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Abstract: Obstructive sleep apnea (OSA) is independently associated with cardiovascular and 

cardiometabolic risk in several large epidemiologic studies. OSA leads to several physiologic 

disturbances such as intermittent hypoxia, sleep fragmentation, and increase in autonomic tone. 

These disturbances have been associated with insulin resistance and type 2 diabetes mellitus 

(T2DM) in animal and human studies. Studies also suggest a bidirectional relationship between 

OSA and T2DM whereby T2DM itself might contribute to the features of OSA. Moreover, 

successful treatment of OSA may reduce these risks, although this is controversial. The purpose 

of this article is to review 1) the links and bidirectional associations between OSA and T2DM; 

2) the pathogenic mechanisms that might link these two disease states; 3) the role of continuous 

positive airway pressure therapy in improving glucose tolerance, sensitivity, and resistance; 

and 4) the implications for clinical practice.

Keywords: Insulin resistance, metabolic syndrome, sleep disordered breathing, intermittent 

hypoxia

Introduction
Obstructive sleep apnea (OSA) is a growing medical problem, with moderate-to-severe 

cases affecting 10%–17% of men and 3%–9% of women between the ages of 30 years 

and 70 years.1 OSA is characterized by repeated upper airway occlusions during sleep 

that result in specific physiologic perturbations, including sleep fragmentation and 

chronic intermittent hypoxia (CIH). These disturbances can lead to a cascade of events 

related to the activation of the sympathoadrenal system, oxidative stress, systemic 

inflammation, and changes in adipokines – all of which can be important in increasing the 

risk of cardiovascular disease, hypertension, metabolic syndrome, and diabetes.2–4 The 

present review will focus on the associations and pathophysiologic mechanisms that link 

OSA with the development of type 2 diabetes mellitus (T2DM).

Epidemiological links between OSA and T2DM
Prevalence of T2DM in patients with OSA
Several large-scale, cross-sectional, and epidemiological studies have suggested that 

OSA is an independent risk factor for the development of T2DM, and that as many 

as 15%–30% of patients with OSA have this comorbidity.5 Moreover, as the severity 

of OSA increases, so does the likelihood T2DM incidence and of worse glycemic 

control in patients with T2DM.6

The Sleep Health Heart Study (SHHS) was a large, prospective cohort study designed 

to investigate the role of OSA as a risk factor for the development of  cardiovascular 
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and other chronic diseases.7 This study provided evidence of 

an independent association between OSA severity and both 

impaired glucose tolerance and insulin resistance. OSA sever-

ity was measured by the apnea–hypopnea index (AHI), which 

reflects the number of apneas/hypopneas per hour of sleep and 

whereby AHI ,5/h is considered normal, AHI 5–15/h is mild, 

AHI 15–29/h is moderate, and AHI .30/h is severe. Impaired 

glucose tolerance was defined as a fasting plasma glucose level 

of 110–125 mg/dL and a 2-hour oral glucose tolerance test 

(OGTT) between 140 mg/dL and 200 mg/dL. After adjust-

ment for multiple potential confounders, including age, body 

mass index (BMI), waist circumference, and self-reported 

sleep duration, subjects with mild- or moderate-to-severe 

OSA had odds ratios (ORs) of 1.27 (95% confidence interval 

[CI] 0.98–1.64) and 1.46 (95% CI 1.09–1.97), respectively, 

for impaired glucose tolerance compared with subjects with 

normal AHIs. The severity of nocturnal hypoxemia was also 

independently associated with glucose intolerance. In addi-

tion, OSA severity was associated with increased insulin 

resistance, which was measured by the homeostasis model 

assessment insulin resistance (HOMA-IR) index.7

The Wisconsin Sleep Cohort was another large, prospec-

tive study that found a significant correlation between the 

severity of OSA and the prevalence of diabetes: 2.8% of 

subjects with an AHI of ,5/h had the diagnosis of diabetes, 

compared to 14.7% of subjects with an AHI of $15/h. The 

OR for the diagnosis of diabetes was 2.30 (95% CI 1.28–4.11; 

P=0.005) in subjects with an AHI of $15/h, compared with 

subjects with an AHI of ,5/h, after adjustment for age, sex, 

and body habitus. On the other hand, a 4-year longitudinal 

analysis of 978 participants without diabetes at entry did not 

demonstrate a statistically significant association of diabetes 

incidence with severity of OSA at baseline, after adjustment 

for potential confounders at the end of the 4-year period.8

The findings of the Busselton Health Study also noted 

an association between OSA and higher T2DM prevalence 

over a 4-year follow-up period. After adjustment for age, 

sex, BMI, waist circumference, HDL cholesterol, and mean 

arterial pressure, moderate-to-severe OSA was found to be 

an independent risk factor for 4-year incident diabetes (OR 

13.45, 95% CI 1.59–114.11) and a univariate risk factor for 

prevalent diabetes (OR 4.37, 95% CI 1.12–17.12).9

Prevalence of OSA in subjects  
with T2DM
The studies described previously demonstrated independent 

associations of OSA with insulin resistance and T2DM. 

Conversely, studies assessing the prevalence of OSA in 

patients with existing T2DM have found remarkably high 

rates of OSA.5,10,11 These findings have raised the possibil-

ity of T2DM as a risk factor for the development of OSA 

in a bidirectional fashion. The prevalence of OSA in obese 

subjects with T2DM was assessed with ambulatory nocturnal 

respiratory monitoring in The Sleep Action for Health in 

Diabetes (AHEAD) study, a four-site ancillary study of the 

Look AHEAD Trial. This is a 16-center trial investigating 

the long-term health impact of lifestyle intervention designed 

to achieve and maintain weight loss in over 5,000 obese 

adults with type 2 diabetes. Sleep testing was performed in 

306 participants in the Sleep AHEAD study; surprisingly, 

86.6% of obese subjects with type 2 diabetes in this study had 

an AHI indicative of sleep apnea (AHI $5/h). The mean AHI 

in this cohort was in the moderate range at 20.5±16.8/h. Of 

these patients, 30.5% had moderate OSA (AHI 15–29/h) and 

22.6% had severe OSA (AHI $30/h). Severe OSA was most 

likely as BMI increased (OR 1.1; 95% CI 1.0–1.2; P=0.03).10 

These findings could be secondary to the common risk factor 

for obesity but also raise the possibility that T2DM might 

contribute to OSA, as will be discussed in future sections.

Association of OSA with metabolic 
syndrome
OSA is closely associated with metabolic syndrome because 

of shared risk factors. The term “Syndrome Z” has been 

developed to describe the links between obesity, insulin resis-

tance, hypertension, and dyslipidemia with OSA. The OR for 

the presence of metabolic syndrome in patients with OSA 

ranges from fivefold to as high as ninefold, when compared 

to subjects without OSA, independent of age and BMI.12–14 

In a Chinese population-based study of 255 subjects, sever-

ity of OSA correlated with an increasing prevalence of the 

metabolic syndrome.14 A Japanese case-control study ana-

lyzed lean men of normal BMI with and without OSA and 

demonstrated an association of OSA with the following three 

components of the metabolic syndrome: insulin resistance, 

hypertension, and dyslipidemia.15 Although it is difficult to 

exclude obesity as major contributing factor for the associa-

tion of OSA with metabolic syndrome, these studies provide 

evidence that factors other than obesity may mediate this 

relationship. Some of these potential mediators are discussed 

in the following sections.

Associations of OSA with nonalcoholic 
fatty liver disease and insulin resistance
Another clinical condition that is closely linked with the 

metabolic syndrome is nonalcoholic fatty liver disease 
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(NAFLD), a common liver disease characterized by exces-

sive fatty deposits in the liver. NAFLD is closely related 

to insulin resistance and has also been recently associated 

with OSA. The CIH induced by OSA can result in structural 

damage to the liver with subsequent hepatic fibrosis and 

inflammation.16–19 These changes appear to be independent of 

obesity since they are seen among both obese and nonobese 

patients with OSA.18 Moreover, there is an independent 

association between the severity of the nocturnal hypoxemia 

and steatosis that is exacerbated by preexisting obesity. These 

results were subsequently confirmed in pediatric patients 

with OSA.20

Potential pathogenic mechanisms 
linking OSA to insulin resistance 
and T2DM
OSA can lead to insulin resistance and pancreatic β-cell 

dysfunction through many intermediary pathways. The 

upper airway occlusion during sleep that is characteristic 

of OSA can be partial, resulting in hypopneas, or complete, 

resulting in apneas. These disordered breathing events result 

in several pathophysiological perturbations, including sleep 

fragmentation, activation of the autonomic system, and 

CIH21,22 (see Figure 1).

Sleep fragmentation
Sleep fragmentation in the face of normal sleep duration is 

a common consequence of OSA and results from frequent 

arousals that often occur at the termination of sleep-disordered 

breathing events. These are detected on the cortical electro-

encephalogram and can contribute to elevated sympathetic 

activity and the symptom of daytime somnolence, which is a 

characteristic clinical feature of OSA.23 Sleep deprivation and 

fragmentation are likely risk factors for obesity via effects on 

metabolism and inflammation. Sleep fragmentation associ-

ated with OSA most likely also plays an important role in the 

development of insulin resistance in many of these patients. 

Exposing human subjects to acute sleep fragmentation was 

shown to decrease insulin sensitivity.24,25 A recent animal 

study also found decreases in visceral and adipose cell insu-

lin sensitivity in mice that were exposed to sleep disruption 

during their natural sleep period. Importantly, this study 

also provided a potential mechanistic link between sleep 

fragmentation and insulin resistance. It posited that sleep 

fragmentation reduced insulin sensitivity through observed 

increases in macrophage number and infiltration in visceral 

fat along with increases in Nox2 (nicotinamide adenine 

dinucleotide phosphate oxidase) activity, both of which are 

markers of increased oxidative stress.26

Obstructive sleep apnea

Intermittent hypoxia Sympathetic nervous
system activation

Sleep fragmentation

Oxidative stress
HPA axis alterations

inflammatory pathways
adipokine changes

T2DM + prediabetes

Insulin resistance
pancreatic β-cell dysfunction

Figure 1 Links between obstructive sleep apnea and the development of glucose intolerance and T2DM.
Abbreviations: HPA, hypothalamic–pituitary–adrenal axis; T2DM, type 2 diabetes mellitus.
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Autonomic nervous system activation
Activation of the autonomic nervous system occurs in 

association with obstructive apneas and hypopneas; para-

sympathetic activity tends to predominate during apneas; 

and sympathetic tone increases at the termination of apneic 

events. Sympathetic neural drive may be increased at the 

termination of disordered breathing events as a result of 

hypoxia-related activation of peripheral chemoreceptors 

as well as from the effects of sudden arousal from sleep. 

In addition, elevated levels of circulating and urinary cat-

echolamines have been observed in OSA. Interestingly, 

elevated sympathetic tone not only is evident during sleep 

but also seems to persist during the day, even when breathing 

is normal in patients with OSA.27,28

intermittent hypoxia
Another very important pathophysiological feature of OSA 

relates to episodes of intermittent hypoxia and reoxygenation, 

which are associated with disordered breathing events. These 

periods of oxyhemoglobin desaturation and resaturation can 

lead to intermittent tissue hypoxia followed by reoxygenation, 

which has physiologic consequences that differ from those 

of chronic hypoxia. The repetitive decreases and increases 

in oxygen saturation contribute to the formation of reactive 

oxygen and nitrogen species that increase oxidative stress 

and can activate redox-sensitive cellular signaling pathways 

important in inflammation.29–33

To assess the impact of chronic exposure of intermittent 

hypoxia on various physiological parameters, many small 

animal models have been developed. Most of these protocols 

entailed placing rodents in chambers during their sleep periods 

that are flushed with room air (fraction of inspired oxygen 

[FIO
2
] 0.21) followed by different gas mixtures with FIO

2
 

typically at 5% or less with varying cycle times. The resultant 

hypoxemia may be analogous to that which occurs in severe 

human OSA. However, this model has been criticized because 

the extreme reductions in FIO
2
 might lead to hypoxemia that 

is more severe than that seen in mild-to-moderate OSA in 

humans.34 Further, the model is also typically associated with 

hypocapnia, which might not be apparent in OSA in a clinical 

situation. Nevertheless, this model has provided important 

insights, regarding the impact of one of the main pathophysi-

ological features of OSA, namely CIH. CIH in the animal 

model has been shown to activate the proinflammatory tran-

scription factor nuclear factor-κβ (NF-κβ) in cardiovascular 

tissues.35 Activation of NF-κβ has also been demonstrated in 

circulating leukocytes in patients with OSA and is reversible 

with the treatment of OSA.31

In summary, sleep fragmentation, changes in autonomic 

tone, and CIH all have the combined effects of increasing 

sympathetic activation, causing alterations in the HPA axis, 

increasing oxidative stress, and activating inflammatory 

pathways. These in turn can result in insulin resistance 

and pancreatic β-cell dysfunction.21 The impact of CIH on 

overall insulin sensitivity, sympathetic neural activation, and 

organ-specific tissues will be discussed in the subsequent 

sections.

CiH decreases overall insulin sensitivity
Many studies have suggested a link between impaired insulin 

sensitivity and intermittent hypoxemia, which is an important 

component of OSA. Both animal and human data indicate that 

CIH can impair glucose tolerance and clearance and can also 

increase the HOMA index, a marker of insulin resistance.36

In order to mimic the CIH associated with severe OSA, 

an animal study used a model of CIH in mice with exposure 

to CIH during their sleep period, with a return to room air 

conditions for the remainder of the day. Exposure protocols 

ranged from hours to several months. The hyperinsulinemic–

euglycemic clamp technique was then used to assess insulin 

sensitivity during exposure to CIH. The CIH group had a 

21% reduction in the amount of exogenous glucose neces-

sary to maintain euglycemia during the hyperinsulinemic–

euglycemic clamp, indicating that CIH induced insulin 

resistance in these mice. They also exhibited elevated fasting 

glucose, providing strong evidence for a causal relationship 

between exposure to CIH and insulin resistance, independent 

of obesity. Similar findings were also observed in mice with 

diet-induced obesity and genetic obesity.16,36

Human data have subsequently confirmed these findings. 

Exposing healthy human volunteers to a hypoxic alternating 

with normoxic gas mixture (to mimic the CIH often seen with 

patients with moderate sleep apnea) resulted in decreased 

insulin sensitivity without a commensurate increase in 

insulin secretion, indicative of insulin resistance. This study 

also noted a decrease in “glucose effectiveness”: the ability 

of glucose to stimulate its uptake by peripheral tissues and 

to suppress hepatic glucose production independent of an 

insulin response.37

CiH causes sympathetic activation
A potential mechanism linking CIH with peripheral insulin 

resistance is the increased sympathetic neural activity with 

elevation in catecholamines that occurs with exposure to 

CIH.28 These catecholamines both decrease peripheral insu-

lin-mediated glucose uptake and increase insulin resistance.38 
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In addition, activation of the hypothalamic–pituitary–adrenal 

axis impairs insulin sensitivity and also increases mobiliza-

tion of glucose. Animal studies have also assessed the impact 

of CIH-induced sympathetic nervous system activation on 

insulin resistance using a ganglionic blocker (hexametho-

nium) to prevent autonomic activation. However, blockade 

of autonomic activity had no impact on the development of 

insulin resistance in response to CIH. Therefore, mechanisms 

other than sympathetic neural activation seem to be respon-

sible for the development of insulin resistance, at least in 

animal models of CIH. Nevertheless, in a clinical setting, 

overactivation of the sympathetic nervous system, as well 

as the hypothalamic–pituitary–adrenal axis, occurring as a 

result of sleep apnea and its associated sleep fragmentation, 

might contribute to insulin resistance in OSA along with 

other factors.

The effects of CIH on organ- 
specific tissue
CiH and the pancreas
Insulin resistance is an important factor in the pathophysiology 

and evolution of diabetes. However, clinical diabetes develops 

when pancreatic β-cells are unable to compensate for increas-

ing insulin resistance. β-cell dysfunction may lead to impair-

ment of the compensatory increases in insulin secretion that 

are required to maintain normal levels of blood glucose in the 

setting of progressive insulin resistance. Recent data have sug-

gested various mechanisms for pancreatic β-cell dysfunction. 

Lean mice exposed to CIH during their sleep period had 

elevated plasma fasting insulin levels without a change in 

glucose, suggesting the presence of insulin resistance. Despite 

this, there was no compensatory pancreatic β-cell proliferation 

or hypertrophy in these animals. Rather, insulin content was 

decreased in the pancreatic islets due to downregulation of the 

enzyme prohormone convertase 1 that converts proinsulin to 

insulin. Furthermore, the animals exposed to CIH had impaired 

insulin secretion with impairment of insulin synthesis and 

processing in the pancreatic β-cells.39 CIH can also result in 

β-cell apoptosis, through the interaction between apoptosis-

related proteins (Bcl-2 and Bax). CIH-mediated oxidative 

stress results in a downregulation of Bcl-2 and upregulation 

of Bax, and this imbalance promotes apoptosis.40

Additional animal studies have also suggested a possible 

role for mitochondrial-derived ROS in CIH-induced pancre-

atic β-cell injury and dysfunction.39 Finally, cellular studies 

in vitro have demonstrated CIH-induced downregulation of 

CD38 gene expression, which is an important gene involved 

in insulin secretion through the mobilization of Ca2+.41

impact of CiH on the liver
In both animal and human studies, CIH has been shown to 

induce structural liver damage and increase liver enzyme 

levels such as serum alanine aminotransferase, aspartate 

aminotransferase, and alkaline phosphatase.18,19 In animal 

studies, several weeks of CIH exposure resulted in liver ste-

atosis, necrosis, and inflammation with resultant neutrophil 

accumulation and collagen deposits. The mechanisms may 

involve increased synthesis of lipid biosynthesis enzymes, 

proinflammatory cytokines, and oxidative processes, result-

ing in DNA damage and apoptosis.17–19

A study showed that after 5 weeks of CIH, both hypoxia-

inducible factor 1α (HIF-1α) and NF-κβ transcription fac-

tors were upregulated in the liver.42 CIH exposure results in 

increased lipid biosynthesis enzymes in the liver, such as 

sterol regulatory element–binding protein-1 (SREBP-1), 

sterol-coenzyme A desaturase-1 (SCD-1), and high-density 

lipopro tein (HDL) receptor,43 and thus plays an important 

role in the development of NAFLD and the metabolic syn-

drome. CIH also increases the expression of proinflamma-

tory cytokines such as tumor necrosis factor-α (TNF-α) and 

macrophage inflammatory protein 2 in obese mice exposed 

to 4 weeks of CIH. Interestingly, there was no observed 

increase in these cytokines among lean mice.16 Another study 

observed increased liver proinflammatory cytokines such 

as interleukin (IL) 1β, IL-6, and macrophage inflammatory 

protein 2 in lean mice exposed to longer periods of CIH.18 

CIH also results in upregulation of nitric oxide metabolites 

and reduced activity of liver antioxidant enzymes, which can 

contribute to DNA damage and apoptosis.42 In addition, CIH 

can not only increase glucose output from hepatocytes but 

also upregulate gene expression and protein levels of several 

gluconeogenic enzymes in the liver,44 which can contribute 

to fasting hyperglycemia and development of T2DM.

CiH and skeletal muscle
Skeletal muscle is responsible for the majority of insulin-

induced glucose uptake. Despite this, few studies have 

examined the effect of CIH on skeletal muscle metabolism 

and glucose uptake. A study using a mouse model of CIH 

observed not only decreases in whole-body insulin sensitivity 

but also reduces glucose utilization and insulin sensitivity 

in the soleus muscle, suggesting a clear decrease in glucose 

metabolism and uptake in this muscle. The impact of CIH was 

most pronounced in oxidative muscle fibers, while glycolytic 

muscle fibers were relatively unaffected. Thus, glucose uptake 

in oxidative muscle tissue is impaired by CIH and this effect 

appears independent of obesity.45
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CiH and adipose tissue
There have been many recent advances in our understanding 

of the role of white adipose tissue (WAT) in normal physi-

ological function and in response to endogenous stressors.46–48 

WAT not only serves as a reservoir of stored energy in the 

form of triacylglycerols but also serves as an important endo-

crine organ involved in a variety of metabolic activities. It is 

especially important for its role in insulin resistance through 

the release of free fatty acids (FFAs) during lipolysis.49 

These induce insulin resistance through their effects on liver, 

muscle, and adipose tissue itself. CIH can cause dyslipidemia 

through an increased FFA release; interestingly, this effect 

is normalized by oxygen supplementation in humans.50 CIH 

can cause decreased lipoprotein clearance through HIF-1 and 

angiopeoitin-like 4 inhibition of lipoprotein lipase.51 CIH 

also downregulates the potent insulin-sensitizing hormone 

adiponectin in T3-L1 adipocytes. This increases adipose 

tissue production of resistin, which contributes to further 

insulin resistance through inflammatory pathways involving 

cytokines such as TNF-α and IL-6.52

There is also increasing evidence that regions with 

enlarged areas of visceral adipose tissue experience 

hypoxia53,54 as a result of reduced adipose tissue blood 

flow. This occurs as adipocytes hypertrophy and their size 

exceeds the diffusion capacity of oxygen, thus reducing 

regional perfusion of adipose tissue.49 This hypoxic stress 

also activates inflammatory signaling pathways, including 

HIF-1α and NF-κβ.53 OSA in this population can exacer-

bate tissue hypoxia and further contribute to adipose tissue 

inflammation, providing an additional pathway leading to 

insulin resistance and cardiometabolic morbidity. Adipose 

tissue hypoxia also leads to the expression and release of 

various “adipokines”, which are hormones and cytokines that 

have important functions in health and disease. Proinflam-

matory adipokines (including cytokines, chemokines, and 

acute-phase proteins such as haptoglobin and plasminogen 

activator inhibitor 1) play particularly important roles in the 

development of obesity-related insulin resistance. These sub-

stances are associated with obesity-induced proinflammatory 

states and they are elevated in the circulation of obese sub-

jects with insulin resistance, whereas the antiinflammatory 

adipokine, adiponectin, is diminished in the circulation of 

these subjects. As adipocytes increase in size, macrophages 

are attracted to and retained within adipose tissue through 

the actions of chemokines, MCP-1, and MIF, respectively. 

Consequently, infiltration of type M1-macrophages occurs, 

and these in turn secrete the proinflammatory cytokines IL-6  

and TNF-α. Hence, the M1-macrophage arrival in adipose 

 tissues increases the degree of inflammation in already 

inflamed tissues. Such inflammatory processes play a sig-

nificant role in the development of insulin resistance through 

inhibition of adipocyte storage of lipids, secretions of adi-

pokines, enhanced lipolysis, and reduced reesterification of 

FFAs resulting in elevation in FFAs in the circulation.

Potential pathogenic mechanisms 
linking T2DM to OSA
As mentioned previously, there is a higher prevalence of 

OSA in patients with T2DM than in nondiabetic patients. 

This has led to the question of whether a reverse causality 

exists, whereby diabetes itself might lead to some of the 

features of OSA. Potential mechanisms for the association of 

OSA among diabetic populations include altered ventilatory 

control and increased oxidative stress.55,56

Some studies have shown that insulin resistance is asso-

ciated with a reduced hypercapnic and hypoxic ventilatory 

response that is reversed with insulin treatment.57 However, 

it is unclear whether this reduced ventilatory response can 

exacerbate apneas and hypopneas. Yet other studies have 

found an association between diabetes and increased risk of 

central sleep apnea, possibly mediated by autonomic dysfunc-

tion that can in turn cause increased central chemoreceptor 

responsiveness to hypercapnia, thereby predisposing patients 

to periodic breathing and central sleep apnea.11,58–60 Indeed, 

diabetic patients with autonomic neuropathy have a higher 

prevalence of OSA, more severe OSA, longer duration of 

sleep disordered breathing events, and more severe oxygen 

desaturations when compared with diabetic patients without 

autonomic neuropathy.59

Chronic hyperglycemia can also contribute to the devel-

opment of OSA by increasing oxidative stress. This in turn 

can result in structural nerve damage and dysfunction with 

worsening autonomic dysfunction.59

In summary, various possible pathogenic mechanisms 

might contribute to the association of OSA among diabetic 

populations, suggesting that there is a bidirectional relation-

ship between OSA and T2DM.

Continuous positive airway pressure 
therapy in OSA improves glucose 
control
Continuous positive airway pressure (CPAP) is the gold-

standard treatment of OSA and is highly effective in relieving 

the symptoms of OSA. However, its impact on comorbidities, 
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such as diabetes, is less clear with studies demonstrating 

variable effects on markers of insulin resistance and insulin 

sensitivity. A recent meta-analysis of randomized controlled 

studies examining the effects of CPAP on measures of gly-

cemic control suggested that while CPAP does not decrease 

hemoglobin A
1c

 (HbA1c) level or BMI in patients who have 

OSA and T2DM, it may improve insulin sensitivity.61 The 

variable results may be related to differences in methods of 

assessment of insulin sensitivity, variation in study population 

characteristics, and inconsistent adherence to and duration 

of CPAP therapy. Nevertheless, there are data to suggest that 

use of CPAP can increase insulin sensitivity and decrease 

insulin resistance.

CPAP in OSA might improve  
insulin sensitivity
Several studies have suggested that CPAP improves 

insulin sensitivity. An observational study demonstrated 

significant improvement in sensitivity (measured by the 

hyperinsulinemic–euglycemic clamp technique) after 2 days 

and 3 months of CPAP therapy in patients with moderate-to-

severe OSA. Interestingly, this improvement was most pro-

nounced in the subgroup of subjects with a BMI ,30 kg/m2.62 

A meta-analysis of 12 prospective observational studies 

of nondiabetic adults who were newly diagnosed with 

moderate-to-severe OSA demonstrated that CPAP treatment 

for 3–24 weeks resulted in a significant decrease in insulin 

resistance as assessed by HOMA-IR.63

Several other randomized controlled trials have also 

shown significant improvements in insulin sensitivity in 

patients with OSA who are treated with CPAP, compared 

with sham-CPAP. In these studies, insulin sensitivity was 

assessed by the Gutt index, the quantitative insulin sensi-

tivity check index, the short insulin tolerance test, and the 

hyperinsulinemic–euglycemic clamp technique.64–66 One 

such study showed a trend toward improvement in insulin 

sensitivity after CPAP therapy using the hyperinsulinemic–

euglycemic clamp; however, the degree of improvement 

did not reach statistical significance.67 It is possible that the 

failure to obtain a statistically significant result was because 

mean nightly usage of CPAP in that study was only 3.6 hours. 

In another study, nightly CPAP therapy for OSA resulted in a 

significant increase in K
itt
 (glucose disappearance rate) in as 

little as 1 week of nightly use.65 A review and meta-analysis 

by Feng et al obtained information from prospective studies 

examining the effects of CPAP on markers of diabetes in 

patients with OSA and T2DM. Their findings indicate that 

CPAP does not improve BMI or glycemic control (measured 

by HbA1c level) but confirm that it may improve insulin 

sensitivity in patients with OSA and T2DM, as assessed by 

the hyperinsulinemic–euglycemic clamp method.61

The differing methodologies utilized to assess insulin 

sensitivity, patient characteristics, and CPAP adherence rates 

in prior studies may explain some of the variability in their 

results. For example, the quantitative insulin sensitivity check 

index test has a substantially better linear correlation with 

hyperinsulinemic–euglycemic clamp than HOMA-IR and 

performs better in patients with insulin resistance. Likewise, 

HOMA-IR is a good surrogate for the effect of insulin on 

hepatic gluconeogenesis but may not accurately measure 

other facets of insulin response and may be less accurate, 

particularly in the setting of severely impaired pancreatic 

β-cell function.68 Furthermore, OSA, and CPAP treatment 

itself, may alter and interact with various aspects of insulin 

and glucose metabolism such as skeletal muscle insulin 

sensitivity and pancreatic β-cell function that may not be 

adequately assessed by the metrics used in these studies.65

Importantly, a common limitation in most of these trials 

was the limited hours of CPAP use. On average, CPAP use 

ranged from 3.3 hours/night to 6.2 hours/night. In order 

to evaluate the role of increasing hours of usage of CPAP, 

another randomized placebo-controlled study demonstrated 

incremental improvement in the insulin  sensitivity index 

with each additional hour of nightly CPAP use. However, 

in this study, significant improvements in insulin sensi-

tivity were observed only in patients with severe OSA 

(AHI .30/h).66 In order to further assess the impact of 

increased hours of usage, a recent control study random-

ized patients either to receive CPAP 8 hours nightly or to 

receive an oral placebo. Adherence to CPAP was monitored 

with continuous supervision in a sleep laboratory. Glucose 

metabolism was measured with the 2-hour OGTT. In the 

8-hour/night CPAP group, glucose levels were reduced 

and insulin sensitivity was increased when compared to 

placebo. In addition, circulating norepinephrine levels and 

24-hour blood pressure were also reduced in the CPAP 

group as compared to placebo.69 This study highlighted the 

importance of adherence to CPAP therapy when assessing 

its impact on these parameters.

CPAP in OSA improves HbA1c
The percentage of HbA1c, a marker of long-term glucose 

control in diabetic individuals, has been shown to be posi-

tively correlated with the severity of OSA in patients with 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nature and Science of Sleep 2015:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

120

Rajan and Greenberg

T2DM. HbA1c increases with the severity of OSA after 

adjusting for age, sex, BMI, race, number of antidiabe-

tes medications, exercise, duration of diabetes, and total 

sleep time compared to patients without OSA.70 A number 

of  studies have shown an improvement in HbA1c after 

3 months of CPAP therapy.71–73 A recent meta-analysis by 

Gallegos et al demonstrated significant improvement in 

HbA1c levels and/or increase in insulin sensitivity with 

.3 months of CPAP therapy among patients who had OSA 

and either prediabetes or T2DM as determined by labora-

tory evaluation.74

Predictably, the magnitude of improvement in HbA1c 

was strongly correlated with the number of hours of nightly 

usage of CPAP.71 In one study, patients who utilized CPAP 

for .4 hours/night (mean 6.6 hours/night) achieved the great-

est improvement in HbA1c.71 In contrast, another investiga-

tion where the mean duration of nightly CPAP use was only 

3.6±2.8 hours/night noted no significant improvements in 

HbA1c or BMI. However, there was significant improvement 

in insulin sensitivity.67

These findings indicate that long-term CPAP therapy 

for OSA may produce significant improvements in glucose 

metabolism and control in T2DM and even prediabetes, but 

adequate nightly adherence to CPAP is essential to achieve 

this outcome.

Impact of therapy for OSA  
on metabolic syndrome
As discussed in a previous section, OSA might be an indepen-

dent risk factor for the development of metabolic syndrome.75 

Elevated systemic arterial hypertension, hyperglycemia, 

hypertriglyceridemia, hypercholesterolemia, abdominal and 

visceral obesity, and insulin resistance are all components of 

metabolic syndrome and have the potential to significantly 

increase the risk of diabetes, cardiovascular, and cerebro-

vascular disease.75

Several studies have explored the effect of CPAP 

therapy for OSA on metabolic syndrome and its specific 

components.64,76,77 The greatest impact of CPAP therapy 

appears to be on systemic arterial pressure. Several random-

ized placebo controlled studies have demonstrated significant 

reductions in arterial blood pressure with CPAP therapy for 

OSA.65,76,78 One such study even showed that systemic arte-

rial pressure significantly increased upon CPAP withdrawal 

among patients with OSA who were previously treated with 

CPAP, providing further evidence for the impact of CPAP 

therapy on hypertension in OSA.78

Hyperlipidemia is another component of metabolic syn-

drome associated with OSA32 and can potentially improve 

with CPAP therapy. Animal models have shown increases in 

serum triglyceride and low-density lipoprotein-cholesterol 

levels with exposure to CIH, possibly through the increased 

activity of SREBP-1 and SCD-1. This increased activity 

enhances conversion of saturated to monounsaturated fatty 

acids, increases serum triglycerides, and promotes lipopro-

tein secretion.79 Another study has shown that lipid profiles 

in patients with OSA can improve with CPAP therapy with 

improvement seen in serum triglycerides, low-density lipo-

protein, nonhigh-density lipoprotein, total cholesterol, and 

the high-density lipoprotein to total cholesterol ratio.65

Abdominal and visceral obesity is another important 

feature of metabolic syndrome linked with increased cardio-

vascular risk in patients with OSA. This has been posited to 

improve with CPAP therapy. However, randomized controlled 

studies of nondiabetic patients with OSA failed to dem-

onstrate a significant impact of CPAP therapy on visceral, 

subcutaneous, or hepatic fat distribution.63,64,80

Despite the contradictory and conflicting nature of some 

of the data, there is mounting evidence that CPAP therapy 

for moderate-to-severe OSA may improve components 

of metabolic syndrome, and this may ultimately reduce 

the cardiovascular and cerebrovascular risk associated 

with OSA.

Treatments other than CPAP are available for OSA. Man-

dibular advancement oral appliance therapy is an effective 

treatment of OSA and has also been shown to improve some 

outcomes related to the metabolic syndrome. Oral appliance 

therapy for OSA has been shown to improve markers of lipid 

peroxidation that are linked to endothelial dysfunction.81 

Markers of endothelial dysfunction, an important event that 

precedes the development of atherosclerosis and might pre-

dict future cardiovascular events, may also improve with oral 

appliance therapy for OSA.82 Some studies have also shown 

improvement in hypertension with this therapeutic modality 

in OSA.83 A parallel group study showed similar reduction in 

morning diastolic blood pressure between CPAP and dental 

appliance therapy after 10 weeks of use.84

The role of weight loss in improving features of the 

metabolic syndrome such as insulin resistance has been 

assessed among patients undergoing bariatric surgery. 

Weight loss following bariatric surgery has been associated 

with improvement in insulin resistance, as well as partial 

or complete remission of T2DM in a subset of patients.85 

However, an independent impact of improved OSA versus 
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weight loss on improvement in manifestations of T2DM has 

not been established.

Clinical implications
Screening for OSA in patients with T2DM
With the increasing prevalence of T2DM and obesity in the 

aging population, there is a growing need to identify those 

patients with T2DM who might also be at risk of OSA, 

since both are independent risk factors for cardiovascular 

and cerebrovascular disease and are often comorbid chronic 

conditions.75 The identification of OSA in patients with 

T2DM is therefore of paramount importance, and this task 

often falls to the primary care physician.

Assessing risk of OSA might be challenging in primary 

care settings because many patients with OSA do not report, 

in routine office visits, “typical” OSA-related symptoms, such 

as heavy snoring, witnessed pauses of breathing during sleep, 

and excessive daytime somnolence. Other risk factors might 

be considered, including anatomic features such as obesity 

(BMI .30 kg/m2), large neck circumference (.16 in for 

females; .17 in for males), a crowded oropharynx with a low 

lying soft palate, large base of tongue and tonsillar hypertrophy, 

as well as craniofacial abnormalities including retrognathia.86 

Evaluation of OSA symptoms should ideally be part of routine 

patient history and physical examinations. However, this might 

not always be practical or feasible, especially in primary care 

settings. Several self-administered screening tools and question-

naires have been developed to facilitate identification of patients 

who may require referral or testing for OSA.

The Epworth Sleepiness Scale is one such tool that 

measures subjectively reported tendency to fall asleep dur-

ing a variety of situations. However, it lacks sensitivity for 

detection of moderate-to-severe OSA. The STOP-Bang 

questionnaire assesses various risk factors for OSA and has 

reasonable sensitivity and specificity when a cutoff score of 

5–8 is used.87,88 However, this tool was specifically developed 

for use in presurgical testing populations. As a result, its 

validation may not apply to primary care or other settings. 

The Berlin questionnaire is another short, ten-question survey 

comprising three different categories. A high risk of OSA is 

identified by positive answers in two or more of the categories, 

which yields a 78.6% sensitivity with a 50.5% specificity, 

for detection of moderate-to-severe OSA.87 The Sleep Apnea 

Clinical Score is a longer questionnaire (36 items) that has 

been validated for calculation of like lihood ratios for the pres-

ence of OSA. A score of $15 yields a likelihood ratio of 4.45 

of moderate–to-severe sleep apnea.89 The  sensitivities and 

specificities of these tools are listed in Table 1.90 The STOP-

Bang questionnaire and the Berlin questionnaire can each 

be completed in ,5 minutes, allowing them to be used as 

effective OSA screening tools in a busy clinical setting. 

Although the sensitivity of the Epworth Sleepiness Scale for 

OSA is relatively low, it can also provide useful data regard-

ing the degree of daytime somnolence and its improvement 

with treatment.

Utilization of these tools in primary care offices might 

aid in raising the suspicion for OSA in diabetic popula-

tions in which the risk is already higher than in the average 

 population. This can ultimately facilitate referral to sleep 

practices where further evaluation for OSA can occur.

Diagnosis of OSA
Once a patient is referred for further sleep evaluation, 

the diagnosis of OSA and its severity can be assessed by 

recording physiologic parameters during sleep. The gold 

standard is attended polysomnography (PSG) performed 

in a sleep laboratory. This comprehensively assesses sleep 

and breathing with recordings of the electroencephalogram, 

electromyogram, electrooculogram, electrocardiogram, 

nasal/oral airflow surrogate, thoracic and abdominal respi-

ratory effort, oxygen saturation, and an audio recording of 

snoring throughout the night.91 Home sleep testing (HST), 

with more limited respiratory assessment, has recently 

gained popularity because of its ease of use and reduced 

cost when compared to standard PSG. This may be useful 

in cases where the pretest probability of moderate or severe 

OSA is high.92,93 However, it must be noted that HST has 

many important limitations that reduce its utility in certain 

settings. It usually only monitors a surrogate for airflow, 

respiratory effort, and oxygen saturation and provides no 

objective measure of total sleep duration or sleep quality. 

This may lead to underestimation of the severity and impact 

Table 1 Predictive value of screening questionnaires for 
moderate-to-severe OSA

Epworth  
Sleepiness  
Scale

STOP-Bang  
questionnaire

Berlin  
questionnaire

Sensitivity (%) 39.0 87.0 78.6
Specificity (%) 71.4 43.3 50.5
Odds ratio  
(95% Ci)

1.6 5.1 3.7

Area under the  
ROC (95% Ci)

0.53 0.64 0.67

Abbreviations: OSA, obstructive sleep apnea; CI, confidence interval; ROC, 
receiver–operating characteristic.
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of sleep disordered breathing, particularly in those patients 

with milder forms of OSA. In addition, automated scoring 

of HST may further  underestimate the severity of OSA 

compared with manual scoring of these studies.94

Patient selection for HST is also important as false-

 negative results may occur in patients with coexisting insom-

nia who might spend a large portion of the test night awake, 

since the AHI is calculated in reference to recording time 

rather that total sleep time, which is usually not measured. 

HSTs are also inadequate for accurate assessment of more 

complex sleep disorders, especially in those patients with 

significant comorbid cardiopulmonary disease. Therefore, 

patients suspected of having OSA on a clinical basis who 

then have negative HST results might need referral for con-

firmatory in-laboratory PSG.93

Treatment of OSA
Various treatment modalities are available for OSA. In order 

to maximize the chances of achieving successful therapeu-

tic outcomes, strong consideration must also be given to 

patient-specific needs, expectations, and comorbidities such 

as cardiac, pulmonary, and cerebrovascular disease, as well 

as to coexisting sleep disorders such as insomnia.

CPAP therapy remains the gold standard for the treatment 

of OSA, with randomized, placebo-controlled trials clearly 

demonstrating significant improvement in quality of life, 

daytime somnolence, and neurobehavioral performance. 

These improvements have been observed for all degrees of 

OSA, including the milder forms.95,96 Several alternatives to 

CPAP therapy can also be considered and include oral appli-

ance therapy for mandibular advancement,97,98 surgeries of the 

upper airway; maxillofacial surgery for jaw advancement,99 

and bariatric surgery for weight loss100 in appropriately 

selected patients. As OSA is a chronic condition, long-term 

disease management with monitoring of compliance and 

treatment efficacy is essential to achieving optimal func-

tional outcomes, as well as for long-term cardiovascular 

risk reduction.101

Conclusion
In summary, there is a high prevalence of insulin resistance 

and T2DM in patients with OSA. An even higher prevalence 

of OSA has been documented in those patients with T2DM 

who are obese. The multiple physiologic disturbances in OSA, 

including sleep fragmentation, activation of the sympathetic 

nervous system, and CIH secondary to recurrent apneas, 

may contribute to abnormal glucose and insulin metabolism. 

CIH, with its associated systemic inflammation and oxidative 

stress, has been demonstrated in animal  models to contribute 

to hepatic and peripheral insulin resistance as well as to pan-

creatic β-cell dysfunction, independent of obesity.

Given the links between T2DM and OSA, screening for 

OSA in this population is important as effective treatment of 

OSA with CPAP may not only improve sleep apnea-related 

symptoms and quality of life but also improve components 

of the metabolic syndrome that contribute to long-term car-

diovascular and cerebrovascular risk.
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