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Abstract: Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is a secreted 692-amino acid 

protein that binds surface low-density lipoprotein (LDL) receptor (LDLR) and targets it toward 

lysosomal degradation. As a consequence, the number of LDLRs at the cell surface is decreased, 

and LDL-cholesterol (LDL-C) clearance is reduced, a phenomenon that is magnified by gain-of-

function mutations of PCSK9. In contrast, loss-of-function mutations of PCSK9 result in increased 

surface LDLR and improved LDL-C clearance. This provides the rationale for targeting PCSK9 in 

hypercholesterolemic subjects as a means to lower LDL-C levels. Monoclonal antibodies (mAbs) 

against PCSK9 that block its interaction with the LDLR have been developed in the past decade. 

Two companies have recently received the approval for their anti-PCSK9 mAbs by the US Food 

and Drug Administration (FDA) and the European Medicines Agency (EMA) Regeneron/Sanofi, 

with alirocumab (commercial name – PRALUENT®) and, Amgen with evolocumab (commercial 

name – Repatha™). The introduction of anti-PCSK9 mAbs will provide an alternative therapeutic 

strategy to address many of the unmet needs of current lipid-lowering therapies, such as inability 

to achieve goal LDL-C level, or intolerance and aversion to statins. This review will focus on the 

kinetics of PCSK9, pharmacokinetics and pharmacodynamics of anti-PCSK9 mAbs, and recent 

data linking PCSK9 and anti-PCSK9 mAbs to cardiovascular events. Moreover, it will highlight 

the unanswered questions that still need to be addressed in order to understand the physiologic 

function, kinetics, and dynamics of PCSK9.
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Introduction
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) plays a fundamental role in low-

density lipoprotein (LDL) metabolism through the post-transcriptional regulation of 

LDL receptor (LDLR).1–3 PCSK9 is mainly produced by the liver, intestine, and kidney 

and is synthesized as a precursor of 75 kDa, which undergoes autocatalytic cleavage 

in the endoplasmic reticulum to form the mature, secreted heterodimer. Once secreted, 

PCSK9 circulates in the plasma compartment in two different molecular forms, the  

62 kDa form, which is the most active4–7 and predominantly present on LDL,8–10 and 

a 55 kDa form (produced by cleavage of the mature PCSK9 by furin), which is con-

sidered to be less active4–7 and is mainly present in the apolipoprotein B (apoB)-free 

plasma compartment.11 Mature PCSK9 directly binds the epidermal growth factor-like 

repeat A (EGF-A) domain of LDLR and acts as a chaperone, targeting LDLR toward 

intracellular degradation through an endosomal/lysosomal route.12 One study also 

suggested that PCSK9 might directly influence LDLR degradation intracellularly, 

preventing LDLR from reaching the cell surface.2
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Gain-of-function mutations in PCSK9 account for 

1%–3% of the individuals with familial hypercholesterolemia 

(FH) and are associated with early onset of cardiovascular 

diseases (CVDs).13 On the contrary, PCSK9 loss-of-function 

mutations reduce LDL-cholesterol (LDL-C) levels and sig-

nificantly decrease CVD risk.14,15 A few individuals with no 

detectable levels of PCSK9 in plasma have been identified. 

Despite carrying extremely low LDL-C levels, these subjects 

are healthy, fertile, and have normal cognitive functions.16–18 

Subjects with more common PCSK9 loss-of-function muta-

tions14 have reduced LDL-C levels and CVD risk.15,19 These 

observations combined have provided the rationale for a safe 

and effective use of PCSK9 inhibitors to reduce LDL-C level 

and CVD risk.

Currently, statins are the most widely prescribed 

lipid-lowering drugs.20 Statins reduce LDL-C levels by 

inhibiting HMG-CoA reductase (also known as 3-hydroxy-

3-methyl-glutaryl-coenzyme A reductase, or HMGCR), 

the rate-limiting step in cholesterol synthesis.21 The deple-

tion of the intracellular cholesterol pool increases LDLR 

transcription, which in turn favors LDL clearance.22 LDLR 

upregulation under cellular cholesterol-depletion state is 

mediated by sterol regulatory element-binding protein 2 

(SREBP2)-dependent mechanisms. Surprisingly, SREBP2 

is also responsible for the regulation of PCSK9 expression.23 

Thus, statin-mediated upregulation of PCSK9 should limit 

the LDL-C-lowering effect of these drugs.24

The current dogma (“cholesterol hypothesis”) is that 

the effect of lowering LDL-C on CVD risk is independent 

of the mechanism by which LDL-C is lowered.25 PCSK9 

inhibition using monoclonal antibodies (mAbs) may help 

reach the goal of LDL-C reduction and may improve CVD 

risk in hypercholesterolemic individuals as either mono-

therapy or in addition to statins. The recently published 

results of the Improved Reduction of Outcomes: Vytorin 

Efficacy International Trial (IMPROVE-IT) confirmed that 

the administration of lipid-lowering agents such as ezetimibe 

on top of statins further reduced LDL-C levels and the CVD 

event rate compared to monotherapy.26 These data provide 

an encouraging platform for the likelihood that agents that 

act through LDL-lowering mechanisms other than HMGCR 

will also have cardiovascular (CV) benefits.

mAbs directed toward PCSK9 have shown their efficacy 

in reducing LDL-C levels, and a detailed summary of the 

phase III clinical trials with alirocumab (Odissey program), 

evolocumab (Proficio program) and bococizumab (Spire 

program) has been recently reviewed in another publica-

tion27 by the authors of the current review and others.28,29 

However, despite the efficacy of PCSK9 antibodies on 

LDL-C reduction and their excellent safety profile,30 three 

central questions related to their effect and mechanism of 

action remain unanswered: 1) Is the effect of the block-

ing antibody evident within minutes from injection? This 

question is triggered by the knowledge that whereas the 

PCSK9-LDLR complex is formed in only a few minutes, 

degradation of LDLR instead takes several hours; 2) What are 

the pharmacokinetic and pharmacodynamic characteristics 

of the antibody–antigen (Ab–Ag) complex? This question 

is triggered by the knowledge that a portion of the Ab–Ag  

complex will reside on lipoproteins, which may direct clear-

ance of the immune complex via unique pathways; 3) Do 

PCSK9 mAbs reduce atherosclerotic plaque burden and 

CVD events? This question is triggered by the knowledge 

that inhibiting PCSK9 not only drives down LDL-C levels 

but also prohibits PCSK9 function in the plaque. Recent 

comprehensive reviews have summarized the genetics, 

physiology, and cell biology of PCSK9,31–33 and the safety 

and tolerability of the anti-PCSK9 antibodies.28,30 This review 

will focus on the kinetics of PCSK9, the pharmacokinetics 

and pharmacodynamics of PCSK9 mAbs, and will provide 

an updated view of the possible link between PCSK9 inhibi-

tion and CVD events.

Kinetics of PCSK9
The mechanism of internalization of LDL by LDLR was first 

described in 1976 in human fibroblasts (Figure 1A).34 LDL 

binds to LDLR on coated pits, which then invaginate and get 

internalized as coated vesicles that expand to become endo-

somes, from where LDL is delivered to the lysosome while 

LDLR returns to the cell surface.35,36 The LDLR makes one 

round trip every 10–15 minutes for a total of over 100 trips 

in its 20-hour lifespan.37

The discovery of PCSK9 has modified our view of 

lipoprotein metabolism, from a system under complete 

intracellular control to a system based on a secreted protein 

that competes with LDL to terminate the LDLR lifecycle 

(Figure 1B). The kinetics of wild-type (WT) PCSK9 binding 

to LDLR shows Kd values that range from 90 to 840 nM 

at neutral pH, and its affinity to LDLR becomes ∼100-

fold higher at lower pH with Kd values ranging from 

1–8 nM.38–41 As a consequence of the increased affinity 

of PCSK9-LDLR complex at acidic pH, the LDLR in 

the late endosome fails to dissociate from the ligand, and 

is instead targeted to lysosomal degradation, apparently 

together with PCSK9.42 PCSK9 binding to LDLR has been 

described as biphasic, with a first rapid phase characterized 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Vascular Health and Risk Management 2015:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

495

Clinical potential of PCSK9 inhibition in atherosclerosis

by a half-time of 6.6 minutes, which accounts for 35% of 

the equilibrium binding and a second slow phase whose 

half-time is 94 minutes.43 Similarly, 25% of the PCSK9 

bound to LDLR dissociates during the rapid phase with a 

half-time of 19 minutes, while the remaining PCSK9 dis-

sociates slowly with a half-time of 297 minutes.43 Despite 

the rapid binding of PCSK9 and internalization of LDLR 

by hepatocytes, PCSK9-mediated degradation of LDLR 

in vitro has only been observed after several hours.44,45 It was 

further shown that, at least in mice, PCSK9 remains intact 

in the liver for up to 4 hours after its internalization,10 thus 

suggesting that other events might be required in order to 

allow PCSK9-mediated degradation of LDLR (or LDLR-

mediated degradation of PCSK9).
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Figure 1 Mechanism of action and clearance for PCSK9 and anti-PCSK9 antibodies. 
Notes: (A)  Mechanism of LDL internalization by LDLR. Once LDL binds to LDLR it invaginates and is internalized into coated endocytic vesicles that form endosomes. LDL 
dissociates from LDLR, and LDLR is recycled on the cell surface. The entire cycle takes 10–15 minutes. (B) PCSK9 (unbound PCSK9 or LDL-bound PCSK9) directly binds the 
eGF-A domain of LDLR and targets LDLR toward intracellular degradation through an endosomal/lysosomal route. PCSK9 half-life in plasma is approximately 5 minutes. it is 
unknown whether the kinetics of unbound PCSK9 or LDL-bound PCSK9 differ. (C) IgG elimination. IgG internalization is mediated by fluid phase pinocytosis or receptor mediated 
endocytosis, followed by intracellular degradation of the IgG in the lysosome. A significant fraction of IgG is not targeted toward lysosomal degradation, but is redirected to the 
cell surface and released into the plasma through a process mediated by FcRn. (D) PCSK9-mAbs complex elimination. The elimination is presumably mediated by PCSK9 through 
a mechanism similar to PCSK9-mediated degradation of LDLR (degradation through endosomal/lysosomal route). However, a clear mechanism has not been described.
Abbreviations: LDL, low-density lipoprotein; LDLR, LDL receptor; mAbs, monoclonal antibodies; igG, immunoglobulin G; PCSK9, pro-protein convertase subtilisin/kexin 
type 9; FcRn, neonatal Fc receptor.
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In humans and mice, LDLR is a major regulator for 

PCSK9 levels10,46 and clearance.10,47 Under normal condi-

tions (ie, the presence of two fully functional LDLR allele 

products), PCSK9 half-life in plasma is approximately 

5 minutes. The presence of an additional copy of LDLR 

in the liver (induced by transgenic expression) reduces the 

half-life of PCSK9 by 50%, to 2.9 minutes, whereas in the 

absence of LDLR, the half-life of PCSK9 in serum is pro-

longed between 3–10 times above normal.10,47 It has recently 

been suggested that other proteins such as amyloid precur-

sor protein and amyloid precursor protein-like protein-2 

can mediate the internalization of PCSK9 in the absence of 

LDLR binding.48

We and others have shown that PCSK9 binds to LDL 

in mice and humans8,10,49 with Kd values ranging from 

180–325 nM.49,50 PCSK9 binding to LDL is a common 

event for PCSK9 (25%–40% of PCSK9 is bound to LDL); 

however, it is a rare event for LDL, as on average only one 

in 500–1,000 LDL particles carries a PCSK9 molecule.33 

The LDL particle carries predominantly the mature 62 kDa 

form of PCSK9,8–10 which is considered the most active form 

in plasma,4–7 whereas the rest of plasma PCSK9 is mainly 

present as the 55 kDa furin-cleaved fragment and is found 

in the apoB-free plasma compartment.11 It is unclear what 

drives this partial compartmentalization of the molecular 

forms of circulating PCSK9 and whether there is a significant 

functional correlation to this molecular distribution.

Pharmacokinetics and 
pharmacodynamics of anti- 
PCSK9 mAbs
The majority of commercially available antibodies are 

administered by intravenous, subcutaneous (SC), or intra-

muscular (IM) routes.51 Systemic absorption following SC 

and IM injections occurs via lymphatic circulation and via 

diffusion of antibodies to blood vessels in the proximity of 

the site of injection.51,52 Absorption following SC adminis-

tration is relatively slow, and the time required to reach the 

peak of antibody maximal concentration in the blood varies 

between 2–8 days, with absolute bioavailability that ranges 

from 50%–100%, depending on presystemic catabolism and 

systemic absorption.53 Unlike small-molecule drugs, which 

are commonly eliminated with renal or hepatic routes, mAbs 

and immune complexes are cleared by different mechanisms, 

including fluid-phase pinocytosis and receptor-mediated 

endocytosis in phagocytes (Figure 1C).51,54 Phagocytes 

are key players in the elimination of endogenous IgGs.55 

Internalization of IgGs in these cells is mediated by binding of 

the Fc fragment of the antibody to Fcγ-receptors expressed on 

the cell surface, and elimination occurs through a endosomal/

lysosomal route.56 For mAbs that target cell surface antigens 

(eg, cetuximab and trastuzumab that target the EGF-receptor 

and HER-2 [human EGF-receptor 2], respectively57) “target-

mediated disposition” is the most important elimination route 

and leads to internalization of the complex in the cell types 

harboring the antigen.58,59 Antibodies can also be cleared 

through nonspecific pinocytosis.60 Independently from the 

mechanism of internalization, a significant fraction of IgG is 

not targeted toward lysosomal degradation due to the protec-

tive action of the FcRn receptor, which redirects IgGs to the 

cell surface and releases them into the plasma.61

Several preclinical studies were conducted in mice and 

monkeys to evaluate the kinetics of the anti-PCSK9 anti-

bodies and the therapeutic effect (ie, LDL-C reduction).62,63 

A mAb from Pfizer (J16) was able to reduce the levels of 

LDL-C in normocholesterolemic and hypercholesterolemic 

cynomolgus macaques by 50%–80%.62 The reduction in 

LDL-C was achieved by day 3 after treatment (3 mg/kg), 

and serum LDL-C levels returned to baseline between 

2.5–3 weeks after injection.62 A mAb from Merck (mAb1) 

was tested in mice and non-human primates to study phar-

macokinetics and pharmacodynamics.63 The antibody admin-

istered in WT mice caused a reduction in total cholesterol 

that was evident 3 days after a single injection. Cholesterol 

levels progressively rose to background up to 12 days after 

injection, with a dose-dependent effect on duration. This 

antibody also reduced LDL-C in non-human primates 3 days 

after injection, with a maximum effect on LDL-C reduction at 

day 10. Serum antibody concentration was monitored during 

the study, and the half-life of the antibody was calculated 

to be 61 hours. Also, PCSK9 levels were monitored, and 

less than 3% of PCSK9 was detected as unbound protein 

by 15 minutes after injection. Low levels were maintained 

for 3 days and gradually returned to baseline over 14 days. 

The kinetics of free PCSK9 reflects the time for the LDLR 

to increase and internalize larger amount of LDL. However, 

the fate of the complex PCSK9-antibody was not investigated 

in this study.63

It has been reported that the average half-life of PCSK9 

mAbs is 2.5–3 days63 and that the elimination of the complex 

PCSK9-mAbs is presumably mediated by PCSK9 through a 

mechanism similar to PCSK9-mediated degradation of LDLR 

(endosomal/lysosomal route) (Figure 1D).64 Antibodies can 

be engineered to escape lysosomal-mediated degradation 

and to prolong their half-life to 6 days, thus increasing the 

duration of the cholesterol-lowering effect.64–66 However, no 
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additional information has been provided to fully understand 

the mechanisms of the antibody or Ab–Ag complexes’ inter-

nalization and clearance.

In humans, the three leading mAbs directed against 

PCSK9 are administered SC (alirocumab by Regeneron/

Sanofi, evolocumab by Amgen, and bococizumab by Pfizer). 

A phase I study on 60 healthy individuals with LDL-C over 

95 mg/dL and not receiving other lipid-lowering thera-

pies was conducted to compare the pharmacokinetics and 

pharmacodynamics after single SC administration of ali-

rocumab at three different injection sites (abdomen, upper 

arm, and thigh). The administration of alirocumab (75 mg) 

presented pharmacokinetics and pharmacodynamics profiles 

independently of the injection site, with a complete loss 

of free PCSK9 (unbound to the antibody) between day 3 

and day 4, and maximal reduction in LDL-C achieved at 

day 15, thus offering different choices of SC injection site 

to increase patient compliance.67 Another phase I clinical 

trial further showed that alirocumab (150 mg SC) reduced 

free PCSK9 levels within a day and that the effect persisted 

for 10 days.68 After PCSK9 binding to the antibody, LDLR 

levels increased, and more LDL particles were internalized. 

As a consequence, LDL-C levels dropped, and a peak was 

reached after 14 days.68 However, from these studies,67,68 it is 

still not clear how the antibody is cleared from circulation. 

Moreover, since a large portion of PCSK9 is bound to LDL, it 

remains to be determined whether the affinity of the binding 

PCSK9 mAbs is affected by the presence of an LDL particle. 

Furthermore, it is unknown whether LDL-PCSK9-antibody 

complexes exist in plasma and to what extent these complexes 

affect antibody and PCSK9 clearance.

PCSK9, mAb, and  
cardiovascular events
Recently, several studies have correlated PCSK9 levels with 

parameters directly related to atherosclerosis progression. It 

has been shown that, in heterozygous (He)FH subjects, high 

PCSK9 levels are associated with carotid atherosclerosis 

as measured by carotid intima media thickness (CIMT).69 

Moreover, a Pakistani cohort of 400 patients with chronic 

chest pain who underwent angiography but were not taking 

lipid-lowering drugs showed a correlation between PCSK9 

levels and atheroma burden, independent of LDL-C levels or 

other CVD risk factors.70 Another study, presented at the 2014 

AHA Scientific Sessions, reported an association between 

serum levels of PCSK9 and the amount of necrotic core tissue 

in coronary atherosclerotic plaques.71 In this study, PCSK9 

levels did not correlate with plaque size or atherosclerotic 

burden, thus suggesting an involvement of inflammatory 

processes rather than LDL-C levels.71

The correlation between PCSK9 and atherosclerosis 

suggests that PCSK9 inhibition might reduce atherosclerosis 

development and CVD events. This effect was tested in a 

mouse model of hypercholesterolemia. Weekly administra-

tion of alirocumab (3 or 10 mg/kg) alone or in combination 

with atorvastatin (3.6 mg/kg/d) for 18 weeks decreased total 

cholesterol and triglycerides (TGs) in a dose-dependent 

manner. Combination therapy with atorvastatin further 

decreased cholesterol levels. More importantly, alirocumab 

dose-dependently decreased atherosclerotic lesion size (−71% 

at a dose of 3 mg/kg and −88% at a dose of 10 mg/kg). In addi-

tion, the PCSK9 inhibitor reduced monocyte recruitment and 

improved lesion composition by increasing smooth muscle 

cell and collagen content and by decreasing macrophage and 

necrotic core content.72 Moreover, we recently showed that 

PCSK9 of macrophage origin promotes lesion inflammation 

in mice, independently of systemic lipid changes,73 thus sug-

gesting that therapies with PCSK9 mAbs might have direct 

local effects to block plaque development.

Except for those patients who are intolerant to statins, it 

is reasonable to expect that PCSK9 inhibition will be used 

as an additional therapy to statins in those patients who 

cannot achieve the goal of LDL-C reduction, including FH 

patients. Lifelong exposure to severely elevated LDL-C 

dramatically accelerates CVD, with clinical manifestations 

often occurring at a young age.74 The benefits of mAbs 

against PCSK9 in HeFH and receptor-defective homozy-

gous (Ho)FH subjects have been documented.75,76 A recent 

study investigated the predictive value of PCSK9 in HeFH 

subjects with reduced LDLR function due to mutations in 

LDLR causing either defective transport of LDLR to the 

Golgi (D206E and D154N) or impairing the recycling of 

LDLR to the cell surface (V408M).77 PCSK9 reduced surface 

levels of LDLR in fibroblasts from HeFH patients carrying 

the different LDLR mutations, as it did in non-FH subjects. 

These data would suggest that HeFH subjects should benefit 

from PCSK9 inhibition therapy in terms of CV outcomes. 

In contrast, LDLR-negative HoFH subjects are not likely to 

respond to PCSK9 inhibition therapy.78

Two recent reports describe the results of studies with 

mAbs against PCSK9 and their potential effects on CVD 

events.79,80 The administration of alirocumab (150 mg 

biweekly) in 2,341 patients at high risk of CVD events (with 

LDL-C over 70 mg/dL) receiving the highest tolerated dose 

of statin together with other lipid-lowering agents reduced 

LDL-C levels by 61.9% after 24 weeks. The goal of LDL-C 
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reduction below 70 mg/dL was achieved in 79.3% of patients, 

and the reduction in LDL-C was maintained for the duration 

of treatment (–56% after 78 weeks). Alirocumab also signifi-

cantly reduced non-high density lipoprotein (non-HDL) cho-

lesterol (–52.3%), apoB (–54%), total cholesterol (–37.5%), 

lipoprotein (a) (Lp[a]) (–25.6%), and fasting TGs (–17.3%). 

HDL cholesterol was increased by 4.6%, and apolipoprotein 

A-I (apoA1) was increased by 2.9%. In a post hoc safety 

analysis, the significant changes in plasma lipid profile 

induced by alirocumab were associated with a reduced rate 

of major CVD events (–48%).80

In two different randomized double-blind trials, the 

open-label study of long-term evaluation against LDL cho-

lesterol 1 (OSLER-1) and the open-label study of long-term 

evaluation against LDL cholesterol 2 (OSLER-2), a total of 

4,465 patients with hypercholesterolemia and various co-

morbidities were included. The administration of 140 mg 

of evolocumab biweekly or 420 mg monthly in addition to 

lipid-lowering therapies reduced LDL-C (–61%), non-HDL 

cholesterol (–52%), apoB (–47.3%), total cholesterol (–36%), 

TGs (–12.6%), and Lp(a) (–25%), and also increased HDL 

cholesterol (+7%) and apoA1 (+4.2%). Evolocumab was 

associated with a 50% lower CVD event rate, further suggest-

ing that anti-PCSK9 therapy will likely prove to reduce CVD 

risk. In both studies, the administration of PCSK9 inhibitors 

was safe overall. One of the major concerns was the increase 

in “neurocognitive” side effects.79

Despite the positive results seen with CVD events and the 

apparently good safety record, it is important to note that the 

above studies were not designed to evaluate CVD events or 

neurocognitive functions as primary or secondary endpoints. 

At the moment, four placebo-controlled trials (ClinicalTrials.

gov number NCT01764633, NCT01663402, NCT01975376, 

and NCT01975389) are ongoing with the aim to provide 

proof of CV benefits. In addition, larger trials, including 

a dedicated neurocognitive substudy (ClinicalTrials.gov 

number, NCT02207634), will soon provide more detailed 

information on longer-term effects of these mAbs.

Conclusion
The discovery of PCSK9 has changed our understanding 

of body cholesterol metabolism from a process thought to 

be entirely regulated through intracellular processes to an 

autocrine/paracrine process that can be controlled by plasma 

components. Similar to LDL, PCSK9 serves as a ligand for 

the LDLR; thus, the latter is a major determinant for circulat-

ing PCSK9 levels. Humans with loss-of-function of PCSK9 

have extremely low levels of plasma LDL-C, and even small 

LDL-C reductions due to common mutations in PCSK9 have 

been shown to reduce lifetime CVD events. It is anticipated 

that PCSK9 inhibition therapy will reduce atherosclerotic 

burden and CVD events, although trial results will not be 

available until 2018,79,80 probably after the FDA approves 

the commercial antibodies. Anti-PCSK9 mAbs are cleared 

from the circulation in a matter of few days, which gives 

enough time for them to block PCSK9-mediated degradation 

of LDLR, which in turn leads to reduction in plasma LDL-C 

levels. The exact pharmacokinetics/dynamics of the antibody, 

and more importantly of the Ab–Ag complexes, have not been  

fully studied with these specific antibodies. Furthermore, our 

current understating of PCSK9 and LDLR dynamics does 

provide full explanation as to the kinetics of the PCSK9-

mediated LDLR degradation process. Even though PCSK9 

is being widely investigated in clinical trials and shows 

promise as an effective lipid-lowering agent, it is important 

to remember that this mechanism of cholesterol regulation is 

relatively new, with several gaps in our basic understanding 

of its full physiologic function, kinetics, and dynamics.

In addition, another consideration that requires thought is 

the cost of the therapy. PCSK9 inhibitors are injected, gener-

ally once or twice a month. CVS Health Corporation indicated 

that estimates of annual pricing for PCSK9 inhibitors ranged 

from US$7,000 to US$12,000 per patient.81 Even if PCSK9 

inhibitors are indicated for a very narrow patient population, 

the potential overall costs will be high. In addition, PCSK9 

inhibitors are biologics; thus, unlike small molecule drugs, 

the introduction in the future of cheaper generics will not be 

simple. Thus, careful management of costs and careful selec-

tion of target patients will be necessary in order to contain 

future expenses.
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