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Objective: Glucagon-like peptide-1 induces glucose-dependent insulin secretion and, in rodents, 

increases proliferation and survival of pancreatic beta cells. To investigate the effects on human 

beta cells, we used immunodeficient mice transplanted with human islets. The goal was to 

determine whether lixisenatide, a glucagon-like peptide-1 receptor agonist, improves human 

islet function and survival in vivo.

Methods: Five independent transplant studies were conducted with human islets from five 

individual donors. Diabetic human islet-engrafted immunodeficient mice were treated with 

lixisenatide (50, 150, and 500 µg/kg) or vehicle. Islet function was determined by blood glucose, 

plasma human insulin/C-peptide, and glucose tolerance tests. Grafts were analyzed for total 

beta- and alpha-cell number, percent proliferation, and levels of apoptosis.

Results: Diabetic mice transplanted with marginal human islet mass and treated with lixisenatide 

were restored to euglycemia more rapidly than vehicle-treated mice. Glucose tolerance tests, 

human plasma insulin, and glucose-stimulation indices of lixisenatide-treated mice were signifi-

cantly improved compared to vehicle-treated mice. The percentages of proliferating or apoptotic 

beta cells at graft recovery were not different between lixisenatide-treated and vehicle-treated 

mice. Nevertheless, in one experiment we found a significant twofold to threefold increase in 

human beta-cell numbers in lixisenatide-treated compared to vehicle-treated mice.

Conclusion: Diabetic human islet-engrafted immunodeficient mice treated with lixisenatide 

show improved restoration of normoglycemia, human plasma insulin, and glucose tolerance 

compared to vehicle-treated mice engrafted with the same donor islets. Because the prolifera-

tive capacity of human beta cells is limited, improved beta-cell survival coupled with enhanced 

beta-cell function following lixisenatide treatment may provide the greatest benefit for diabetic 

patients with reduced functional islet mass.

Keywords: GLP-1 receptor agonist, lixisenatide, human islet transplant, beta cells, glucose 

tolerance tests, plasma insulin

Introduction
Glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists have been reported to 

improve beta-cell function and viability.1–3 At the beta-cell level, GLP-1 and its receptor 

agonists were found to induce beta-cell proliferation and decrease beta-cell apoptosis 

in rodents and in vitro.3–6 In vivo, GLP-1 receptor agonists preserve beta-cell mass in 

multiple animal models of diabetes,3,7–9 although an effect on beta-cell mass/number has 
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not yet been demonstrated in humans. In clinical trials with 

type 2 diabetes (T2D) patients, GLP-1 receptor agonists low-

ered both fasting and postprandial glucose concentrations;10,11 

GLP-1 receptor agonists also potentiate glucose-dependent 

insulin secretion, and thus have a low propensity to cause 

hypoglycemia.12 However, in patients with long-standing type 

1 diabetes, C-peptide secretion was not increased, although 

insulin sensitivity improved.13,14

Lixisenatide is a recently developed GLP-1 receptor 

agonist with potent binding affinity and extended biological 

activity.15–18 In patients with T2D, once-daily administration 

of lixisenatide improved glycemic control by decreasing 

both postprandial and fasting glucose levels; moreover, these 

effects were both immediate and sustained.19–22 In addition 

to increased insulin secretion in response to meal-related or 

glucose stimulation, a reduction in endogenous glucose pro-

duction and slowing of gastric emptying also contribute to the 

reduction in postprandial blood glucose levels observed with 

lixisenatide and other GLP-1 receptor agonists.22–25 In vitro 

studies with an INS-1 rat pancreatic beta-cell line indicates 

that GLP-1 and its receptor agonists, including lixisenatide, 

protect against lipid- and cytokine-induced apoptosis.26 Even 

so, it is not possible to directly assess beta-cell apoptosis in 

patients due to the inaccessibility of pancreatic islets, and 

clinical studies are difficult to control due to the variability 

between patients in regards to age, sex, diet, and other life-

style factors.

A useful method to interrogate human islet function 

in vivo is to transplant human islets into diabetic immu-

nodeficient nonobese diabetic–severe combined immu-

nodeficiency (NOD–scid) IL-2 receptor common gamma 

chain (IL-2rgnull) (NSG) mice.27 Many diabetes-inducing 

chemicals, such as streptozotocin, may cause damage to 

other organs. Also, the chemical-induced destruction of 

endogenous beta cells is not always complete, rendering 

problematic the interpretation of long-term transplantation 

studies with exogenous islets. To circumvent these issues, 

we utilized a strain of transgenic NSG mice that uses the 

rat insulin promoter (RIP) to drive human diphtheria toxin 

receptor (DTR) expression in the animal’s beta cells. When 

treated with low doses of diphtheria toxin, the NSG RIP-

DTR mouse model allows complete and specific ablation of 

mouse pancreatic beta cells and thereby avoids broadly toxic 

agents such as streptozotocin. The goal of this study was to 

investigate the efficacy of lixisenatide to promote human 

beta-cell function, proliferation, and survival using diabetic 

NSG RIP-DTR mice engrafted with marginal amounts of 

human pancreatic islets.

Methods
Mice and diabetes induction
NOD.Cg-PrkdcscidIl2rgtm1Wjl Tg(Ins2-HBEGF)6832 

Ugfm/Sz mice, referred to as NSG RIP-DTR mice, were 

developed at the Jackson Laboratory, Bar Harbor, ME, USA, 

by backcrossing the RIP-DTR transgene from a B6;CBA-RIP-

DTR stock kindly provided by Pedro Herrera. The original 

B6;CBA Tg(Ins2-HBEGF)6832 Ugfm/Sz mice were made 

by injecting the construct into B6;CBA eggs. The transgene 

was backcrossed using a marker-assisted speed congenic 

method to the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (abbreviated 

as NOD–scid IL-2rgnull or NSG) strain background. These 

NSG RIP-DTR mice express the human DTR driven by a 

RIP. The RIP-DTR transgene was then fixed to homozygosity. 

All mice were housed in a specific pathogen-free facility 

and maintained in accordance with the Institutional Animal 

Care and Use Committee of the University of Massachusetts 

Medical School.28

To induce diabetes, male NSG RIP-DTR mice 

(8–12 weeks old) were injected intraperitoneally (ip) with 

20 ng diphtheria toxin (List Biological Laboratories, Camp-

bell, CA, USA) diluted in sterile phosphate-buffered saline 

(PBS). Blood glucose was monitored with an Accu-chek 

Aviva Plus glucometer (Hoffman-La Roche Ltd, Basel, 

Switzerland) to confirm diabetes (blood glucose .300 

mg/dL on 2 consecutive days). Diabetic mice that were not 

transplanted with human islets within 1 week were given 

insulin implants (LinShin Canada Inc., Scarborough, ON, 

Canada) to prevent metabolic decompensation until human 

islets were available.

Pharmacokinetic analyses
An initial pharmacokinetic study with unengrafted, 

euglycemic NSG mice was performed to determine the 

plasma levels of lixisenatide over a 24-hour period fol-

lowing treatment. All mice were injected subcutaneously 

(sc) with vehicle alone or with 50 µg/kg, 150 µg/kg, or  

500 µg/kg lixisenatide (provided by Sanof i-Aventis, 

Frankfurt,  Germany). Blood was collected in potassium 

ethylenediaminetetraacetic acid (K-EDTA) tubes at 0, 5, 

15, 30, 60, and 120 minutes and 4, 8, and 24 hours from 

three mice/group at each time point; plasma was stored at 

−80°C. High-performance liquid chromatography analy-

sis of  lixisenatide levels in blood plasma was performed 

by Sanof i-Aventis. Based on these time-course data 

( Figure S1), the mice in the transplant studies were treated 

twice daily with the same concentrations of lixisenatide as 

in the pharmacokinetic study.
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human islet transplantation and 
lixisenatide treatment
Human islets were obtained from the Integrated Islet Dis-

tribution Program under protocols approved by the Insti-

tutional Review Board of the University of Massachusetts 

Medical School. Islets were transplanted into the subrenal 

capsular space as previously described;29 insulin implants 

were removed upon transplant. Five independent transplant 

studies were performed, each with human islets from a single 

donor. One day post-transplant, the mice were randomized 

into four groups, with five to seven mice in each group. The 

mice were injected sc twice daily with lixisenatide (50, 150, 

or 500 µg/kg/injection) or vehicle until graft removal at 

∼4 weeks post-transplant.

glucose tolerance test, plasma insulin/c-
peptide, and glucose stimulation index
For the glucose tolerance test (GTT), mice were fasted for 

5–6 hours, and blood glucose was measured following ip 

injection of glucose (2.0 g/kg body weight). To measure 

plasma levels of human insulin and C-peptide, heparinized 

blood from transplanted mice was collected with protease 

inhibitor (aprotinin; Sigma-Aldrich Co, St Louis, MO, 

USA). Non-fasting blood samples were collected just 

prior to drug/vehicle treatment. On alternate weeks, the 

mice were fasted for 5–6 hours prior to glucose injection 

(2 g/kg, ip); in the Donor 1 study, arginine (1 g/kg, ip) 

was given in addition to glucose. Blood was collected at 

0 (fasted) and 15 minutes (stimulated) post-injection; the 

glucose stimulation index was determined as the ratio of 

plasma insulin at 15 and 0 minutes. All plasma was stored 

at −80°C until analyzed by human-specific enzyme-linked 

immunosorbent assay (ELISA) (ALPCO Diagnostics, 

Salem, NH, USA).

Bromodeoxyuridine treatment, 
immunofluorescence staining,  
and TUnel assay
Human islet-engrafted mice were provided drinking water 

containing 0.8 mg/mL of bromodeoxyuridine (BrdU) ad 

libitum for 7 days prior to nephrectomy of the graft-bearing 

kidney. Euglycemic mice at the time of nephrectomy were 

followed for reversion to hyperglycemia for confirmation 

of human islet graft function. Islet graft-bearing kidneys 

were fixed in 10% neutral-buffered formalin. Paraffin-

embedded sections were stained with guinea pig anti- insulin 

(Dako, Carpinteria, CA, USA), mouse anti-glucagon 

(Abcam, Cambridge, England), and rat anti-BrdU (Accu-

rate Chemical, Westbury, NJ, USA); secondary Alexa Fluor 

antibodies (Alexa Fluor 647, 594, 488) were from Life 

Technologies (Carlsbad, CA, USA), and 4′,6-diamidino-2-

phenylindole (DAPI) was from Sigma-Aldrich Co. Insulin+, 

insulin+BrdU+, glucagon+, and glucagon+BrdU+ cells were 

visualized by fluorescence microscopy (Nikon Eclipse Ti 

series; Nikon Corporation, Tokyo, Japan). Terminal deoxy-

nucleotidyl transferase-mediated dUTP nick end labeling 

(TUNEL) assay was performed as per manufacturer’s instruc-

tions (Hoffman-La Roche Ltd). All counts were performed 

with Nikon NIS Elements software.

Total beta- and alpha-cell counts in human 
islet grafts
To determine total beta- and alpha-cell numbers in the islet 

grafts, 5 µm serial sections were cut through the entire graft 

and immunostained for insulin and glucagon. Beginning at 

the outer edge of the graft, images of the entire section were 

taken and stitched with a Nikon Eclipse Ti series microscope 

with motorized x–y stage. Subsequent serial sections were 

counted at 20 µm intervals to avoid duplicate counting of 

the same cells; all counts were performed with Nikon NIS 

Elements software.

Statistical analyses
Time-course data were analyzed by two-way analysis of 

variance (ANOVA) with Tukey’s or Holm–Sidak’s multiple 

comparisons test; insulin levels, cell counts, proliferation, 

and TUNEL data were analyzed by one-way ANOVA 

with Bonferroni’s or Tukey’s multiple comparisons test 

when comparing the four groups. Percent diabetes survival 

(Kaplan–Meier) was analyzed by Mantel–Cox log rank test. 

All statistical analyses were performed with GraphPad Prism 

(San Diego, CA, USA); P-values ,0.05 were considered 

significant.

Results
lixisenatide treatment accelerates 
restoration of normoglycemia in diabetic 
mice engrafted with human islets
Diabetic NSG RIP-DTR mice were engrafted with human 

islets from a single donor, randomized into four groups, and 

treated with vehicle (control) and lixisenatide at 50 µg/kg  

(low dose), 150 µg/kg (medium dose), and 500 µg/kg (high 

dose). A total of five independent studies were done with 

human islets from five donors; none of the donors were 

diagnosed as diabetic. The demographic characteristics of 
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the islet donors and the numbers of islet equivalents (IEQs) 

transplanted into each mouse for each study are shown in 

Table 1.

Blood glucose and body weight measurements of the 

mice were taken prior to islet transplant and then twice 

weekly following transplantation (Figure 1A and B). In 

four of the five transplant studies, mice treated with lixisen-

atide exhibited significant improvement in blood glucose 

control more rapidly than mice receiving vehicle alone 

(Figure 1A). In the Donor 2 study, only the high-dose lix-

isenatide mice showed significant improvement in blood 

glucose (at 9 and 13 days post-transplant). The mice in all 

other groups remained hyperglycemic; consequently, all 

mice engrafted with Donor 2 islets were euthanized without 

further analysis.

A combined survival curve analysis for transplant studies 

with islets from Donors 1, 3, 4, and 5 showed that lixisen-

atide treatment improved recovery from diabetes with high 

statistical power (Figure 2). The median time for the mice 

to become diabetes free was 12 days for the vehicle control 

group, and 5, 3, and 4 days for low-, medium-, and high-dose 

lixisenatide-treated groups, respectively. On surgical exci-

sion of the graft-bearing kidney, all mice became acutely 

hyperglycemic (blood glucose .500 mg/dL, Figure 1A), 

thus verifying that the human islet graft was responsible for 

maintaining blood glucose levels.

lixisenatide treatment is associated  
with improved body weight maintenance
Mouse body weights were measured during each transplant 

study. In the Donor 1 study, all mice lost significant weight 

between the time of transplant and nephrectomy, except 

the medium-dose group (Figure 1B), which also showed 

the best blood glucose control. In transplant studies with 

islets from Donors 2 and 5, mice in the control group lost 

a small, but significant, amount of weight. This weight 

loss was not unexpected because these control mice were 

hyperglycemic throughout the trial. However, it is interest-

ing to note that none of the lixisenatide-treated mice in the 

Donor 2 and 5 studies showed significant weight loss, even 

though some of the mice in the lower dose groups were 

also hyperglycemic. In transplant studies with islets from 

Donors 3 and 4, in which normoglycemia was eventually 

restored in all mice, there was no significant change in body 

weight of the mice in either the control or lixisenatide-treated 

groups.

glucose-stimulated human insulin 
secretion is increased in islet-engrafted 
mice treated with lixisenatide
At 2 weeks post-transplant, the fasting levels of human insu-

lin showed no significant differences between control and any 

of the lixisenatide-treatment groups (Figure 3A). However, 

glucose-stimulated levels of human insulin were signifi-

cantly increased with medium-dose lixisenatide treatment 

in Donors 1 and 4 transplant studies (Figure 3B). Of note, 

the stimulation index (ratio of stimulated to fasting human 

insulin) was significantly increased compared to controls in 

the medium-dose group for Donor 1, and both medium- and 

high-dose groups for Donors 3 and 4 transplants (Figure 3C). 

Mice in the Donor 2 and 5 transplant studies were excluded 

because the controls (as well as some of the treated mice) 

were hyperglycemic.

lixisenatide treatment improves gTTs  
in human islet-engrafted mice
Consistent with the increased human insulin levels in 

lixisenatide-treated mice in response to glucose, lixisenatide 

treatment also significantly improved responses in GTTs in 

both the Donor 3 and 4 studies at 4 weeks post-transplant 

(Figure 4). Although mice in the Donor 4 study received 

uninterrupted drug treatment until the GTT, mice in the 

Donor 3 study continued to exhibit significantly improved 

glucose tolerance, even though lixisenatide treatment 

had been discontinued for 4 days prior to the GTT. In the 

Donor 3 transplant study, the mice treated with lixisenatide 

showed significant differences from controls in the medium-

dose (P,0.01) and high-dose (P,0.05) groups, whereas 

in the Donor 4 transplant study, the low-dose lixisenatide 

group showed significant differences from the control group 

(P,0.05).

Table 1 Demographic characteristics of human islet donors

Donor 1 Donor 2 Donor 3 Donor 4 Donor 5

age, years 30 53 43 51 61
Sex (M/F) M F nr M F
ethnicity hispanic/ 

latino
hispanic/ 
latino

nr hispanic/ 
latino

nr

Body  
weight, kg

95 105 nr 86 nr

BMi, kg/m2 30.9 42.7 34.7 28.9 22.2
Time  
in culture*

1 day,  
0 hour

3 days,  
12 hours

1 day,  
3 hours

2 days,  
10 hours

nr

Transplanted 
ieQs/mouse

2,500 2,500 3,000 3,000 3,000

Note: *refers to the amount of time for which the human islets were cultured 
following isolation until shipment to our laboratory.
Abbreviations: BMi, body mass index; F, female; ieQs, islet equivalents; M, male; 
nr, not recorded.
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Figure 1 Blood glucose and body weights of control and lixisenatide-treated mice engrafted with human islets.
Notes: Diabetic NSG RIP-DTR mice were transplanted with human islets from five individual donors and injected sc twice daily with lixisenatide or vehicle control; n=5–6 
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apoptosis and proliferation analyses of  
human islet grafts recovered from control  
and lixisenatide-treated mice
Treatment with GLP-1 receptor agonists has been reported 

to protect rodent pancreatic beta cells from apoptosis.1 To 

determine whether lixisenatide treatment modulates human 

beta-cell apoptosis, the islet grafts were recovered on days 29, 

32, and 21 (for Donor 3, 4, and 5 studies, respectively) and 

examined by TUNEL staining (Figure 5). We found no signifi-

cant differences in beta-cell apoptosis between the control and 

lixisenatide-treated groups at the time points examined (at 

the end of each islet transplant study). In addition, although 

there was a variability between donor islets, the average 

percent beta-cell apoptosis observed at the end of each study 

was very low (,1%).
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Notes: Diabetic nSg riP-DTr mice were transplanted with human islets and treated 
with lixisenatide or vehicle control. Mice with blood glucose values .300 mg/dl were 
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To determine whether lixisenatide treatment induced 

human beta (or alpha)-cell proliferation, the mice were sup-

plied with BrdU in their drinking water for 1 week prior to 

recovery of the graft-bearing islets. The percentages of BrdU+ 

beta cells (Figure 6A) and BrdU+ alpha cells (Figure 6B) for 

each human islet graft are shown for control and lixisenatide-

treatment groups from Donor 3, 4, and 5 transplant studies 

combined. Consistent with previous reports,30–32 most islet 

grafts had very low levels of proliferating human beta cells, 

but neither beta- nor alpha-cell proliferation was significantly 

affected by lixisenatide treatment (as measured by BrdU 

incorporation during the last 7 days of each islet transplant 

study).

Quantitation of total beta and alpha cells 
in human islet grafts recovered from 
control and lixisenatide-treated mice
Our proliferation and apoptosis analyses reflect lixisenatide 

effects on the human islet grafts only as a “snapshot” at late 

stages of engraftment. Therefore, to better interrogate the 

effect of lixisenatide on human beta-cell survival throughout 

the ∼30-day treatment period, we counted total beta- and 

alpha-cell numbers within the recovered islet grafts. We 

observed considerable donor-to-donor variability with regard 

to the numbers of beta (Figure 7A) and alpha (Figure 7B) 

cells in the recovered islet grafts, even though the same 

numbers of IEQs were transplanted in each of the three 

studies examined.

In the Donor 5 transplant study, medium- and high-dose 

lixisenatide-treated mice displayed significantly greater beta-

cell numbers within the graft compared to control mice. In 

this study, an average of ∼2,000 beta cells was detected in the 

islet grafts of control mice compared to an average of ∼12,500 

and ∼4,500 beta cells in the control groups of Donor 3 and 

4 studies, respectively. Interestingly, Donor 5 control mice 

remained hyperglycemic throughout the study, whereas 

normoglycemia was restored in control group mice in the 

Donor 3 and 4 studies. The beta (and alpha)-cell counts in the 

low-dose lixisenatide-treated group from the Donor 5 study 

were approximately twofold higher than the control group, 
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even though the blood glucose of these mice remained 

elevated (∼400 mg/dL, Figure 1A). The blood glucose values 

in the medium- and high-dose groups were significantly lower 

than the control group, and these mice had approximately 

threefold higher numbers of beta (and alpha) cells. In sup-

port of this, the islet grafts from three vehicle control mice 

appear noticeably smaller than from lixisenatide-treated mice 

(Figure 8), consistent with the significantly lower beta- and 

alpha-cell counts in the control group.

Discussion
In this study, we demonstrated that lixisenatide treatment 

significantly improved human beta-cell function and survival 

in diabetic NSG RIP-DTR mice engrafted with human islets. 

The human islets were derived from both male and female 

islet donors, aged 30–61 years, with body mass index (BMI) 

from 22.2 to 42.7 kg/m2; none was diagnosed as having 

diabetes. Five independent islet transplant studies were 

conducted, and mice were treated with three different doses 

of lixisenatide (50, 150, and 500 µg/kg) and vehicle control. 

A significantly accelerated recovery from diabetes was 

observed in lixisenatide-treated mice compared to controls, 

with the median time to a diabetes-free condition of 5, 3, and 

4 days for low-, medium-, and high-dose lixisenatide groups, 

respectively, compared to controls at 12 days. The numbers 

of human islets transplanted were 2,500 IEQs in Donor 1 and 
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2 studies, and 3,000 IEQs in studies with Donors 3, 4, and 5. 

Although human islets from nondiabetic donors can comprise 

as few as 28% or as many as 75% beta cells,33 in our experi-

ence, ∼3,000 human IEQs is typically sufficient to restore 

normoglycemia in the NSG RIP-DTR model.

Plasma levels of human insulin and C-peptide in fed or 

fasted islet-engrafted mice were variable or not significantly 

different between the control and lixisenatide-treatment 

groups. In contrast, mice treated with medium- and high-dose 

lixisenatide (compared to control) had significantly increased 

glucose-stimulated plasma levels of human insulin and glucose-

stimulation indices for each of the three donors that were ana-

lyzed. This is consistent with human studies in T2D patients and 

nondiabetic subjects, in whom lixisenatide stimulated insulin 

secretion when blood glucose levels were increased, but not at 

normoglycemia.34 In support of this, GTTs were significantly 

improved in mice treated with lixisenatide compared to control 

mice engrafted with the same donor islets. Similarly, in a study 

with T2D patients insufficiently controlled on metformin, lix-

isenatide treatment provided a significantly greater reduction in 

postprandial plasma glucose than in placebo control.35

To measure the proliferation of human beta and alpha cells 

in the islet grafts, control and lixisenatide-treated mice were 

given BrdU in their drinking water 7 days before removal 

of the graft-bearing kidney. No significant differences were 

seen between lixisenatide treatment and control groups, 

although individual islet grafts derived from Donors 4 and 

5 tended to have more BrdU+ cells in control mice  compared 

to lixisenatide-treated animals engrafted with the same islets. 

Of note, control mice in the Donor 4 and 5 transplant stud-

ies had higher blood glucose levels than lixisenatide-treated 

mice, and we and others have reported that even mild hyper-

glycemia induces human beta-cell proliferation in human 

islet-engrafted mice.31,32 Nonetheless, beta cells from humans 

have a very low proliferation rate compared to rodents, and 

hyperglycemia induction results in only a ∼0.5% proliferative 

rate in human beta cells.30–32

GLP-1 and its receptor agonists have been reported to 

inhibit beta-cell apoptosis in short-term culture of insuli-

noma cells and freshly isolated human and rodent islets.8,26,36 

At recovery of the human islet grafts ∼4 weeks post-transplant, 

we observed no significant difference between lixisenatide-

treated and control groups in beta-cell apoptosis (as measured 

by TUNEL staining). However, it is possible that lixisenatide 

may have had an anti-apoptotic effect on the islet grafts at 

earlier stages in the post-transplant period. Indeed, it has been 

estimated that up to 70% of islet mass may be lost in the early 

post-transplant period, even in immunodeficient or syngeneic 

transplant models.37,38 Thus, it is likely that lixisenatide may 

have modulated beta-cell survival at earlier post-transplant 

time periods. In support of this, GLP-1 receptor agonist 

treatment of diabetic mice engrafted with syngeneic islets 

reversed the loss of both the number and mass of islets grafts 

at 1 and 3 days post-transplant.39 With longer GLP-1 receptor 

agonist treatment (2–3 weeks), both Ins2Akita (Akita) and Leprdb 

mice had increased islet mass and elevated pancreatic insulin 
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content compared with controls.7,8 Similarly, we found that 

lixisenatide treatment dramatically improved total beta- and 

alpha-cell numbers in human islet grafts from Donor 5.

In the Donor 5 transplant study, the human islets failed to 

lower blood glucose levels in the control group, and mice in 

the low-dose lixisenatide group also remained hyperglycemic. 

Remarkably, the insulin+ (beta) and glucagon+ (alpha) cell 

counts in the islet grafts of mice treated with low-dose lixisen-

atide were twofold greater than in the control group, and mice 

treated with medium- and high-dose lixisenatide had threefold 

greater numbers of alpha and beta cells. Because the low rate of 

human beta-cell proliferation cannot account for these differ-

ences in beta-cell numbers, these data are consistent regarding 

the role of lixisenatide to preserve human beta-cell survival.

It is possible that lixisenatide’s effect to maintain beta-

cell viability may be secondary to its ability to increase 

insulin secretion and lower blood glucose, thus preventing 

glucotoxicity. However, in Akita mice, the protective effect 

of GLP-1 receptor agonist on pancreatic islet mass was found 

to be independent of lowered blood glucose levels.7 Similarly, 

in our Donor 5 study, the low-dose lixisenatide group showed 

a twofold increase in beta-cell number compared to the 

control group, even though mice in this group remained 

hyperglycemic throughout the study. These data suggest that 

lixisenatide may have additional islet-protective effects on 

human beta cells, such as that previously reported in rodent 

diabetes models, in which GLP-1 receptor agonists acted to 

reduce beta-cell endoplasmic reticulum stress.3,7–9 Taken 

together, our data are consistent with a role for lixisenatide 

to preserve human beta-cell function and survival in vivo, in 

particular when numbers of functional beta cells are limiting, 

as would be found in individuals with T2D.
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Figure S1 Pharmacokinetic analysis of control and lixisenatide treatments.
Notes: nSg mice were given a single sc injection with vehicle control or three different doses of lixisenatide; plasma levels of lixisenatide were measured at the time points 
indicated; n=3 mice per group at each time point (n=96 mice total + 3 untreated mice at time 0). The data from one low dose mouse at the 24-hour time point were deemed 
a technical failure and removed from analysis.
Abbreviations: nSg, nonobese diabetic–severe combined immunodeficiency (NOD–scid) il-2 receptor common gamma chain (IL-2rgnull); sc, subcutaneously; conc, 
concentration.
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