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Abstract: Infections after orthopedic surgery are a very unwelcome outcome; despite the 

widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to 

increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, 

novel antimicrobial approaches are required. Parabens are a class of compounds whose anti-

microbial activity is employed in many cosmetic and pharmaceutical products. We developed 

propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens 

to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles 

as antimicrobial compound in bone cements. The nanoparticles were embedded in various types 

of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the anti-

microbial activity was determined against common causes of postorthopedic surgery infections 

such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and 

Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone 

cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite 

bone cement, while 7% w/w was required for PMMA bone cement. No  detrimental effect was 

determined by the addition of paraben nanoparticles on bone cement compression strength and 

cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in 

bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower 

concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic 

(PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, 

including those already resistant to the antibiotics routinely employed in orthopedic applica-

tions, such as gentamicin.
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Introduction
Some microorganisms, a small fraction, can induce adverse effects on humans and 

are known as pathogens. The outcomes of an infection can range from pain and fever 

to death, depending on the microorganism and the physiological characteristics of 

the patient affected. Until the discovery of antibiotics by Alexander Fleming in the 

late 1920s, infections were almost untreatable and one of the most common causes 

of death; for instance, even a small superficial cut could have resulted in a fatality. 

Moreover, until that time surgical procedures had limited efficacy, as infections quickly 

developed in the majority of cases.

Antibiotics were hailed as the solution of infections; however, such beliefs were 

shattered by the evidence of microorganisms developing resistance against this treat-

ment. It is now accepted that infectious microorganisms cannot be indefinitely treated 

with antibiotics.1,2 For many medical procedures to remain viable treatments, novel 

therapeutic approaches to infections need developing in order to guarantee sufficient 

protection against pathogens. The use of metals, predominantly silver, in the form of 
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salts or nanoparticles is a well-established antimicrobial strat-

egy that found applications in creams,3 wound wrappings,4 

fabrics,5 and eluting surfaces.6–8 However, concerns regard-

ing the use of silver are growing, particularly its long-term 

safety linked to accumulation in the environment and the 

body,9,10 hence other antimicrobial agents are in urgent need. 

Chitosan,11 honey extracts,12 and phytochemicals13 are natural 

compounds that have shown promising results. Paraben is 

another class of nonantibiotic antimicrobial compounds; 

paraben is the common name of an ester of p-hydroxybenzoic 

acid (Figure S1). They are a class of compounds with anti-

bacterial and antifungal activity routinely used in cosmetics,14 

pharmaceutical products,15 food products,16 and catheter 

lock solutions.17 The mechanism of action of parabens is 

thought to be the inhibition of the synthesis DNA and RNA 

or ATPases and phosphotransferases, and more recently, the 

impact on the capacity of the bacteria to withstand osmotic 

imbalance.18

Orthopedic surgeries are procedures that generally require 

anti-infection therapy; despite the risk posed by antibiotic 

resistance, these compounds are still the normal approach. 

Antibiotics can be delivered either parenterally19,20 or through 

elution from bone cement,21–23 when the latter is used, it 

provides a quick and strong attachment between bone frac-

tures or bone and medical devices, like in the case of joint 

replacement procedures.24 Different types of bone cements 

are available and employed for different applications; for 

example, poly(methyl methacrylate) (PMMA) bone cement is 

used in joint replacements, providing high mechanical perfor-

mance and a quick setting time.24 Calcium phosphate cements 

(CPC), in spite of the excellent osteoconductive properties, 

are used in low load-bearing conditions such as bone defect 

treatments, because of their low mechanical strength and 

brittle behavior.24 Hydroxyapatite and brushite are some of the 

allotropic forms of calcium phosphate and the two CPC that 

are currently used.24 Both types of bone cement are applied 

as a paste; however, their hardening processes are different: 

in the case of PMMA, polymerization takes place, while dis-

solution and precipitation occur for the setting of CPC.

Notwithstanding the antibiotic cover provided pre- and 

postorthopedic procedures, the incidence of infections is still 

relatively high, in some cases up to 9%–10%.25,26 The onset of 

infections not only causes pain and discomfort, but sometimes 

can even be life-threatening to patients; moreover, infections can 

considerably increase the cost of treatment due to a greater num-

ber of medications and lengthened hospital stays required.

In this paper, organic nanoparticles containing propylpa-

raben were prepared through a recently described synthetic 

route, namely by solvent removal from a volatile oil-in-water 

microemulsion,27 and embedded in PMMA and calcium phos-

phate bone cement at different concentrations; their antimicro-

bial activity was determined against Staphylococcus spp. and 

Acinetobacter baumannii as model pathogens in postortho-

pedic infections. Once the effective concentration of these 

nanoparticles was determined, their effect on the mechanical 

and cytotoxic properties of bone cement was investigated.

Materials and methods
chemicals and nanoparticles preparation
Propylparaben was supplied by Sharon Laboratories 

(Ashdod, Israel), while all other chemicals were purchased 

from Sigma-Aldrich (Gillingham, UK and Rehovot, Israel), 

unless otherwise stated, and solutions were prepared accord-

ing to standard laboratory practice.

Organic nanoparticles were prepared according to the 

procedure developed by Margulis-Goshen et al.27 Briefly, a 

microemulsion composed of propylparaben 3% w/w, n-butyl 

acetate 3.5% w/w, iso-propyl alcohol 3.5% w/w, sodium 

dodecyl sulfate (SDS) 8% w/w, polyvinylpyrrolidone (PVP) 

40,000 7% w/w, and water 75% w/w was spontaneously 

formed upon mixing of all components at room temperature. 

Fast, simultaneous removal of the solvents and water from 

the microemulsion by spray drying led to the formation of a 

fine powder composed of propylparaben nanoparticles, SDS, 

and PVP. The composition of the resulting powder was pro-

pylparaben 16% w/w, SDS 45% w/w, and PVP 39% w/w.27 

The nanoparticles were readily dispersible in water, yielding 

a stable dispersion of particles with approximate diameter 

of 16 nm as indicated by small angle X-ray scattering, and 

had a zeta potential in NaCl 10 mmol of −46 mV.27 It was 

found that in this system, almost all propylparaben (about 

98% w/w) was present as nanosized particles.27

Bacteria
Gram-positive bacteria Staphylococcus aureus (NCIMB 

9518), methicillin-resistant S. aureus – MRSA (NCTC 12493), 

and Staphylococcus epidermidis (RP62a) along with Gram-

negative bacterium Acinetobacter baumannii (NCIMB 9214) 

were used. Bacteria frozen stokes were stored at −80°C; strains 

were streaked on BHI plates weekly (Oxoid Ltd, Basingstoke, 

UK) and incubated for 24 hours at 37°C, then stored at 4°C.

Bone cement preparation and 
characterization
PMMA-based bone cement was obtained by mixing PMMA 

(Lucite International, Darwen, UK) (4.1 g), barium sulfate 
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(0.46 g), benzoyl peroxide (0.1 g), methyl methacrylate 

(1.96 g), and N,N-dimethyl-p-toluidine (0.04 g).

Calcium phosphate-based bone cement was prepared 

according to the procedure described by Ewald et al.28 

Hydroxyapatite bone cement was obtained by mixing sin-

tered α-tricalcium phosphate (α-TCP) (Fluka, Gillingham, 

UK) (12 g) with Na
2
HPO

4
 2.5% w/v (4 mL), while brushite 

bone cement was prepared by mixing sintered β-tricalcium 

phosphate (β-TCP) (6.62 g) with Ca(H
2
PO

4
)

2
 (5.38 g) and 

citric acid 0.05 M (4 mL).

For each bone cement, the solid and liquid phases were 

mixed in a beaker and poured into a mold that allowed the 

preparation of cylindrical specimens (6 mm in diameter and  

12 mm in height), at an approximate setting time of 1 minute. 

The filled mold was pressed between two glass plates for  

24 hours, and the cement was allowed to harden before the 

samples were extracted. Bone cement samples were stored in 

dark, sterile conditions (for no more than 3 days) prior to use.

The organic nanoparticles were added to the solid phase 

prior to mixing with the liquid phase, these were added with 

specific quantities to achieve a final concentration of 0.1%, 

0.5%, 1%, 2%, 5%, and 7% w/w; bone cement of the appropri-

ate type (PMMA, hydroxyapatite, or brushite) not containing 

nanoparticles was used as a control sample (0% w/w).

antimicrobial activity of organic 
nanoparticles and the bone cements
Approximately 15 mL of fresh sterile BHI broth (Oxoid 

Ltd) was inoculated with cells and incubated statically for 

24 hours at 37°C.

The antimicrobial activity of the organic nanoparticles 

was compared with the activity of pure compounds (propyl-

paraben, SDS, PVP) and their mixture before nanoparticles 

synthesis, determined through standard minimal inhibitory 

concentration (MIC) protocol.

Bone cement samples (cylindrical, 12 mm long, with 

a diameter of 6 mm) were placed in a 24-well plate, with 

a covering of 2 mL of the bacterial suspension (described 

before). The 24-well plate was incubated for 1 hour at 

37°C statically, the bacterial suspension was removed 

and the samples were rinsed three times with fresh sterile 

phosphate buffer solution (PBS). Around 1 mL of a diluted 

solution of sterile BHI broth in PBS (1/10 BHI) was added 

to each sample, and the plate was incubated at 37°C. After  

24 hours, 50 μL from each well was transferred to a 100-well 

plate (Bioscreen C; Labsystems Diagnostics Oy, Helsinki, 

Finland) containing 100 μL of fresh sterile BHI broth. 

The bacterial growth curves at 37°C were recorded every  

15 minutes through optical density (OD) at 600 nm (OD
600

), 

using a plate reader (Bioscreen C analyzer; Labsystems 

Diagnostics Oy).

All tests were performed in triplicate and on three inde-

pendent cultures, resulting in nine growth curves for each 

bacterium on each bone cement sample. Each growth curve 

was fit using the Gompertz growth model to extract values 

of lag phase and growth rate. Results are presented as mean 

and standard deviation.

Water uptake
Bone cement samples containing paraben nanoparticles and 

controls were incubated in 5 mL PBS at 37°C for 3 months; 

for the first 2 weeks, the samples were weighed daily; after 

a fortnight the samples were weighed every 3 days.

compression testing of composite bone 
cements
Compression tests were performed according to BS ISO 

5833:2002 on the Zwick Roell ProLine table-top Z050/Z100 

materials testing machine (Zwick Roell, Ulm, Germany). 

Cylindrical samples 12 mm long with a diameter of 6 mm 

were employed. The compression tests were conducted 

at a constant crosshead speed of 20 mm/min to produce a 

curve of displacement against load. Tests were performed 

on bone cement samples with the following concentrations 

of organic nanoparticles (7% w/w for PMMA, 5% w/w for 

hydroxyapatite, and 1% w/w for brushite) freshly prepared 

and after 1 week immersion in PBS at 37°C. The compressive 

strength of the bone cement was determined by dividing the 

force applied to cause fracture by the original cross-sectional 

area of the cylinder. The average compressive strength of 

five specimens was calculated.

In vitro cytotoxicity studies on composite 
bone cements
Osteoblast cells (MC-3T3) were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 

fetal bovine serum (10% v/v), cells were incubated at 37°C 

in humidified atmosphere with 5% CO
2
. Cells were grown 

until a 70% confluency was achieved, washed twice with 

sterile PBS, and detached with trypsin; osteoblast cells were 

counted (using trypan blue to differentiate between viable and 

nonviable cells) and diluted to a concentration 105 cells/mL  

with fresh medium.

Prior to use, all bone cement samples (controls 

without nanoparticles and with organic nanoparticles 

7% w/w for PMMA, 5% w/w for hydroxyapatite, and 
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1% w/w for brushite) were sterilized using 70% alco-

hol and washed three times with sterile PBS. Samples 

were placed in 24-well plates containing 2 mL of 

osteoblast cell suspension (prepared as described 

before). Osteoblasts were cultured on the bone cement 

samples at 37°C in humidified atmosphere with  

5% CO
2
. The viability of osteoblast cells was assessed 

using the MTT enzyme assay protocol (Invitrogen, Pais-

ley, UK). The MTT solution was prepared according to 

the manufacturer guidelines and 10 μL was added to each 

well. After incubation for 2 hours at 37°C in humidified 

atmosphere with 5% CO
2
, the samples were transferred to 

a sterile 24-well plate and the MTT solubilization solution 

was added. When full dissolution of the crystals occurred, 

100 μL of liquid was transferred to a sterile 96-well plate, 

and the absorbance of each sample was read at 540 nm 

(OD
540

). Results are presented as the average and standard 

deviation of three independent bone cement samples.

Propylparaben release from bone cement
Bone cement samples containing paraben nanoparticles, pre-

pared as described in “Bone cement preparation and charac-

terization” (with organic nanoparticles 7% w/w for PMMA, 

5% w/w for hydroxyapatite, and 1% w/w for brushite), were 

incubated in 2 mL PBS at 37°C; the solution was replaced 

daily with fresh PBS and analyzed to quantify the amount 

of propylparaben released using reverse-phase HPLC. An 

Agilent series 1100 HPLC system was equipped with a 

Waters Spherisorb® (Sigma-Aldrich, St Louis, MO, USA) 

5 μm ODS2 (4.6×150 mm) analytical column thermostated 

at 25°C. The injection volume was 5 μL, the mobile phase 

was water:acetonitrile 50:50, with a flow rate of 1 mL/min, 

and the detector was a UV spectrophotometer at 254 nm. An 

example of a chromatogram for a 1 mg/mL solution of pro-

pylparaben in DMSO is shown in Figure S2; the calibration 

curve of the HPLC detection of propylparaben is presented 

in Figure S3.

Bone cement settling time
The influence of the paraben nanoparticles on the bone 

cement settling time was determined through rheologi-

cal tests using AR-G2 (TA Instruments, Hertfordshire, 

UK), using 40 mm Peltier plates. Dynamic oscillation 

tests were performed; in these measurements, a sinu-

soidal oscillation strain (σ) of small amplitude (σ
0
) and 

frequency (ω):

 σ σ ωt i t( ) =
0

exp( )  (1)

was applied to the sample. The resulting stress (ω) was com-

pared with the strain giving the complex modu lus G*.

 G
t

t
* =

( )
( )

σ
γ

 (2)

Because the two sinusoidal waves will have a phase 

difference, δ, the storage (G′) and loss modulus (G″) can be 

defined as the component in phase and π/2 out of phase with 

the strain, respectively.

 G G iG* = ′ + ′′  (3)

and

 ′ =G G * cosδ  (4)

 ′′ =G G * senδ  (5)

Analysis was carried out using dynamic time sweep test 

that takes successive measurements at constant frequency 

and strain at selected intervals. The test was conducted at a 

strain of 0.1% and fixed frequency of 1 Hz.

All three types of bone cement containing 2% w/w of 

gentamicin were analyzed along with samples with paraben 

nanoparticles 7% w/w for PMMA, 5% w/w for hydroxyapatite, 

and 1% w/w for brushite. The two phases were mixed quickly 

with a spatula, the mixture was deposited onto the lower plate, 

and experiments started as fast as possible. To account for the 

time elapsed during mixing and pouring, the timer was started 

at the moment of mixing the liquid with powders.

Measurement of complex Young modulus and phase 

angle were taken every 6 seconds for up to 2,500 seconds. 

Each sweep experiment was carried out on three indepen-

dently prepared cement samples, and results are presented 

as mean and standard deviation.

statistical analysis
The influence of paraben nanoparticles on mechanical and 

cytotoxic properties of bone cement was tested through 

ANOVA using SPSS (12.0) (SPSS Inc., Chicago, IL, 

USA). For all analyses, P,0.05 was considered statistically 

significant.

Results
antimicrobial activity of bone cements 
containing nanoparticles
In general, it was found that the nanoparticles of propylpa-

raben exhibited a significantly greater antimicrobial activity 

toward all bacteria tested than the propylparaben as raw 
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material powder without conversion into nanoparticles. 

The nanoparticles were also found to be more potent than 

the physical mixture of all nanoparticle components, which 

has shown MICs about twice as high as the nanoparticles 

(Table 1). SDS and PVP alone did not exhibit antimicrobial 

activity at the concentrations corresponding to the quantities 

present at the MIC characteristic of the nanoparticles (data 

not shown).

Examples of growth curves for each of the bacteria tested 

on all bone cement samples are presented in Figures 1–4.  

In all cases, when no antimicrobial nanoparticles were 

present, the OD
600

 quickly started to increase (lag phase about 

1–2 hours), reaching the stationary phase after 4–6 hours 

depending on the bacterium. With increasing concentration 

of nanoparticles, the lag phase duration expanded, when 

1% w/w was added to brushite, no growth was detected for 

all bacteria but MRSA, hydroxyapatite containing 5% w/w 

achieved the same results, while 7% w/w of nanoparticles 

were required for PMMA bone cements.

Generally, 0.1% w/w of nanoparticles in brushite gave 

growth curves not dissimilar to control samples, apart from 

S. aureus; 0.5% w/w in hydroxyapatite and 1% w/w in 

Figure 1 examples of Staphylococcus aureus growth curves on (A) brushite, (B) hydroxyapatite, and (C) PMMa containing antimicrobial organic nanoparticles.
Notes:  0%,  0.1%,  0.5%,  1%,  2%,  5%,  7%.
Abbreviations: NP, nanoparticle; OD600, optical density at 600 nm; PMMa, poly(methyl methacrylate).

Table 1 MIc (μg/ml) of pure propylparaben, organic nanoparticles, 
and hand mixture of nanoparticles components

Bacteria NP Mixture of NP  
components

Propylparaben

S. aureus 80 160 2,500
Mrsa 80 160 1,250
A. baumannii 160 160 1,250
S. epidermidis 160 300 2,500

Abbreviations: MIc, minimal inhibitory concentration; Mrsa, methicillin-resistant 
Staphylococcus aureus; NP, nanoparticles; S. aureus, Staphylococcus aureus; A. baumannii, 
Acinetobacter baumannii; S. epidermidis, Staphylococcus epidermidis.
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PMMA were ineffective. The bacteria tested exhibited dif-

ferent responses to the antimicrobial compounds depending 

on the type of bone cement. For example, A. baumannii 

was the most affected by paraben in hydroxyapatite bone 

cement as it was the only one not able to grow with 1% w/w 

of nanoparticles, but was capable of surviving 0.5% w/w 

of nanoparticles in brushite bone cement, while S. aureus 

and S. epidermidis were not. MRSA was generally the least 

sensitive among the bacteria studied.

A more in-depth analysis of the growth curve is pre-

sented for each type of bone cement in Tables 2–4, where 

all growth rates are presented alongside the lag phases. It 

is evident that bacteria exposed to bone cements contain-

ing increasing concentrations of antimicrobial compounds 

exhibited generally slower growth rates due to a lack of 

growth detected.

cytotoxicity and mechanical properties 
of bone cements containing nanoparticles
The analysis of the possible influence of the paraben nanopar-

ticles on the cytotoxic (Figure 5) and mechanical (Figure 6) 

properties of the bone cement revealed that concentrations 

capable of preventing infections (1% w/w for brushite,  

5% w/w for hydroxyapatite, and 7% w/w for PMMA) had 

no adverse effects (P.0.05).

When immersed in fluids (PBS), the bone cement sam-

ples increased in weight during the first 4–5 days because 

of water uptake, and after that, the amount of fluid in the 

samples remained stable (data not shown). No  difference 

was observed between the different concentrations of 

propylparaben nanoparticles encapsulated in bone cement 

(P.0.05). Furthermore, the water uptake results in a 

lower compression strength of all types of bone cement, 

Figure 2 examples of Mrsa growth curves on (A) brushite, (B) hydroxyapatite, and (C) PMMa containing antimicrobial organic nanoparticles.
Notes:  0%,  0.1%,  0.5%,  1%,  2%,  5%,  7%.
Abbreviations: Mrsa, methicillin-resistant Staphylococcus aureus; NP, nanoparticle; OD600, optical density at 600 nm; PMMa, poly(methyl methacrylate).
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Figure 3 examples of Acinetobacter baumannii growth curves on (A) brushite, (B) hydroxyapatite, and (C) PMMa containing antimicrobial organic nanoparticles.
Notes:  0%,  0.1%,  0.5%,  1%,  2%,  5%,  7%.
Abbreviations: NP, nanoparticle; OD600, optical density at 600 nm; PMMa, poly(methyl methacrylate).

regardless of the presence of propylparaben nanoparticles 

(Figure 6).

Propylparaben release from bone 
cements
The release of propylparaben (Figure 7) from the samples 

containing the same amount of nanoparticles also indicated 

that the totality of the paraben is released from the calcium 

phosphate bone cement, but only about 5% of the initial 

amount of propylparaben is released from PMMA. Further-

more, the samples were releasing propylparaben continuously 

for the first 3–4 days. The amount of propylparaben released 

from hydroxyapatite and brushite was almost an order of mag-

nitude higher than PMMA despite the initial concentrations 

in all three cases being very similar, and so was chosen as the 

minimum effective against the bacteria tested. Additionally, 

the concentration of propylparaben in the release medium for 

PMMA bone cement after 24 hours of elution, was closer to 

the MIC of the bacteria used in this study than the calcium 

phosphate bone cement that exhibited significantly higher 

concentrations of propylparaben than MIC.

settling times of bone cements containing 
nanoparticles
The possible influence of the organic nanoparticles on the 

kinetics of bone cement settling was investigated through 

the evolution of the rheological properties of bone cement 

dough after mixing (Figure 8). In all cases, the storage 

modulus (G′) was greater than the loss modulus (G″); the 

pattern followed a monotonic increase at an initial fast rate 

that slowed down reaching a plateau. For each type of bone 

cement, the presence of paraben nanoparticles required a 

slightly longer settling time (defined as the time needed 

for the dough to reach constant rheological properties). It 

was also evident that PMMA is the quickest type of bone 

cement to set (about 150 and 300 seconds for gentamicin 
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Figure 4 examples of Staphylococcus epidermidis growth curves on (A) brushite, (B) hydroxyapatite, and (C) PMMa containing antimicrobial organic nanoparticles.
Notes:  0%,  0.1%,  0.5%,  1%,  2%,  5%,  7%.
Abbreviations: NP, nanoparticle; OD600, optical density at 600 nm; PMMa, poly(methyl methacrylate).

and paraben containing bone cements, respectively), while 

hydroxyapatite required the longest (about 1,000 and 

2,000 seconds for gentamicin and paraben containing bone 

cements, respectively).

Discussion
Parabens uses and safety
Propylparaben exhibits hydrophobic properties, therefore 

its use is limited to nonwatery systems; we have shown that 

the encapsulation of this drug in nanoparticles increases 

the hydrophilicity, resulting in stable dispersions and 

employability in aqueous environments thus expanding its 

possible applications. Despite the widespread applications 

of parabens, some concerns were raised regarding their 

potential safety as concentrations in environmental samples, 

human blood, breast milk, and tissues of these compounds 

had been steadily growing.29 Possible estrogenic effects 

have been suggested,30 and as they have been also found in 

breast cancer tissues, this led to the suggestion that parabens 

can adversely influence breast cancer formation.31,32 How-

ever, evidence of in vivo paraben-induced developmental 

and reproductive toxicity lacks consistency and physi-

ological coherence as stated by Witorsch and Thomas.33 

After many reviews and research, their use was found to 

be safe.34,35

Infections and antimicrobial bone 
cements
The possibility of a microorganism to induce infection in a 

particular site of the body depends on its ability to survive 

and colonize that particular area; this is dictated by the envi-

ronmental conditions of that location. The most common 

sources of postorthopedic infections are S. aureus, MRSA, 

and S. epidermidis;36,37 more recently, A. baumannii has given 
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Table 2 lag phase and growth rate of the growth curves of survi-
val on brushite bone cement containing organic nanoparticles

Concentration of  
nanoparticles (% w/w)

λ (hour) Growth rate  
(hour−1)

S. aureus

0 1.18±0.12 0.25±0.07
0.1 6.61±1.06 0.35±0.14
0.5 .24 No growth
1 .24 No growth
5 .24 No growth

Mrsa
0 0.91±0.28 0.27±0.06
0.1 1.32±0.17 0.28±0.03
0.5 2.27±0.35 0.31±0.04
1 10.00±1.11 0.09±0.01
5 .24 No growth

A. baumannii
0 1.67±0.19 0.30±0.02
0.1 1.43±0.08 0.41±0.06
0.5 3.49±0.63 0.15±0.07
1 .24 No growth
5 .24 No growth

S. epidermidis
0 3.29±0.71 0.18±0.03
0.1 4.13±0.31 0.19±0.03
0.5 .24 No growth
1 .24 No growth
5 .24 No growth

Note: Mean ± standard deviation.
Abbreviations: S. aureus, Staphylococcus  aureus; A. baumannii, Acinetobacter baumannii; 
S. epidermidis, Staphylococcus epidermidis; Mrsa, methicillin-resistant Staphylococcus 
aureus.

Table 3 lag phase and growth rate of the growth curves of survival 
on hydroxyapatite bone cement containing organic nanoparticles

Concentration of  
nanoparticles (% w/w)

λ (hour) Growth rate  
(hour−1)

S. aureus

0 0.11±0.02 0.15±0.02
0.1 0.13±0.02 0.16±0.03
0.5 2.11±0.08 0.12±0.03
1 3.81±0.36 0.06±0.02
5 .24 No growth

Mrsa
0 1.25±0.22 0.27±0.03
0.1 1.44±0.26 0.31±0.05
0.5 2.25±0.35 0.31±0.04
1 10.02±0.73 0.26±0.07
5 .24 No growth

A. baumannii
0 2.29±0.36 0.22±0.01
0.1 2.34±0.43 0.18±0.02
0.5 1.78±0.13 0.20±0.02
1 .24 No growth
5 .24 No growth

S. epidermidis
0 1.60±1.24 0.17±0.00
0.1 1.23±0.55 0.14±0.01
0.5 2.12±0.25 0.14±0.02
1 8.45±1.27 2.42±5.22
5 .24 No growth

Note: Mean ± standard deviation.
Abbreviations: Mrsa, methicillin-resistant Staphylococcus aureus; S. aureus, 
Staphylococcus  aureus; A. baumannii, Acinetobacter baumannii; S. epidermidis, Staphylococcus 
epidermidis.

rise to concerns.38 The choice of bacteria tested in this work 

was based on such notions.

The antimicrobial protocols employed here are based 

on the assumption that bacteria attach to the bone cement 

sample during the initial contact with the suspension; cells 

capable of surviving the antimicrobial compound detach and 

are able to grow in the diluted broth.7,8,39 The growth curve 

using this suspension was recorded; the antimicrobial activity 

of the nanoparticles embedded in bone cement is positively 

linked to the length of the lag phase of the growth curves 

(Figures 1–4). Variations between samples are determined by 

the initial bacterial concentration in the broth containing the 

bone cement sample after 24 hours incubation post bacterial 

exposure. This is in virtue of the fact that cell concentrations 

below a certain threshold are not detectable through OD 

measurements, hence, the lower the initial cell concentration, 

the longer the time required to reach such cell numbers.40 

Additionally, the decreasing growth rates of the surviving 

bacteria exposed to increasing concentrations of nanoparticles 

(Tables 2–4) demonstrated that the antimicrobial effect is not 

only limited to a reduction of the viable microbial population, 

but is also an indication that the viable cells did not exhibit 

the same phenotype of the cells in contact with the paraben 

nanoparticles. This slower growth rate could be attributed to 

irreversible cell damage or to the release of sublethal amounts 

of antimicrobial agents from the bone cement samples.

The efficacy of the paraben nanoparticles embedded in 

bone cement appeared to follow the pattern indicated below: 

brushite . hydroxyapatite . PMMA (Tables 2–4). This 

could be attributed to the different settling temperatures of 

the materials as this is one of the most significant differences 

between the two bone cement types. For CPC, this is gener-

ally the body temperature, while for PMMA the temperature 

can reach up to 70°C−80°C during settling. Polymerization 

is an exothermic reaction and is the leading cause for bone 

damage at the interface between bone cement and bone.41 

Parabens are thermally stable42 and, therefore, temperature 

alone cannot be responsible for such decreased activity; 

however, radicals can interact with the paraben molecules and 

cause these molecules degradation, thus the active quantity 
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Gentamicin and tobramycin are the most common 

antibiotics used in PMMA bone cement43 in virtue of their 

thermal stability and broad spectrum; they are effective 

against β-lactam resistant strains such as MRSA. How-

ever, S. epidermidis strains such as RP62a and various  

Table 4 lag phase and growth rate of the growth curves of 
survival on PMMa bone cement containing organic nanoparticles

Concentration of  
nanoparticles (% w/w)

λ (hour) Growth rate  
(hour−1)

S. aureus
0 0.76±0.03 0.33±0.09
1 0.82±0.04 0.35±0.10
2 1.04±0.07 0.11±0.04
5 11.07±1.04 0.01±0.01
7 .24 No growth

Mrsa
0 0.82±0.16 0.18±0.01
1 1.23±0.11 0.27±0.06
2 1.19±0.13 0.24±0.04
5 9.39±0.67 0.28±0.07
7 .24 No growth

A. baumannii
0 1.91±0.02 0.20±0.01
1 1.96±0.28 0.28±0.04
2 2.64±0.50 0.13±0.02
5 10.82±1.16 0.08±0.01
7 .24 No growth

S. epidermidis
0 1.32±0.08 0.15±0.03
1 1.39±0.04 0.16±0.03
2 2.03±0.24 0.08±0.04
5 9.24±0.42 0.04±0.02
7 .24 No growth

Note: Mean ± standard deviation.
Abbreviations: Mrsa, methicillin-resistant Staphylococcus aureus; PMMa, 
poly(methyl methacrylate); S. aureus, Staphylococcus  aureus; A. baumannii, Acinetobacter 
baumannii; S. epidermidis, Staphylococcus epidermidis.

Figure 6 compression strength of bone cements with 0% (control) and with 
organic nanoparticles (7% w/w for PMMa, 5% w/w for hydroxyapatite, and 1% w/w 
for brushite) freshly prepared (A), and after 7 days in PBs at 37°c (B).
Note: Black columns represent control samples, and white columns represent bone 
cement containing nanoparticles.
Abbreviations: PMMa, poly(methyl methacrylate); PBs, phosphate buffer solution.

Figure 5 MTT assay for bone cements containing nanoparticles as ratio between 
OD540 of samples containing paraben nanoparticles (7% w/w for PMMa, 5% w/w for 
hydroxyapatite and 1% w/w for brushite) and control (same type of bone cement 
without nanoparticles).
Abbreviations: NP, nanoparticle; OD540, optical density at 540 nm; PMMa, 
poly(methyl methacrylate).

Figure 7 concentration in the release medium of propylparaben from bone 
cements prepared with propylparaben nanoparticles.
Note:  7% w/w for PMMa,  5% w/w for hydroxyapatite, and  1% w/w for 
brushite.
Abbreviation: PMMa, poly(methyl methacrylate).

remaining after bone cement settling is lower than the initial 

amount, requiring a greater quantity in PMMA bone cement 

to achieve the same results as in CPC. Furthermore, the dif-

ferent porosity of the bone cements can be a cause of the 

different antimicrobial agent release.
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A. baumannii, both tested in this work, are resistant to these 

drugs,44,45 rendering the use of these two antibiotics ineffec-

tive when such strains are involved. We tested the three types 

of bone cements supplemented with gentamicin 2% w/w (the 

commercial formulation of this antibiotic in bone cement) 

against the four pathogens, and the growth of S. epidermidis 

was not prevented (Figure S4). Our results demonstrated that 

organic nanoparticles made of propylparaben are effective 

against a wide range of bacteria, including antibiotic-resistant 

strains (Figures 3 and 4) found in orthopedic infections; 

hence, the use of these organic nanoparticles could offer not 

only a possible alternative to antibiotics, but also solve some 

of the problems already associated with antibiotic resistance. 

Moreover, the amount of paraben nanoparticles required 

to provide effective antimicrobial activity is similar to the 

amount of gentamicin and tobramycin used (2%–4% w/w) 

and is significantly lower than other antimicrobial agents, 

such as chitosan11 and quaternized chitosan derivative,44 that 

require about 20%–30% w/w.

Despite providing antimicrobial activity, in order to be 

a viable option, the organic nanoparticles must not induce 

negative effects on the other bone cement properties. For 

this reason, the cytotoxicity and compression strength of 

bone cements containing the amount of nanoparticles suf-

ficient to exhibit antimicrobial capacity (7% w/w for PMMA,  

5% w/w for hydroxyapatite, and 1% w/w for brushite) were 

determined. The results demonstrated that the nanoparticles 

did not have a detrimental effect on these two essential 

characteristics (Figures 5 and 6).

The release of propylparaben from the bone cement 

samples demonstrated a typical elution profile (Figure 7). 

However, the antimicrobial activity of the samples did not 

appear to be exclusively dependent on the amount of paraben 

released. For example, PMMA containing 7% w/w nanopar-

ticles was as effective as 1% w/w in brushite, but returned 

a lower concentration in the medium. As the protocol to 

assess the antimicrobial activity employed in this work is 

based on the survival of the cells attached to the surface of 

′
″ 

′
″

′
″

Figure 8 storage (G′) and loss (G″) modulus of (A) brushite, (B) hydroxyapatite, and (C) PMMa bone cements containing 2% (w/w) of gentamicin (circles) or propylparaben 
nanoparticles 7% w/w for PMMa, 5% w/w for hydroxyapatite, and 1% w/w for brushite (triangles).
Note: Full symbols (G′) and empty symbols (G″).
Abbreviation: PMMa, poly(methyl methacrylate).
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the sample,6–8,39 then for a material to exhibit antimicrobial 

activity, it is not required for the drug in question to elute. The 

hydrophobicity of propylparaben is likely to be the reason 

for its low concentration in the medium when partitioning 

between PMMA and water. Additionally, no propylparaben 

remained embedded in the samples as the cumulative release 

reached 100% of the initial amount; however, this was not 

the case for PMMA where only about 5% was released. The 

entrapment of other antimicrobial compounds (such as antibi-

otics) in PMMA bone cement is a well-known phenomenon, 

and in our particular case, it could be a consequence of the 

hydrophobicity of propylparaben or of its inactivation during 

the polymerization.

Material properties of bone cements
The time needed for the bone cement to develop the final 

mechanical properties (settling time) is a critical parameter 

that dictates operating procedures, both during application 

and after during patient recovery. Therefore, the introduction 

of the paraben nanoparticles into the bone cement formula-

tion must not result in settling time greatly dissimilar from 

bone cement containing the commonly used gentamicin  

(2% w/w). We have proved (Figure 8) that the settling time 

of all three types of bone cements was slightly longer when 

paraben nanoparticles are present compared to gentamicin 

using rheological testing that is a standard procedure to 

investigate bone cement formulations. It appears that the 

use of the novel antimicrobial agents would not alter the 

already established procedures for the application of bone 

cement that are being employed. The profiles we detected 

are also comparable to those presented by others,46 par-

ticularly the similar values of G′ and G″ for PMMA bone 

cement.47

Conclusion
Parabens are nonantibiotic antimicrobial compounds widely 

used in consumer products and considered safe as no satisfac-

tory evidence has been found indicating any possible links 

to adverse effects.

We have demonstrated in this work that nanoparticles 

made from parabens can be used in bone cement to prevent 

the onset of infections. The efficacy depends on the type of 

bone cement, for example, calcium phosphate bone cements 

require a lower amount of parabens than the acrylic type 

(PMMA) in virtue of the lower settling temperature of the 

former. Our results prove that parabens could be employed 

in bone cement as alternatives to antibiotics, whose activ-

ity is gradually decreasing as a consequence of the rise in 

antibiotic-resistant microorganisms. Furthermore, the para-

ben nanoparticles are effective also against bacterial strains 

already resistant to some of the common antibiotics used in 

bone cements. No detrimental effect was detected on either 

compression strength or cytotoxicity of the bone cement 

when the paraben nanoparticles were added.
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