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Abstract: Phosphonated gelatin was prepared for surface modification of titanium to stimulate 

cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic 

acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and 

gel permeation chromatography. Circular dichroism revealed no differences in the conforma-

tions of unmodified and phosphonated gelatin. However, the gelation temperature was changed 

by the modification. Even a high concentration of modified gelatin did not form a gel at room 

temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the 

phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated 

gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. 

Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact 

angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement 

of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phospho-

nated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. 

Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

Keywords: phosphonated gelatin, surface modification, titanium, cell adhesion

Introduction
Titanium and titanium alloys are widely used in medical applications such as the 

replacement of hard tissues including bone, joints, and dental implants, because 

of their nontoxicity, good mechanical properties, and excellent resistance to cor-

rosion.1 However, there is still a need to further investigate their biocompatibility 

including the interface between titanium and the biological tissue. Because of a lack 

of bonding of implants to juxtaposed tissues, current orthopedic implants have a 

variety of problems including infection, extensive inflammation, and overall poor 

osseointegration.

Therefore, many attempts have been made to modify the surface of titanium with 

functional or biological components to induce tissue responses to biomaterials and 

provide a set of powerful signals for cell growth and differentiation.2–6 However, there 

are limited procedures for surface modification with biological molecules. To biologi-

cally modify metal surfaces, silane-based coupling methods have been conventionally 

employed to prepare an initial organic layer on the metal surface.7–10 However, in addition 

to physicochemical modification,11–13 recent biomimetic approaches inspired by under-

water organisms for surface modification have been proposed by many studies.14–23

3,4-Dihydroxyphenylalanine was identified in underwater adhesion proteins, and 

its simplified compound dopamine has been employed for biological modification 
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of metal surfaces.20–22 In addition, as another non-canonical 

amino acid, phosphonated serine has been applied to under-

water adhesion.23–25 Such phosphate groups have been 

found in the underwater adhesive proteins of the sandcastle 

worm and caddy silks,16,17 which interact specifically with a 

titanium surface.26–33 In previous studies, we have anchored 

various extracellular matrices and growth factors onto metal 

to provide a source of signals to continuously, stably, and 

efficiently stimulate cells to reconstitute damaged tissues dur-

ing long-term regeneration.34–36 Therefore, it may be useful to 

prepare metal-anchored proteins using biomimetic methods 

for convenient surface modification.

The cell-adhesive protein gelatin has been employed for 

the chemical modification of titanium.8,37–40 Here, titanium- 

and cell-adhesive gelatin was prepared by chemical modi-

fication with phosphate groups as a biological approach to 

enhance cell functions on titanium surfaces. We found that 

the gelation temperature was reduced by the modification 

and time-of-flight secondary ion mass spectrometry (ToF-

SIMS) showed direct bonding between the phosphonated 

gelatin and the titanium surface. In addition, the modified 

surface promoted cell adhesion and spreading, as well as 

cell growth.

Materials and methods
Materials
Porcine gelatin (gelatin from porcine skin, Type A, 

G1890, IEP: 7–9) and 3-aminopropylphosphonic acid 

were purchased from Sigma-Aldrich (St Louis, MO, 

USA). 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl 

morpholinium chloride was purchased from Wako Pure 

Chemical Industries, Ltd (Tokyo, Japan). The osteoblast cell 

line MC-3T3L1 was provided by the RIKEN Cell Bank 

(Tsukuba, Japan) and maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Sigma-Aldrich) supplemented 

with 10% fetal bovine serum (Moregate Inc., Brisbane, 

QLD, Australia). Trypsin (0.25%)-EDTA (1 mmol) solution 

was purchased from Wako Pure Chemical Industries, Ltd 

(Tokyo, Japan).

A glass plate (15 mm in diameter and 1 mm thick) was 

coated with titanium by Osaka Vacuum Industrial Co., Ltd 

(Osaka, Japan) as described previously.10,11 Pure titanium 

was vacuum deposited on the plate by an electron beam 

of 400 nm (±25%) in width. The thickness of the titanium 

layer was controlled to maintain the transparency for opti-

cal microscopic observations. The plate was then cleaned 

by ultrasonication nine times in ultrapure water and dried 

with heated gas.

Phosphonation of gelatin
Phosphonated gelatin was synthesized as shown in Figure 1. 

The gelatin solution was dissolved at 40°C in water at 20 mg/mL  

and stirred for 1 hour at 40°C. 3-Aminopropylphosphonic 

acid (12.5 mM) and then the 4-(4,6-dimethoxy-1,3,5-triazin-

2-yl)-4-methyl morpholinium chloride41,42 coupling reagent 

(4 mM) were added to the solution. After 48 hours of stirring 

Figure 1 Preparation of phosphonated gelatin.
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at 40°C, the resulting solution was dialyzed using a seamless 

cellulose tube (cutoff molecular weight of 10,000 D). The 

dialyzed phosphonated gelatin was finally freeze dried in a 

vacuum to obtain a white solid (40% yield) used in this study 

as the phosphonated gelatin.
31P nuclear magnetic resonance (NMR) spectra of 

3-aminopropylphosphonic acid and phosphonated gelatin 

were recorded on a 400-MHz NMR spectrometer (JEOL 

400, Akishima, Japan).

For circular dichroism measurement using a J-720 spec-

tropolarimeter (Jasco, Hachioji, Japan), we prepared 0.01% 

gelatin and 0.01% phosphonated gelatin. Samples of 250 µL 

were analyzed using a 1 mm cuvette (scan type: continu-

ous; scan speed: 50 nm/min; response time: 2.0 seconds; 

bandwidth: 1.0 nm). Each sample was measured six times 

to obtain average spectra.

Quartz crystal microbalance measurement
Adsorption of phosphonated gelatin at various concentra-

tions on the titanium-coated substrate was measured at 22°C 

using a quartz crystal microbalance (QCM) with dissipation 

monitoring (Meiwafosis Co., Ltd, Tokyo, Japan). Specifi-

cally, Milli-Q water was allowed to run until stabilization 

of the baseline. The sample was then run for 3 minutes at 

approximately 65 µL/min. The pump was turned off for  

15 minutes, and finally the substrate was washed by running 

Milli-Q water. For each concentration of phosphonated gela-

tin, at least three measurements were obtained to calculate 

the average value.

surface characterization
ToF-SIMS was performed using a PHI TRIFT V nanoTOF 

(ULVAC-PHI, Chigasaki, Kanagawa, Japan). For analysis, 

the ion beam was 30 kV Bi3++ 2.9 nA DC (−SIMS) and 30 kV  

Bi3++ 8.0 nA DC (+SIMS). The scanning areas were 

100×100 µm (−SIMS) and 200×200 µm (+SIMS). Pulse 

widths of both −SIMS and +SIMS were 12 nanoseconds. 

The flame numbers of −SIMS and +SIMS were 62 (200 µm 

square: 1×1012/cm2) and 18 (200 µm square: 2×1011/cm2), 

respectively.

The thickness of the phosphonated gelatin layer was 

measured using an ellipsometer (M-2000UI; JA Woollam 

Co., Lincoln, NE, USA) at three different incident angles 

(50°, 60°, and 70°). First, the titanium-coated glass substrates 

were measured and analyzed to determine the thickness and 

material parameters of each substrate, followed by coating 

with phosphonated gelatin and measurement by ellipsometry. 

The thickness of the phosphonated gelatin layer was deter-

mined by assuming a standard Cauchy optical dispersion 

model for the layer in the spectral range of 600–1,500 nm, 

as follows:

 n(λ) =1.45+0.01/λ�

where n is the refractive index and λ is the wavelength in 

nm. Because the thickness was as small as a few nm, Cauchy 

optical dispersion parameters were not fit.

The surface morphology of the samples was observed 

using an atomic force microscope (AFM; MFP-3D, Asylum 

Research, Co., Goleta, CA, USA). The images were taken 

in AC (non-contact) mode using an AFM tip (NCH-W; 

NanoWorld AG, Neuchatel, Switzerland) in dry, atmospheric 

pressure conditions. The scan area was 1 µm ×1 µm, and the 

scan rate was 1 Hz. Surface topological images were cor-

rected for offset and linear tilt.

Surface wettability was determined by observing the 

water and glycerol contact angle on the discs. Water droplets 

of 1 µL were placed on the discs (untreated and treated tita-

nium), and images of the droplets were captured at 3 seconds 

after placement. The water contact angle was measured at 

25°C using a contact-angle meter (Kyowa Interface Science 

Co., Tokyo, Japan). All contact angles were determined 

by averaging ten different point values measured on each 

surface.

cell culture
MC-3T3L1 cells were cultured in DMEM supplemented with 

10% fetal bovine serum at 37°C in 95% humidified air with 

5% CO
2
. The cells were washed using 10 mL phosphate-

buffered saline and harvested with 0.25% trypsin in 1 mM 

EDTA for 3 minutes at 37°C. The recovered cells were 

resuspended in medium for subsequent in vitro examination. 

The cell suspension was added to 24-well, polystyrene tissue 

culture plates (1 mL per well, 8×103 cells per mL), each well 

of which contained sample plates that had been disinfected 

twice with 70% ethanol and then washed with sterilized H
2
O. 

The cells were cultured in a 5% CO
2
 atmosphere at 37°C for 

30 minutes, 1 hour, 2 hours, and 4 days. Cell growth was 

determined using a cell counting kit (CCK-8, Dojindo Molec-

ular Technologies, Inc., Kumamoto, Japan). Cell spreading 

was estimated according to the round and non-round shape 

ratio by observation under a phase-contrast microscope 

(Olympus CKX 41; Olympus, Hachioji, Japan).

statistical analysis
Independent experiments were performed at least three times. 

Triplicate samples were analyzed in each experiment and 

representative data are shown. The significance of the data 
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obtained from control and treated groups was statistically 

assessed by paired Student’s t-tests with P-values of less 

than 0.05 considered to be significant.

Results and discussion
Preparation of phosphonated gelatin
Gelatin is a protein produced by acid or alkaline processing 

of collagen and is a heterogeneous mixture of single- and 

multi-stranded polypeptides each with an extended left-

handed proline helix conformation and containing 50–1,000 

amino acids. It consists of various α-chains (∼100 kDa), 

β-chains (∼240 kDa), and γ-chains (∼400 kDa).43 The dis-

tribution of these chains is determined by the hydrolysis 

process.43

In this study, elemental analysis showed that the prepared 

phosphonated gelatin contained 0.4 wt% of phosphorus. 

Considering that porcine gelatin has 11.4 wt% of carboxyl 

groups of glutamic acid (4.2%) and aspartic acid (7.2%), we 

concluded that about 14% of these groups were coupled with 

3-aminopropylphosphonic acid. We had previously incorpo-

rated azidophenyl or furan groups into gelatin in a similar man-

ner, and found that the contents were 84%44 and near 100%,45 

respectively. The low reactivity with phosphate was considered 

to be caused by ionic repulsion of the phosphate group. Simi-

larly, the incorporation yield of 4-phosphonobutyric acid into 

gelatin was also low as reported previously.24

Figure 2 shows the 31P peaks of the uncoupled phospho-

nic acid and phosphonated gelatin. Both peaks were located 

between 15 and 30 ppm where phosphonate groups are 

ascribable.46 The peak of 3-aminopropylphosphonic acid 

observed at less than 25 ppm shifted to a higher peak by 

about 2 ppm after incorporation into gelatin.

There were some differences in the elution patterns after 

phosphonation in the gel permeation chromatography (GPC) 

results of unmodified and phosphonated gelatin (data not 

shown). According to the standard calibration using proteins, 

the main peak around a retention time of 18.2 minutes corre-

sponded to a molecular weight of about 50 kDa. Considering 

that there was no reduction in the molecular weight, phospho-

nation may induce a change in molecular extension.

Circular dichroism spectra of unmodified and phosphonated 

gelatin are shown in Figure 3. Although Gopal et al47 reported 

some specific conformations of gelatin, we observed no specific 

conformation. This result was consistent with a previous report 

by Zhang et al.48 The almost identical spectra of unmodified 

and phosphonated gelatin demonstrated that phosphonation did 

not induce a conformational change in the gelatin.

Interestingly, the gelation behavior of phosphonated 

gelatin was very different from that of unmodified gelatin. 

As shown in Figure 4, when the temperature decreased from 

37°C to 25°C, 3% unmodified gelatin solution formed gel, 

however, the 3% phosphonated gelatin remained the solution 

state. As shown in Figure 5, unmodified gelatin became turbid 

below 32.5°C, while the modified gelatin was transparent 

and did not form a gel even below 25°C. Incorporation of 

a small amount of phosphonic acid led to a drastic change 

in the gelatin temperature. It is known that the low gelation 

temperature of fish gelatin is due to the low content of pro-

line and hydroxyproline.49 In this study, the incorporation 

of strong acidic groups (phosphonic acid) was considered 

to reduce the gelation temperature.

Because the unmodified gelatin was not soluble in water 

at room temperature, further experiments were performed 

only on phosphonated gelatin.

adsorption behavior
To investigate direct bonding between titanium and 

phosphonate groups in the modified gelatin, ToF-SIMS 

Figure 2 31P NMr spectra of 3-aminopropylphosphonic acid and phosphonated 
gelatin in the presence of phosphoric acid as the standard (0 ppm).
Abbreviation: 31P NMr, 31P nuclear magnetic resonance.

Figure 3 CD spectra of unmodified and phosphonated gelatin.
Note: The concentrations were 0.01 wt%.
Abbreviation: cD, circular dichroism.
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°°

Figure 4 Photos of unmodified (left vial) and phosphonated gelatin (right vial) at 25°c (A) and 37°c (B). 
Note: The concentrations were 3 wt%.

measurements were obtained as shown in Figure 6. Peaks 

ascribed to Ti-P
2
-O

6
, Ti-P

2
-O

7
H, and Ti-P

3
-O

6
H

2
 were 

detected. The phosphonated gelatin preferentially adsorbed 

to the titanium surface through direct bonding. The phos-

phonate in gelatin was considered to be concentrated at the 

interface with titanium. Similarly, Adden et al32 and Vior-

nery et al33 also investigated the interactions of phosphonic 

acid linked to organic compounds with titanium by ToF-

SIMS, and found strong indications of the formation of a 

chemical link, such as a Ti-O-P bond, between titanium and 

phosphonic acid molecules. According to Hotchkiss et al50  

monolayers formed by phosphonic acids on metal oxide are 

more resistant to hydrolysis than those formed by silanes 

or carboxylic acids. The presence of three oxygen atoms 

is considered to allow covalent binding of phosphonic acid 

to an oxide surface in either monodentate, bidentate, or 

tridentate modes.50

Adsorption of phosphonated gelatin was measured by 

QCM (Figure 7). The adsorption was saturated at a phos-

phonated gelatin concentration of 3% with a real mass 

around 600 ng/cm2. Assuming that the molecular weight of 

phosphonated gelatin is 50 kDa, 1.2×1012 molecules of phos-

phonated gelatin were adsorbed per cm2 of titanium surface. 

Furthermore, assuming that the width of the phosphonated 

gelatin molecules is ∼1.5 nm and the length is ∼0.3 µm, one 

layer corresponded to around 2.2×1011 molecules per cm2 

for side-on adsorption and 4.4×1013 molecules per cm2 for 

end-on adsorption. Collectively, the QCM results suggest 

that multi-layers were formed by side-on adsorption of the 

phosphonated gelatin molecules and less than one layer was 

formed by end-on adsorption. Assuming that the density of 

phosphonated gelatin is 1.2 g/cm3, which is a typical value 

for organic materials, 600 ng/cm2 corresponds to 5 nm in 

thickness.

°

Figure 5 Temperature-dependent turbidity of solutions of unmodified and phosphonated gelatin.
Note: Wavelength: 600 nm, n=3.
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Figure 6 Negative ToF-sIMs results in the (A) 200.5–212.5 m/z, (B) 218.5–228.5 m/z, and (C) 233.5–243.5 m/z region of the phosphonated gelatin-coated titanium 
surface.
Abbreviations: ToF-SIMS, time-of-flight secondary ion mass spectrometry; amu bin, binding energy per atom mass unit.

Figure 7 QcM results for phosphonated gelatin adsorbed on the titanium surface.
Note: **P,0.01.
Abbreviation: QcM, quartz crystal microbalance.
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Figure 8 AFM topological images and cross-sectional surface profiles of titanium surfaces coated with (A) 0.25%, (B) 0.5%, and (C) 3% phosphonated gelatin. each cross-
sectional surface profile (bottom) was taken at the red line in the corresponding topological image.
Abbreviation: aFM, atomic force microscope.

AFM observations indicated that a rough surface 

was formed by the bound gelatin (Figure 8). The rough-

ness presented insignificant difference between different 

concentration (Ra =1.4, 1.1, and 1.4 nm for gelatin con-

centration of 0.25%, 0.5%, and 3%, respectively). The 

images show particle-like structures with a diameter of 

a few to several tens of nm. This observation suggests 

that, although the solution of phosphonated gelatin was 

transparent at room temperature, some nanoscale gel 

(nanogel) formed on the surface. However, the particles 

seem not fully covering the surface, which can also be seen 

from the cross-sectional profiles in Figure 8. In addition, 
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×

Figure 9 Thickness of phosphonated gelatin layers on titanium measured by 
ellipsometry.
Note: **P,0.01.

×

°

Figure 10 Water and glycerol contact angle of the titanium surface treated with 
the phosphonated gelatin.
Notes: n=10, error bars indicate the standard deviation. **P,0.01.

surface roughness (1.1–1.4 nm) is slightly smaller than 

the thickness obtained by ellipsometry (∼2.5 nm as shown 

in Figure 9). Although the thickness is not a precise film 

thickness but an averaged one, these results indicate that 

the gelatin forms fully covering layer on the substrate, on 

top of which some nanogel particles exists. The thickness 

of ∼2.5 nm obtained by ellipsometry was on the same order 

of magnitude as the QCM results.

Figure 10 shows the water and glycerol contact angle of 

the titanium surface coated with various concentrations of 

unmodified and phosphonated gelatin. The results showed 

that the water contact angles of the titanium surface treated 

with phosphonated gelatin showed higher water contact 

angles than the untreated surface. The attachment to the 

surface of phosphonated gelatin significantly reduced the 

hydrophilicity of the titanium surface.

cell adhesion and growth
Figure 11 shows cells adhered on the uncoated and phospho-

nated gelatin-coated titanium surface. Using titanium-deposited 

Figure 11 Micrographs of adhered cells on the phosphonated gelatin-coated titanium surface.
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×

×

×

Figure 12 cell culture results on titanium surfaces treated with phosphonated gelatin.
Notes: (A) adhesion, (B) spreading, and (C) growth (after 4 days) of Mc-3T3l1 cells on titanium surfaces treated with phosphonated gelatin. n=3, error bars indicate the 
standard deviation. **P,0.01.

glass discs, it was possible to observe the adhered cells by 

optical microscopy. The phosphonated gelatin-coated surface 

increased the spreading of cells over time. Figure 12 shows the 

number of adhered cells, as well as cell spreading and growth 

on the phosphonated gelatin-treated titanium surfaces. The 

spreading and growth on bare titanium discs was regarded 

100%. The results indicated that phosphonation did not reduce 

the capacity of gelatin to support cell adhesion and spreading, 

and the enhancement of cell adhesion and spreading increased 

with the increase in the concentration of bound phosphonated 

gelatin on the surface. Lim et al38 also reported that conjuga-

tion of gelatin increases the adhesion and spreading of cells 
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on hydrogel surfaces. Hou et al51 also showed a significant 

enhancement of endothelial cell adhesion and proliferation 

on gelatin-modified surfaces. It is known that the surface 

hydrophilicity does not directly relate with cell attachment. 

Ikada52 reported moderate hydrophilicity was the best for 

cell attachment. For example, very hydrophilic surface like 

hydrogel reduces cell attachment. The gelatin modification is 

considered to provide moderate hydrophilicity on the surface. 

Taken together, these results indicated that the phosphonation 

enhanced the binding of gelatin onto titanium without losing 

the original cell adhesion or growth enhancement properties.

Conclusion
We succeeded in preparing phosphonated gelatin for sur-

face modification of a titanium surface. The phosphonation 

enhanced the binding affinity of gelatin for the titanium sur-

face and enhanced the attachment of MC-3T3L1 osteoblastic 

cells to the treated surfaces. Phosphonation of gelatin was 

effective for preparation of a cell-adhesive titanium surface 

and enabled coating at room temperature.
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