduce the risk 

of inaccuracy in spatial normalization of the functional 

volumes due to GM atrophy. All of the functional images 

were then resampled to 3 mm cubic voxels and 6 mm spa-

tial smoothing with a full-width–half-maximum Gaussian 

kernel, linear detrending, and temporal band-pass filtering 

(0.01 Hz , f ,0.08 Hz) to eliminate high-frequency noise 

and low-frequency drift. Finally, multiple regression analy-

sis of nuisance variables was conducted from the rs-fMRI 

data, which included a ventricular signal averaged from 

ventricular regions of interest (ROIs), a WM signal averaged 

from WM ROIs, a whole-brain signal averaged across the 

whole brain, six head realignment parameters obtained by 

rigid body head motion correction, and the derivatives of 

each of these signals.22

seed-based rsFc for Fc-cc analysis
The ROIs of the amygdala and hippocampus were defined 

according to the automated anatomical labeling template23 

contained in the Resting-State fMRI Data Analysis Toolkit,20 

which was resampled to 3×3×3 mm3. Subsequent processes 

were performed separately in left and right ROIs.

The seed-based rsFC was calculated in DPARSFA. 

For each amygdala or hippocampal ROI, a seed reference 

time course was obtained by averaging the time series of 

all voxels in the ROI. Then, voxel-wise Pearson’s corre-

lation analysis was performed between the seed reference 

time course and time series from the remainder brain areas 

with the global signal, WM signal, CSF signal and the six 

head motion parameters as nuisance covariates. Finally, 

the resultant correlation coefficients were transformed 

into z scores using Fisher’s transformation to better satisfy 

normality.

Voxel-based Fcs for connectivity quantity analysis
FCS calculations were also conducted in DPARSFA with 

voxel-based weighted degree centrality (DC) by mapping 

the degree of FC across the whole brain:

 DC ( ) ( ) ( )
0

i i r r
ij

= =
= =

∑ ∑k r
j

N

ij
j

N

voxel
1 1

>  (1)

 FCS ( ) DC ( )
voxels

i i=
−

1

1N
 (2)

where r
ij
 is the correlation coefficient between voxel i and 

voxel j (voxel i is form the amygdala or hippocampus and 

voxel j belong to regions outside the amygdala or hip-

pocampus), r
0
 is the correlation threshold value that is set 

to eliminate weak correlations – the classical reference r
0
 

values are primarily reported in the results that were thresh-

olded using an r
0
=0.25,17,24,25 and the significance threshold 

of the corresponding connection was set at P,0.001 in this 
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study – and the k(i) of each voxel was divided by the indi-

vidual global mean of k
0
 within the whole brain to normalize 

and reduce the effect of individual variability. The individual 

data were then converted using Fisher’s z transformation, and 

the z values of the amygdala or hippocampus were extracted 

for group comparisons. Notably, the FCS, as a voxel-wise 

connectivity strength metric, is referred to as the “DC” of 

weighted networks in terms of graph theory and indicates its 

connectivity quantity or the extent of connectivity.11

DTi data analysis
To investigate the SC of the amygdala or hippocampus, the 

group (Montreal Neurological Institute)-space ROIs of the 

amygdala and hippocampus were individually coregistered 

to (native) DTI space using Linear Image Registration Tool 

(FLIRT) methods of Functional MRI of the Brain (FMRIB).26 

These ROIs are briefly described as follows:

1) Using the FMRIB diffusion toolbox (FDT v2.0),27 “dtifit” 

was used to fit a single tensor model at each voxel of the 

preprocessed eddy current-corrected diffusion-weighted 

data.

2) A spatial probability density unction across voxel was 

estimated using the FMRIB Software Library probabi-

listic tractography (bedpostx) tool, which was used to 

model 5,000 iterations within each voxel with a curvature 

threshold of 0.2, a step length of 0.5, and a maximum 

number of 2,000 steps.28 For each tract, single-mask, the 

amygdala or the hippocampus was used to calculate the 

fiber orientation distribution.

3) The connectivity of WM tracts was set at a normalized 

probability value of 0.2029,30 and was visually inspected to 

confirm successful tracing in each individual by multiple 

experienced technicians.

4) Features of the WM tracts (above the threshold) connect-

ing each ROI were compared between the two groups. 

The features included the pathway strength, indicated by 

the volumes and mean tract count per WM region of the 

ROIs,28 and the above-threshold standard DTI parameters, 

including fractional anisotropy (FA) and three diffusivity 

measurements (average mean diffusivity, axial diffusiv-

ity, and radial diffusivity).

comparison of structure and function
We assessed the characteristics of the SC and FC measures 

in three steps: 1) structural and functional connections of the 

amygdala and hippocampus were identified; 2) the connec-

tivity strength of the amygdala and hippocampus was deter-

mined, and inter-group comparisons were made separately 

for FC and SC; and 3) the structure–function relationship of 

coupling was determined by partial correlation analysis (see 

flowchart in Figure 1).

statistical analysis
For rsFC, we used a random-effects one-sample t-test in 

the SPM toolkit (SPM8)31 to identify brain regions that 

showing significantly positive correlations with each seed 

region for each group with a two-tailed false-discovery rate 

correction at P,0.05. We only considered positive cor-

relations in the rsFC analysis because the issue of negative 

correlations remains an unsettled debate.32,33 Next, a mask 

was generated by combining the regions exhibiting signifi-

cant positive connectivity with the seed region under each 

condition. Finally, general linear model (GLM) analysis 

and two-sample t-test in SPM8 were performed to identify 

regions of altered voxel-based rsFC (P,0.05, Gaussian 

random field theory corrected, minimum z.2.3). Age, sex, 

and amygdala or hippocampal volumes were considered 

covariates in the analyses.

GLM analysis was also performed with SPM8 to inves-

tigate the group differences of FCS within the amygdala 

or hippocampus between RRMS patients and HCs after 

controlling for the effects of age, sex, and amygdala or hip-

pocampal atrophy.

Additionally, a two-sample t-test in Statistical Product 

and Service Solutions (SPSS Inc, Chicago, IL, USA) was 

performed to compare the group differences in each cluster-

based rsFC between the ROI and other brain areas with 

significant positive connectivity with the seed region, FCS 

of the amygdala or hippocampus, or SC of the amygdala or 

hippocampus (P,0.05, Bonferroni corrected).

Finally, partial correlation analysis was performed in 

the RRMS group to assess the relationship between clinical 

markers and SC and FC damage and the effect of this damage 

on clinical parameters and indices in RRMS patients, with 

age, sex, and amygdala or hippocampal volumes as covariates 

of no interest. The threshold was set at a significance level of 

P,0.05 and was corrected for multiple comparisons using 

the Bonferroni correction.

Results
Demographic and clinical data
Among the 23 RRMS patients, the mean EDSS score was 

1.604 corresponding to minimal disability. Significant dif-

ferences were found between the RRMS and HC groups in 

amygdala, hippocampal and whole brain volumes, and in the 

paced auditory serial addition test scores. These measures 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2015:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1753

Disconnection of the hippocampus and amygdala in Ms

Figure 1 A flowchart of the calculation of the connectivity of the amygdala and hippocampus.
Notes: (1) The resting-state functional magnetic resonance imaging (rs-fMri) was preprocessed in the MaTlaB platform. (2) The amygdala and the hippocampus were 
extracted from anatomical automatic labeling (aal) masks as regions of interest (rOis). (3) The time series in each rOi was extracted in the amygdala and hippocampus 
or in other brain areas. (4) The temporal correlation coefficients were quantified: resting-state functional connectivity (rsFC) pattern with the mean time series in each ROI 
or functional connectivity strength (Fcs) in voxel level between the amygdala/hippocampus and other brain areas. (5) Preprocessed motion and eddy current distortion 
correction of the model distributions of the relevant parameter (Monte carlo sampling) was performed using the FMriB diffusion toolbox (FDT v2.0). (6) rOi-based 
probabilistic tractography was used to calculate the fiber orientation distribution in the left/right amygdala and hippocampus. (7 and 8) Features of the remaining fiber bundles 
(above threshold 0.2) connecting each rOi in the WM tract were extracted and compared between the two groups, including the above-threshold standard DTi parameters. 
(9) Fc–sc relationship analysis.
Abbreviations: Ant, anterior; DTI, diffusion tensor imaging; FC, functional connectivity; FC-CC, FC correlation coefficient; FMRIB, Functional MRI of the Brain; FDT, FMRIB 
diffusion toolbox; Fsl, FMriB software library; sc, structural connectivity; sup, superior; WM, white matter.

revealed atrophy and slowed cognitive processing due to MS-

related damage. The demographic and clinical characteristics 

of the 23 right-handed RRMS patients (7 males, 16 females) 

and well-matched HCs are summarized in Table 1.

Fc measures of the amygdala and 
hippocampus
Seed-based FC was then used to measure the FC-CC 

between the positively correlated regions and the seed 

region (amygdala or hippocampus). The results of a one-

sample t-test found similar FC-CC distributions of the 

amygdala and hippocampus in the RRMS and HC groups 

(false-discovery rate corrected, P,0.01) (Figure S1). In a 

cluster-based analysis, a significant FC-CC difference was 

not detected between the RRMS and HC groups (P.0.05) 

(Table S1, Figure 2A). However, in a voxel-based GLM 

analysis, compared with HCs, significantly reduced FC-

CCs (including bilateral putamen, detailed results shown in 

Table S2 and Figure S2) were only detected in the RRMS 

group (P,0.05, Gaussian random field theory corrected, 

minimum z.2.3).

A voxel-wise FCS metric was used to measure the con-

nectivity strength across the amygdala and hippocampus. 

The FCS of the amygdala and the hippocampus was also 

extracted and compared between the RRMS and HC groups 

(Table S1, Figure 2B). Specifically, significantly increased 
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Table 1 Demographics and clinical characteristics of the control subjects and rrMs patients

RRMS patients (n=23) Control subjects (n=23) P-values

sex (M/F) 7/16 7/16 .0.99
Mean age (range) (years) 39.17 (20–57) 38.96 (22–52) 0.925
Mean disease duration (range) (months) 33.24 (3–187) n/a n/a
Mean TWMll (range) (ml) (normalized) 22.70 (0.43–79.41) n/a n/a
Mean BPF (range) 0.828 (0.78–0.86) 0.853 (0.81–0.89) 0.000
Normalized amygdala volumes (ml) 1.73±0.19 (l)/1.96±0.21 (r) 1.97±0.13 (l)/2.27±0.15 (r) 0.041 (l)/0.023 (r)
Normalized hippocampal volumes (ml) 5.25±0.53 (l)/5.32±0.49 (r) 5.61±0.49 (l)/5.75±0.36 (r) 0.048 (l)/0.039 (r)
Median eDss (range) 1.604 (0–2.5) 0 n/a
Mean PasaT (range) 84.13 (61–103) 98.43 (83–118) 0.000

Notes: The measurement procedures for TWMll and BPF in the rrMs patients have been previously described by shu et al16 and Pelletier et al50 respectively (also see 
Zhou et al14 study). Normalized amygdala or hippocampal volumes are presented as mean ± standard deviation.
Abbreviations: BPF, brain parenchymal fraction; eDss, expanded disability status scale; F, female; l, left; M, male; n/a, not applicable; PasaT, paced auditory serial addition 
test; rrMs, relapsing–remitting multiple sclerosis; r, right; TWMll, total white-matter lesion load.

FCS was detected in the left amygdala (P,0.05), left 

hippocampus (P,0.001), and right hippocampus (P,0.01) 

in the RRMS group.

sc measures of the amygdala and 
hippocampus
SC strengths were assessed by measuring the volumes and 

mean tract counts along the above-threshold reconstructed 

tracts (Figure 2C and D, Table S1). Figure 3 shows a macro-

scopic view of sample WM tracts of the amygdala and hip-

pocampus identified by probabilistic tracking, in transverse 

section (Figure 3A and B) and three-dimensional views 

(Figure 3C and D), respectively. In the RRMS patients, no 

difference was detected in the volume of the tract linking the 

amygdala or hippocampus, but lower counts (lg[N tracts]) 

were detected in the tracts linking the left amygdala (4.868 

vs 4.930), right amygdala (4.839 vs 4.934), left hippocampus 

(5.081 vs 5.297), and right hippocampus (5.108 vs 5.320).

The integrity of the above-threshold reconstructed 

tracts was assessed by measuring the standard DTI param-

eters (Figure 2E–H, Table S1). In the RRMS patients, 

decreased FA and increased RD values were detected in 

all four tracts (P,0.05, Table S1) and increased mean dif-

fusivity values were detected in the tract linking the right 

amygdala (0.938×10-3 vs 0.833×10-3) and right hippocampus 

(0.961×10-3 vs 0.918×10-3).

relationship between structure and 
function measures
In the RRMS group, partial correlation analyses (Figure 4) 

revealed that decreased FA of the right amygdala or right hip-

pocampus was positively correlated with slightly increased 

FCS (ρ=0.45, P=0.034) or decreased FC-CC (ρ=0.57, 

P=0.005), indicating an SC–FC coupling relationship. 

Figure S3 shows an example of the relationship between the 

FC and SC measures in other thresholds (0.05, 0.10, 0.15, 

0.20, 0.25, and 0.30) of probabilistic tractography.

relationships between abnormal 
connectivity indices and clinical markers 
of rrMs
In the RRMS group, partial correlation analyses between 

clinical markers and abnormal connectivity indices in 

the amygdala or hippocampus showing significant group 

differences revealed that only the total WM lesion load 

(TWMLL) was only negatively correlated with the FCS of 

the left amygdala (ρ=-0.55, P,0.05) (Figure 5A), the lg(N 

tracts) of the right hippocampus (ρ=-0.68, P,0.05), and 

the lg(N tracts) (ρ=-0.69, P,0.05) and FA values of the 

left hippocampus (ρ=-0.68, P,0.05). The TWMLL was 

positively correlated with the RD of the left hippocampus 

(ρ=0.45, P,0.05) (Figure 5B). The above-mentioned mea-

sures revealed the association between abnormal connectivity 

and the MS-related lesion load.

Discussion
In the present study, we showed that the SC of the hippocam-

pus and amygdala is significantly decreased in minimally 

disabled RRMS patients and that increased FCS may be a 

cortical reorganization mechanism to maintain cluster-level 

rsFC. We also found two significant correlations between 

the FC and SC measures: slightly increased FC-CC (or 

increased FCS) was positively correlated with WM tract 

damage in the right hippocampus (or right amygdala). 

Additionally, some SC and FCS indices of RRMS patients 

were significantly correlated with the lesion load. This study, 

linking the decreased WM connections and compensatory 

cortical reorganization of the hippocampus and amygdala, 
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Figure 2 a set of connectivity matrices of functional and structural analyses of the amygdala and hippocampus in the rrMs and healthy control (hc) groups.
Notes: The panels (A and B) are a histogram of average Fc-cc or Fcs in the amygdala and hippocampus. The panels (C and D) show the structural connectivity strength (of 
average lg[N tracts] and volumes) of the amygdala and hippocampus. The panels (E–H) are above-threshold (0.2) standard DTi parameters, including the fractional anisotropy (Fa), 
mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of each fiber tract. The error bars are the standard errors of the mean. *P,0.05, **P,0.01, ***P,0.001.
Abbreviations: amyg, amygdala; DTI, diffusion tensor imaging; FC-CC, functional connectivity correlation coefficient; FCS, functional connectivity strength; hipp, 
hippocampus; Ms, multiple sclerosis; rrMs, relapsing–remitting multiple sclerosis; sc, structural connectivity.
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Figure 3 An example of the white-matter fibers of the amygdala and hippocampus detected by probabilistic tractography.
Notes: One control subject (A) and one rrMs patient (B) in the native space. Panels (C and D) correspond to three-dimensional probabilistic tractography. sup, superior; 
Inf, inferior; Ant, anterior; Pos, posterior; red, the fiber of the left amygdala; magenta, the fiber of the right amygdala; blue, the fiber of the left hippocampus; cyan, the fiber 
of the right hippocampus.
Abbreviations: hc, healthy control; Ms, multiple sclerosis; rrMs, relapsing–remitting Ms.
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provides new insights into how lesion load impacts SC and 

function in RRMS.

hippocampal connectivity disturbances
selective functional disconnection of the 
hippocampus
Our data show increased FCS of the right or left hippocam-

pus in RRMS patients, which functionally compensates for 

selectively decreased FC-CC between the left hippocampus 

and left basal ganglia (lentiform nucleus), right hippocampus 

and right basal ganglia (putamen), or the brainstem. Extensive 

evidence suggests that the basal ganglia and hippocampal 

systems are simultaneously activated in habit learning and 

memory34 and that the basal ganglia are involved in both 

conscious and unconscious learning.35 fMRI has shown 

functional disruption in hippocampus-basal ganglia path-

ways such as reduced activation in habitual learning and 

memory tasks in Parkinson’s disease.36 The possibility of 

effective dependent learning was caused by dissociating the 

basal ganglia from the hippocampus, as suggested in the 

present study. The brainstem plays important roles in many 

basic functions, including breathing and sleeping, and the 
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Figure 4 correlation between sc and Fc in the amygdala or hippocampus in the rrMs.
Abbreviations: Fa, fractional anisotropy; Fcs, functional connectivity strength; k/k0, the normalized FCS; FC-CC, functional connectivity correlation coefficient; RRMS, 
relapsing–remitting multiple sclerosis; sc, structural connectivity.
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ascending brainstem hippocampal synchronizing pathways37 

are involved in memory retrieval.38 The disconnection 

of brainstem regions from the hippocampus implies that 

memory loss is associated with a wide variety of decreased 

rsFC measures in RRMS patients.

Fortunately, in the current study, significantly increased 

connectivity strength was shown in minimally disabled 

RRMS patients. This increased strength was enabled by 

cortical reorganization in adjacent areas as a compensa-

tory mechanism to maintain stable neural function. In the 

early stages of MS, patients show increased rsFC in most 

resting-state networks.39,40 Thus, enhanced cerebral activity 

in the earliest clinical stage of MS is subsequently lost as 

brain damage progresses; this activity might be an early but 

finite compensatory phenomenon in MS.41,42 Additionally, an 

increased lesion load was negatively correlated with FCS, 

further supporting the idea of finite cortical compensation.

Decreased connectivity of WM tracts of the 
hippocampus and their association with lesion load
We identified the WM tracts connected with the hippocam-

pus, and we also demonstrated that loss of integrity occurred 

in left and right fiber tracts, mainly reflected as a reduced 

tract number, decreased FA values, and increased RD values. 

The SC disconnection in this study may reflect a variety 

of neuropathological processes, including demyelination, 

decreased dendritic density, and/or myelin loss. DTI mea-

sures (ROI analysis43,44 and tract-based spatial statistics,45 

as examples) are sensitive to WM damage in MS, includ-

ing interior focal lesions and normal-appearing WM: these 

regional DTI alterations are related to disability and cognitive 

deficits.46 Notably, hippocampal demyelination has been 

demonstrated in postmortem MS brains.6,7 Especially in the 

hippocampus, demyelination is a cause of synaptic alterations 

in MS patients, and the neuronal genes regulated by myelina-

tion reflect specific functions of neuronal subpopulations.6 

In vivo, regional micro-structural damage9,10 and atrophy11 

have been demonstrated in the hippocampus by MRI. The 

detection of WM integrity in this study is consistent with 

previous reports,9,11 although these reports focused on focal 

lesions or regional atrophy. Few published reports have 

investigated the integrity of hippocampal tracts in MS, but 

our observations are also in agreement with their findings in 

other major WM fiber tracts.14,15,47

The WM lesions in RRMS were associated with changes 

in the structural integrity of hippocampal WM tracts of 

the Liu et al48 demonstrated damage in whole-brain WM 

regions and significant correlations between the diffusion 

metrics and TWMLL. TWMLL is considered a clinically 

relevant measure of disease progression.49,50 In this study, 

we detected an inverse correlation between the TWMLL 

and the tract number loss in the right and left hippocampus 

and also found reduced FA and increased RD values in the 

left hippocampus with increasing TWMLL, suggesting that 

the SC of the hippocampus is susceptible to the impact of 

acute MS lesions.

relationship of sc–Fc coupling measures  
in the hippocampus
Cortical functional reorganization might be an important 

pathophysiological factor in controlling information pro-

cessing deficiencies in minimally disabled RRMS patients. 
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Figure 5 The correlation between structural/functional connectivity indices (y axis) and lesion load (x axis) in rrMs patients.
Notes: (A) The plot shows that the FCS of left amygdala significantly decreased as the TWMLL increased. (B) The plots show that structural indices of the left hippocampus 
significantly decreased as the TWMLL increased.
Abbreviations: Fa, fractional anisotropy; Fc, functional connectivity; Fcs, Fc strength; k/k0, the normalized Fcs; lgN, log10(N tracts); rD, radial diffusivity; rrMs, relapsing–
remitting multiple sclerosis; sc, structural connectivity; TWMll, total white matter lesion loads.
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Neuronal fiber tracts are bundles with an extremely large 

number of axons that act as a bridge connecting the hip-

pocampus to the rest of the brain. This is not unexpected, 

as reduced anisotropy is likely in the demyelinated hip-

pocampus. However, when we analyzed the strength of 

connectivity as measured by the mean FA of voxels repre-

senting the reconstructed tractography pathways, we found a 

relationship between the FC-CC and the FA value of the tract 

belonging to the right hippocampus in the RRMS patients. 

Previously, we demonstrated a relationship between SC 

and FC coupling measures in long WM (backbone) tracts 

within default mode network subregions.14 In early-intact MS 

patients with memory function, decreased regional rsFC of 

structural integrity in the hippocampus has been observed,9 

revealing a proactively changing state before the activation 

of the defense functions. The structure has been considered 

the underlying foundation of functional change.51 To the best 

of our knowledge, this is the first study to attempt to link the 

SC and FC of the hippocampus in RRMS patients.

connectivity disturbances in the 
amygdala
We also attempted to identify the connectivity disturbances 

in the amygdala, and the changes in functional or SC of the 

amygdala are extremely similar in the hippocampus. As 

another component of the limbic system, the amygdala is 

composed of structurally and functionally distinct nuclei 

that contribute to emotion processing through interactions 

with other subcortical and cortical structures.52,53 In this 

study, we demonstrated that disruptions also occurred in 

the fiber bundles crossing the amygdala, mainly reflected 

in tract number loss and decreased FA and increased RD 

values in the tracts. Notably, the amygdala was discon-

nected from the basal ganglia in FC-CC. The increased FCS 

of the left amygdala also suggested limited compensatory 

cortical reorganization. The capacity of cortical reorganiza-

tion reflected in FCS was depended on the TWMLL and 

was related to the anisotropy of the fiber bundles crossing 

the amygdala in RRMS patients. No systematic and com-

prehensive academic research on the amygdala in RRMS 

has been conducted, and few MS studies have involved the 

amygdala at all.2,53,54

Technical considerations and study 
limitations
In contrast to deterministic tractography (a single trajectory 

reconstruction), probabilistic tractography was performed 

in our study to investigate the strength of SC and the 

above-threshold standard DTI parameters in the WM tracts. 

Probabilistic tractography methods are used to propagate a 

large number of pathways passing through the seed point, 

and the pathway orientations are drawn from a distribution 

of possible orientations.28,30 The probabilistic tractography 

methods can be used to easily reconstruct the existence of 

direct neuroanatomical connections of the hippocampus or 

amygdala.15,55

Notably, ROIs of the amygdala or hippocampus were 

defined according to an automated anatomical labeling 

template, and the atrophy of the amygdala or hippocam-

pus was considered as an influencing factor in this study. 

Additionally, there are a few limitations to probabilistic 

tractography, including the possibly highly reproducible 

topology of the reconstructed pathways28,29 and the lack 

of statistical consensus on the probabilistic tractography 

threshold.30 Finally, we performed a limited assessment of 

cognitive function.

Conclusion
In the present study, we observed increased functional con-

nections and demyelination-related structural disconnectiv-

ity of the hippocampus and amygdala with other regions 

in RRMS patients. This study, linking the connectivity of 

WM tracts and the synchrony of intrinsic neuronal activ-

ity in other regions connected with the hippocampus and 

amygdala, provides a new avenue to understand the cortical 

reorganization of the hippocampus and amygdala in the 

pathophysiology of RRMS.
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Supplementary materials

Figure S1 Statistical significance (color-coded t-score) of the rsFc patterns for the amygdala and hippocampus in both the hc and the rrMs groups.
Abbreviations: FC-CC, functional connectivity correlation coefficient; MS, multiple sclerosis; HC, healthy control; RRMS, relapsing–remitting MS; rsFC, resting-state 
functional connectivity.
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Disconnection of the hippocampus and amygdala in Ms

Figure S3 an example of the relationship between functional connectivity strength (Fcs) and structural connectivity measures in other thresholds (0.05, 0.10, 0.15, 0.20, 
0.25, and 0.30) of probabilistic tractography.
Abbreviations: Fa, fractional anisotropy; Fc, functional connectivity; Prob, proba bility; sc, structural connectivity.

Table S2 Brain areas with significant differences in rsFC between patients with RRMS and healthy controls (P,0.05, gaussian random 
field (GRF) theory corrected, minimum z.2.3)

Cluster site Peak MNI  
coordination (x, y, z)

Peak  
intensity (t-values)

Cluster  
size (voxel)

rrMs vs hc (seed: left amygdala)
left cerebellum anterior lobe -27, -42, -36 -3.5264 77
right fusiform 42, -18, -30 -3.7296 20
left extranuclear -27, 3, -12 -4.0964 28
left orbital parts of the inferior frontal gyrus -36, 30, -12 -3.3696 33
right putamen 24, 9, -6 -3.0463 33
left putamen -21, 15, 6 -4.0212 85

rrMs vs hc (seed: right amygdala)
left cerebellum posterior lobe -21, -57, -54 -3.1797 23
left cerebellum anterior lobe -30, -51, -30 -3.1891 30
left brainstem -12, -30, -27 -4.2008 20
left putamen -21, 15, 6 -4.3816 291
right putamen 24, -3, 12 -3.9885 181
left thalamus -6, -15, 0 -3.2637 38
right insula 30, -24, 15 -3.7222 69
left middle cingulum/supplementary motor area -12, 3, 48 -3.7548 53
right supplementary motor area 3, -12, 57 -2.75 20

rrMs vs hc (seed: left hippocampus)
left basal ganglia (lentiform nucleus) -21, -3, -6 -3.3466 20

rrMs vs hc (seed: right hippocampus)
Brainstem/medulla 6, -36, -48 -3.6732 36
right basal ganglia (putamen) 30, -3, 3 -3.2697 18

Note: x, y, z represent coordinate system for a three-dimensional MNi space.
Abbreviations: hc, healthy control; MNi, Montreal Neurological institute; rrMs, relapsing–remitting multiple sclerosis; rsFc, resting-state functional connectivity; vs, versus.
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