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Abstract: Prostate cancer is one of the leading causes of cancer-related deaths among the 

Caucasian adult males in Europe and the USA. Currently available diagnostic strategies for 

patients with prostate cancer are invasive and unpleasant and have poor accuracy. Many patients 

have been overly or underly treated resulting in a controversy regarding the reliability of current 

conventional diagnostic approaches. This review discusses the state-of-the-art research in the 

development of novel noninvasive prostate cancer diagnostics using nanotechnology coupled 

with suggested diagnostic strategies for their clinical implication.
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Introduction
As the name implies, prostate cancer originates from a gland in the male reproductive 

system found near the bladder. It is one of the leading causes of cancer-related deaths 

among Caucasian males in the USA, and it is the most commonly diagnosed form of 

cancer in both Europe and the USA.1,2 A statistical report predicts new cases and deaths 

in the USA to be 220,800 and 27,540, respectively, for 2015. As shown in Figure 1, 

the disease can advance to a more aggressive malignant form, which can be stratified 

into four discrete stages: I, II, III, and IV. Upon biopsy examination, the stages are 

determined and stratified according to Gleason’s score method.3,4 Stages I and II are 

localized in the prostate gland, whereas stages III and IV exhibit regional spread to  

the nearby bladder and distant spread to other organs, such as liver and bone, which 

are far away from the prostate gland.5–11 The prevalence of local, regional, and distant 

forms of the cancer is known to be 81%, 12%, and 4%, respectively. No apparent 

symptoms appear in stage I, but they start to show and become apparent as the disease 

progresses. Patients diagnosed with prostate cancer at stage I, II, or III have a high 

5-year survival rate, but patients with stage IV cancer have a low 5-year survival rate 

of 27%, highlighting the importance of early detection.

Currently available clinical diagnostic methods for prostate cancer include 

biochemical assay,12–20 biopsy,21–27 digital rectal examination (DRE),28–32 and tran-

srectal ultrasonography33–49 as described in Figure 2. Among these methods, the 

biochemical assay is used for initial screening. The biochemical assay measures 

serum – a term meaning the processed medium from whole blood – prostate-specific 

antigen (PSA) level where a concentration 4 ng/mL is considered to indicate a 

risk of prostate cancer.12–20 Since approval by the US Food and Drug Administration 

(FDA) 25 years ago, it has been used as the gold standard for the initial screening 

of the disease.

The patients with 4 ng/mL PSA level undergo further DRE. DRE is performed 

in order to inspect the prostate gland condition by examining its texture and size. 
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Combined with a PSA screening result, the decision is made 

whether to do a biopsy for further examination. However, 

DRE is not useful for the early detection of prostate tumor 

because of a possibility that a tumor could originate from 

the ventral or other untouchable sides of the gland.28–32 In 

addition to the poor sensitivity of the examination, it is an 

unpleasant procedure for a patient to undergo.

After DRE patients undergo transrectal ultrasonography. 

It can offer a visualization of the gland for examination and 

can be used to guide immediate, subsequent biopsies.33–49 

Upon detecting a suspicious portion of the gland, specimens 

are collected. Typically, 12 specimens are collected and 

evaluated according to the Gleason scoring system, and the 

most reliable, accurate diagnosis is finally made.21–27,50–56 

Patients may undergo radical prostatectomy57 or hormone 

therapy depending on the extent of malignancy.58–65 The 

major drawback of a biopsy is the possibility of a potential 

infection caused by microbes that have migrated from 

the rectum which can cause inflammation in the diseased 

gland.

In addition to the traditional diagnostic methods, a bone 

scan is also carried out to scan the whole body for the pres-

ence of metastatic prostate cancer. ProstaScint- scan, positron 

emission tomography (PET) scanning, and computer-aided 

tomography (CT) with PET have all been used for pros-

tate cancer detection. Prostate-specific membrane antigen 

(PSMA) has been selected as a target in the detection of 

prostate cancers with these techniques.66–72

A notable molecular imaging technology is 68Ga-PSMA 

PET/CT, which targets PSMA as the biomarker. The FDA 

has recently approved a clinical trial of this technology. It is 

the first time in the history of the development of prostate can-

cer diagnosis, prognosis, or monitoring, where a diagnostic 

tool is used to target PSMA. This technique uses an agent that 

is a monoclonal antibody to detect the intracellular domain 

of PSMA. It is possible that this agent may only capture the 

dead cells of the prostate cancer cells.

Despite the fact that PSA has been the gold standard for 

the initial screening, whether PSA screening has provided a 

major contribution in early prostate cancer detection remains 

•

•

•

•

•

•
•

Figure 1 Prostate cancer diagnosis statistics.
Notes: Prostate cancer accounts for 27% of all male cancer cases meaning every one out of four men is diagnosed with prostate cancer in the USA. The localized, regional, 
and metastasized tumor tissue accounts for 81%, 12%, and 4%, respectively, of all prostate cancer diagnosis with the unknown stage remaining. Typical subjects with 
prognoses to have prostate cancer are 85 persons per 100 persons after the initial screening, while the other 15 persons are not predicted to have prostate cancer. Only 
18 persons of the 85 persons with positive initial screening result are diagnosed with prostate cancer. Surprisingly, the other 15 persons, who are believed to have no prostate 
cancer based on the initial screening result, are turned out to be diagnosed with prostate cancer. Data from Siegel et al.1

Abbreviations: DRE, digital rectal examination; PSA, prostate-specific antigen; TRUS, transrectal ultrasonography.
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uncertain.73,74 Its poor sensitivity and specificity has led to 

false-negative (15%) and false-positive (66%) diagnoses, 

which leads to a loss of confidence in the biomarker as an 

effective tool for initial screening.75–79 As a consequence, 

almost two-thirds of prostatic biopsies made annually in the 

USA and Europe are unnecessary.1,2

To circumvent the aforementioned procedures, an accu-

rate biochemical assay is desperately needed. However, 

the accuracy and preciseness of the prostate cancer initial 

screening is currently being challenged. Inaccurate diagnoses 

lead to overdiagnosis or undertreatment, which exacerbates 

the physiological state of the tissue, makes treatment more 

difficult, and remains a persistent clinical problem.78–82 The 

inaccuracy of conventional, initial screening is largely due to 

the drawbacks of the biochemical assay and DRE described 

in Figure 2. Improvement of the diagnosis accuracy will con-

tribute to bringing the best clinical decision to match a patient 

to an appropriate therapy. Thus, it is inevitable to develop a 

novel diagnostic strategy that will eliminate the drawbacks 

of the methods and accurately diagnose prostate cancer. An 

accurate diagnosis even at the biochemical assay level will 

not only minimize the complications but also maximize the 

efficacy of subsequent therapies for the diagnosed patients. 

Moreover, an earlier diagnosis also demands a more accurate 

probe that requires highly sensitive and specific sensors to 

detect highly reliable biomarkers. Thus, just like for any 

other diseases, an accurate diagnosis is very important for 

delivering the appropriate treatment to the right patient. In 

this regard, nanotechnology with a new biomarker for pros-

tate cancer has been chosen as a promising tool for future 

noninvasive diagnosis of prostate cancer.

Nanotechnology has been employed in the develop-

ment of various biomedical applications such as drug 

development.83–104 On the other hand, nanotechnology is 

also being employed for diagnostic development.101,103 The 

rationale for the employment of diagnostics development 

is to achieve a higher accuracy of diagnosis. Improve-

ments in the sensitivity and specificity of nanotechnology 

are warranted and promising.105,106 Recent studies have 

demonstrated such improvements and suggested it as a 

promising tool for next-generation diagnostics, because 

such improvements could contribute to making a more 

accurate diagnosis.86,107–115

In addition to employing nanotechnology, an accurate 

initial screening also requires a highly reliable prostate cancer 

biomarker. Since biomarkers reflect the physiological state 

of tissue from which they are secreted, it is best to use one 

that is both tissue and cancer specific. PSA itself is only 

Biochemical assay

• High percentage of
 • False positive (~67%)
 • False negative (~15%)
• The main driver leading to
   unnecessary biopsy

• Unpleasant procedure
• Subjectivity
 • Inter- and intrapersonal
    variation of examiners
 • Biased diagnosis

• Not patient-friendly method
• Exhausting procedure
• Unwanted side effects
 • Infection caused by biopsy
 • Erectile dysfunction

DRE TRUS
and biopsy

Current challenges
for new diagnosis

Application of
nanotechnology
as the solution

• Noninvasive
• Accurate
• Safe

• Patient friendly
• Highly sensitive

{ }
Figure 2 Current conventional approach of prostate cancer diagnosis.
Notes: Current conventional diagnostic methodologies for the patients with prostate cancer hold several drawbacks. Patients with PSA levels 4–10 ng/mL are subjected to 
further examinations. The assay gives a significant number of false positives, which raises a question of its reliability. Concurrently, DRE is performed in an initial screening 
for prostate cancer but introduces subjectivity to the examination. The last method is TRUS, which takes a visual image of the tumor tissue in the gland, and, in most cases, 
biopsies are performed with a risk of potential infections from the rectum. Due to the drawbacks of current diagnosis, a novel, noninvasive, effective, initial screening prior 
to diagnosis is in high demand with excellent sensitivity and accuracy.
Abbreviations: DRE, digital rectal examination; PSA, prostate-specific antigen; TRUS, transrectal ultrasonography.
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tissue specific rather than cancer specific which has resulted 

in controversy regarding its reliability for initial screening of 

prostate cancer. In order to achieve a more reliable biochemi-

cal assay other biomarkers that are specific to prostate cancer 

beyond PSA are highly favored. Detecting biomarkers that 

are specific to prostate cancer from a body fluid would make 

novel diagnosis less invasive and more accurate.

Herein, this review introduces the current state of nano-

technology applied toward the development of diagnostics 

for prostate cancer. From the standpoint of diagnostic devel-

opment for prostate cancer, the relevant research trend is 

discussed along with clinical implications of nanotechnology-

based prostate cancer detection in initial screening.

From bodily fluids to 
nanotechnology-based bioassays
Bodily fluids for noninvasive diagnosis
Semen has become a promising proximal fluid for prostate 

cancer diagnosis by detecting related biomarkers and moni-

toring the disease’s pathological process.116 Due to the fact 

that seminal fluids are directly transported from prostate 

glands, they contain more biomarkers than other fluids such 

as serum and urine.116

Serum is plasma after the removal of blood cells. Since 

all cells require oxygen that is delivered through the circula-

tory system, serum contains biomarkers of diseased tissues 

from any location of the body. Thus, serum is an outstanding 

source for diagnosis. However, the environment of serum 

is likely to hinder detection of biomarkers due in part to 

proteolytic degradation activity and a high concentration of 

albumin, which takes up to 50% of the weight of the whole 

serum proteome.117–121 Low-level protein biomarkers are 

subjected to degradation by proteases and peptidases, which 

divide into different classes. Typical protease classes are 

aspartic, cysteine-, serine-, and metallopeptidases. Peptidases 

belong to one of the three classes, including endo-, exo-, 

and carboxypeptidases. High-abundant proteins can create 

a masking effect by noncovalently attaching to the low-level 

protein biomarkers.

Urine is rich in proteome, including the biomarkers of 

various diseases. Since urine comes from blood through 

glomerular filtration, urine is in contact with the genitourinary 

tract that releases biomarkers of the disease. Urine has gained 

interest as a source or medium for diagnosis due to it being 

a noninvasive procedure. Many reports have demonstrated 

that urine contains a variety of biomarkers that could indi-

cate diseases.122–126 Urine contains both urinary and systemic 

information since urine is in direct contact with urogenital 

organs and gets filtered from serum via glomerular filtration. 

Considering genitourinary organs are in direct contact with 

the body fluid, it is appealing to use urine for prostate cancer 

diagnoses in a noninvasive manner.127 However, some chal-

lenges lie in using urine as the source because of the low pH 

level, high salt concentrations, and interference from other 

biomarkers of higher abundance.128

Reliable biomarkers and emerging 
nanotechnology for noninvasive 
diagnostic strategies
As a source for diagnosis, various bodily fluids have been 

exploited because they contain metabolized biomolecules 

that are biomarkers of diseases. Figure 3 illustrates the 

typical body fluids of semen,116 serum,129 and urine.127,129 

The wide variety of biomarkers from the bodily fluids 

indicates the body’s physiological or pathophysiological 

state. For example, diseased tissues alter the physiologi-

cal metabolisms and produce nonphysiological levels of 

biomolecules, enzymatic activity, or a new biomolecule 

species such as TMPRSS2:ERG that does not exist in the 

physiological state otherwise. The fusion gene is a result of a 

rearrangement on chromosome 21, and the TMPRSS2:ERG 

fusion protein is an oncogene that deregulates cytological 

metabolisms.130–144 The biomolecules are diverse in types, 

which are divided into carbohydrates, metabolites, nucleic 

acids, and proteins.127

The current FDA-approved biomarker PSA shows poor 

sensitivity and specificity and often leads to negative biopsies 

indicating its poor specificity in prostate cancer diagnosis. In 

order to compensate for the limitations of PSA as the effective 

biomarker for prostate cancer, novel biomarkers beyond PSA 

have been proposed and are under investigation. The main 

idea with novel biomarkers is exploiting them in conjunction 

with PSA. For instance, the currently FDA-approved prostate 

cancer gene 3 test requires urinary PSA level information so 

that it can generate a prostate cancer gene 3 score that would 

aid the diagnostic decision making.17,145 Thus, in addition to 

the biomarker discovery, a previous study has used panels 

of biomarkers for prostate cancer detection and evaluated 

their specificity toward prostate cancer detection.127 The 

trend with use of a panel of biomarkers for prostate cancer 

detection indicates the realization that there is no such thing 

as a single perfect biomarker.

The more reliable biomarkers they are, the more effec-

tive prognosis or initial screening will be. Aspiration for 

noninvasive patient-friendly prostate cancer detection is 

one of the main drivers of novel biomarker discovery from 
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bodily fluids. These features will add an enormous benefit by 

minimizing the number of unnecessary nonpatient-friendly 

DRE and invasive biopsies for prognosis and diagnosis. The 

conventional methods, PSA assay and DRE, for initial screen-

ing put a huge burden on the patients considering the high 

false-positive rate of initial screening leading to unnecessary 

repeated biopsies.

There is no nanotechnological approach made in clinical 

settings, yet. Attempts are currently underway to develop bio-

assays with high sensitivity and specificity that could analyze 

bodily fluids, and nanotechnology has emerged as a promis-

ing tactical tool. However, there are challenges in detecting 

the novel biomarkers in body fluids. Urine, especially, has a 

range of different pH levels, high concentrations of salts, and 

interferences by a variety of high abundance biomolecules, 

which all contribute to the obstruction of detecting the desired 

biomarkers with low sensitivity.128 Therefore, the major tasks 

in the development of bioassays would be achieving a high 

sensitivity as well as specificity in the detection of biomarkers 

through nanotechnology.

Highly sensitive PSA detection 
through nanotechnology
As Table 1 shows, the vast majority of studies have developed 

various nanotechnology-based bioassays for the detection of 

PSA in serum, whereas only a few studies have utilized the 

other body fluids. The larger number of studies with serum 

may be attributed to the longer history of serum as a bodily 

fluid for diagnosis. The first nanotechnological approach 

for prostate cancer screening was serum detection of PSA 

with a cantilever.146 The sensitivity was recorded in terms 

of the limit of detection, and it was as low as 200 pg/mL.  

The principle of this bioassay method is by measuring the 

difference in oscillation frequency between the PSA bound 

and unbound cantilevers.

Of all the developed nanotechnology-based bioassays, 

the electrochemical assay is the most popular method and 

has also achieved the highest sensitivity with 0.9 fg/mL 

in its detection limit and 1 ng/mL being the highest. The 

most common material for this method is carbon nanotubes 

(CNT), which is the typical material for electric sensing 

systems. CNT is an excellent signal transducer for achiev-

ing a high sensitivity. Biomedical functionalization with 

the PSA antibody (anti-PSA) conjugation onto the surface 

of the material allowed for the detection of protein PSA 

in serum samples. The captured PSA alters the current 

that runs through the CNT giving rise to detection.147–159 

Electrochemiluminescence assays took advantage of this in 

conjugation with the nature of titanium nanotubes to achieve 

a low detection limit of 1 fg/mL.160

The most popular nanomaterial is gold either as nanopar-

ticle or as a nanopore. Only this material has been utilized 

Figure 3 New diagnostic strategy based on nanotechnology (bioassay) with non-PSA biomarkers in various body fluids.
Notes: Different body fluids are subjected to appropriate sample preparations for subsequent analysis. The sample preparations are carried out to create the best 
environments for the nanoprobe’s function. These specimens may be centrifuged and/or diluted. various biomarkers can be collected or detected by the nanoprobes from 
the body fluids. Nanotechnology-based bioassays detect various prostate cancer biomarkers. The *denotes the detection of epigenetic change.
Abbreviation: PSA, prostate-specific antigen.
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across all the different body fluids, indicative of its popularity in 

nanotechnology applications.151,156,157,161–172 However, its most 

popular form of use is as a nanoparticle. These nanomaterials 

are fabricated to obtain a high surface area to volume ratio to 

maximize the amount of antibodies loaded onto the material.

Although gold nanoparticles (GNPs) have been used the 

most in the electrochemical assay, the trend for PSA detection 

is to use CNT.148,151–154,157,173–175 This trend is most likely for 

proof of principle of the developed bioassays because CNT 

is primarily used for academic purposes rather than for prac-

tical use. GNP was the second most used nanomaterial, an 

indicative of effort to develop more sensitive PSA detection 

methods in serum.151,157,161–166,171,172 Unlike the CNTs, GNPs 

are used across various methodologies (Table 1). GNP is an 

excellent material for conjugation via various methods, thus 

it can load a high amount of targeting moieties that capture 

biomarkers, dye conjugates, or catalysts using its high surface 

area to volume ratio.

Nanotechnology toward non-PSA 
biomarker detection
Non-PSA biomarkers are not only protein biomolecules but 

also nucleic acids and other metabolites. Nucleic acids are 

the building blocks of DNA or RNA strands. Studies listed 

in Table 2 show that the nucleic acids are microRNAs, a 

type of RNAs.182,183

Table 1 PSA and related nanotechnology-based bioassays

Body fluid Method Nanomaterial Limit of detection References

Semen ICG CGP 1/200 dilutiona 167–169
Urine ICG GNP 1 ng/mL 170
Serum BBA GNP 330 fg/mL 172

RCIA 30 pg/mL 162
CLA TiO2/MwCNT 800 fg/mL 176
ODI-CL Fe3O4 GONP 500 pg/mL 177
eA CNT 1 ng/mL 178
eCA AgNP 0.9 fg/mL 155

NPG 750 pg/mL 156
Pd@rGO 10 pg/mL 158
Ag@MSN 15 pg/mL 147
SNP 760 pg/mL 159
STv-CdSe/ZnS QD 20 pg/mL 150
Poly-Si Nw 5 fg/mL 149
MwCNTs-IL-TH 20 pg/mL 154
CNT 1 ng/mL 152
MwCNT-GCe 1 ng/mL 153
SwCNT 1 ng/mLb 148
GNPs/MwCNT–CAS 7 pg/mL 157
MwCNTs/IL/Chit, GNPs–PAMAM 1 pg/mL 151

eCLA Fe3O4@SiO2 NP, Den/GNP 300 fg/mL 171
CdS–TiO2 NT, CdTe–MwNT 1 fg/mL 160
PeDOT/GR, CNS@CdTe 800 fg/mL 179

FA QD 250 pg/mL 180
INPA eNP 830 fg/mL 181
MCA GF 200 pg/mL 146
NABD GNP 1 fg/mL 166
RLS 32 pg/mL 164
SPR 10 ng/mL 165
LSPCF-FOB ~100 fg/mLc 161
SeRS 1 pg/mL 163

Notes: aDiluted the sample to measure limit of detection. bMultiplex detection. cUsed AUC to measure performance of test.
Abbreviations: AgNP, silver nanoparticle; AUC, area under the curve; Ag@MSN, silver hybridized mesoporous silica nanoparticle; BBA, bio-barcode assay; CGP, colloidal 
gold particle; CLA, chemiluminescence; CNS@CdTe, cadmium telluride-coated carbon nanosphere; CNT, carbon nanotube; eA, enzymatic assay; eCA, electrochemical 
assay; ECLA, electrochemiluminescence assay; ENP, europium(III) nanoparticle; FA, fluorescent assay; GF, gold film; GNP, gold nanoparticle; GNPs/MWCNT–CAS, gold 
nanoparticles enwrapped starch-cross linked multiwalled carbon nanotube; GNPs–PAMAM, gold nanoparticles–incorporated polyamidoamine dendrimer; GONP, graphene 
oxide nanoparticle; ICG, immunochromatography; INPA, immunometric nanoparticle-based assay; MCA, microcantilever arrays; MwCNT-GCe, multiwalled carbon nanotube-
modified glassy carbon electrode; MWCNTs/IL/Chit, multiwalled carbon nanotubes/ionic liquid/chitosan; MWCNTs-IL-TH, multiwalled carbon nanotubes-ionic liquid-
thionine; NPG, nanoporous gold; ODI-CL, 1,10-oxalyldiimidazole chemiluminescence; Pd@rGO, palladium nanoparticle decorated-reduced graphene oxide; PeDOT/GR,  
poly(3,4-ethylendioxythiophene)/graphene; poly-Si NW, polycrystalline silicon nanowire; PSA, prostate-specific antigen; QD, quantum dot; RCIA, reverse colorimetric 
immunoassay; RLS, resonance light scattering; SeRS, surface-enhanced Raman scattering; SNP, silicon nanoparticle; STv-CdSe/ZnS QD, streptavidin conjugated CdSe/ZnS 
quantum dot; SwCNT, single-walled carbon nanotube; TiO2/MwCNT, TiO2 nanoparticles coated multiwalled carbon nanotubes; Den, dendrimer; NABD, nucleic acid 
barcode dot; SPR, surface plasmon resonance; LSPCF-FOB, localized surface plasmon coupled fluorescence fiber-optic biosensor.
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These nanotechnology-based bioassays for non-PSA 

biomarker detection point toward a practical use. None of 

these biomarkers are a good reference point for the proof of 

principle. The only thing that matters with these new prostate 

biomarkers is whether the bioassays are capable of captur-

ing the biomarkers for detection. Effective detection ability 

with sufficient sensitivity and specificity in urine requires 

nanotechnology to achieve noninvasive initial screening. 

Notably, there are more studies about the detection of new 

non-PSA markers in urine. In response to clinical researchers,  

a number of studies have tried to detect non-PSA biomark-

ers in urine with some of the recently discovered prostate 

cancer biomarkers.184–189 PSMA, endoglin, and ANXA3 are 

the most promising biomarkers among the new ones, and 

the fact that they are tested with bioassays indicates how the 

studies are intended to show the practicality of the bioassays 

for initial screening.

The non-PSA biomarkers vary in type and require a 

different way of capturing the molecules. As with most 

nanomaterials, immunoassays are the most popular form 

of assay that is functionalized with specific antibodies 

against targeting biomarkers. All the studies used tra-

ditional nanomaterials as shown in Table 2. However, 

a novel material was used for the detection of PSMA. 

This nanomaterial is a nanowire that is conjugated with 

engineered bacteriophage M13. The unconventional nano-

materials are also used to develop new alternative assays. 

Rather than using traditional nanomaterials such as gold 

nanomaterials, quantum dots, and magnetic nanoparticles, 

some studies have utilized and exploited graphene and 

virus-based nanomaterials to achieve a more sensitive 

detection.186,187 The two interesting studies demonstrated 

the use of M13-PEDOT polymer nanowires to detect PSMA 

using an electrochemical assay. Another interesting study 

used a polymer-based nanomaterial which was a single-

walled CNT. The nanotube detected miR-141, a microRNA 

known as a novel prostate cancer biomarker. Like the assay 

method used in the studies with M13-PEDOT polymer, 

the electrochemical assay is used for miR-141 detection 

in serum.183,186,187

A unique study performed multiplex detection by using a 

microarray method with GNPs. This study does not present a 

limit of detection with the biomarkers but instead presents a 

unique aspect of the assay with the sensitivity and specific ity 

for prostate cancer diagnosis. Unlike all the other studies that 

employed nanotechnology shown in Tables 1, 2, and 3, it has 

a clinical implication on how it can be a promising tool for 

future prostate cancer diagnoses.190

Another notable fact from Table 2 is that nanotechnol-

ogy-based assays can be applied for multiplexed detection. 

Nanotechnology is capable of detecting multiple biomark-

ers simultaneously. The use of a panel of prostate cancer 

biomarkers has been suggested for future diagnosis of 

prostate cancer. However, no single study has demonstrated 

multiplexed detection of other body fluids.148,182,190

Considering there are many DNA biomarkers for prostate 

cancer, more studies are warranted for a nanotechnological 

approach for biomarkers. Since almost all known DNA bio-

markers exhibit epigenetic alteration, a sensitive nanoprobe 

is required. Such as alteration as a biomarker candidate for 

prostate cancer would add another layer of reliability to 

biomarker detection. Having diversified biomarkers would 

lead to a more accurate initial screening.

Nanotechnology into device 
platform
Nanotechnology-based bioassays of PSA and non-PSA 

biomarkers have been developed to achieve a higher sen-

sitivity and specificity. The aforementioned techniques 

are built into devices to materialize new sensing platforms 

(Table 3). The development of the device is a convergence 

of nanotechnology and other sensor technologies. The main 

focus is to utilize nanomaterials in conjugation with tradi-

tional sensors to develop a new nanomaterial-bearing sensing 

device platform. This approach has led to higher sensitivity 

and specificity toward the detection of the prostate biomark-

ers, which have not been achieved without nanomaterials. 

The efforts to improve the properties of the devices that are 

intended for the detection of biomarkers from body fluids 

other than serum is because other body fluids – such as urine – 

require a higher sensitivity. However, serum is the most tested 

bodily fluid. One of the device platforms that yielded one of 

the highest sensitivities is the field-effect transistor, which 

mainly utilized CNT as sensing nanomaterial.148,152,178,183,191  

It is interesting to note that the sensitivity differs dramatically 

depending on the sensing nanomaterial used. Compared to 

CNT, polysilicon nanowires demonstrated outstanding sen-

sitivity of ~5 fg/mL of limit of detection.149 A similar device, 

microgapped interdigitated enzymatic assay, achieves even 

higher sensitivity with a 0.9 fg/mL limit of detection.155 

Electrical sensing devices seem to be the most popular sens-

ing method. An interesting aspect of this device is that the 

distance between the two electrodes is in the micrometer 

range, and there is a report of a nanogapped microelectrode 

array.155,198 Optical-based sensing devices such as immu-

nochromatographic strips and quartz crystal microbalance 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6563

Diagnosis of prostate cancer with nanotechnology

(QCM) exhibit a fair sensitivity in comparison to the elec-

trical-based sensing devices.1,4,9,167–169,184

Conclusion
Beginning from the early 2000s, nanotechnology has 

emerged as a therapeutic and diagnostic tool for the treat-

ment and diagnosis of prostate cancer, and more studies have 

been accumulating since. Complications from unreliable 

initial screenings gave a need for researching the develop-

ment of panels of novel prostate cancer biomarkers for 

better initial screening. Many reports have been published 

about the discovery of novel biomarkers. However, for 

the detection of some of the novel biomarkers, the initial 

screening requires a bioassay with a higher sensitivity and 

specificity while keeping it noninvasive. In response to 

these needs, studies have employed nanotechnology to bring 

forth novel bioassay development. Each of the studies has 

demonstrated noninvasive detection of their bioassays in 

one of the body fluids.

Nanotechnology is of particular interest because when 

we shrink the sizes of the existing materials down to the 

nanoscale, new distinct physical properties start to appear. 

As we have harnessed the properties of bulk materials, the 

new physical properties of nanomaterials can also be har-

nessed for various applications such as biomedicine. The 

studies aforementioned have exploited these new properties 

to overcome the limitations that we face with prostate cancer 

initial screening by significantly improving the sensitivity 

and specificity of biomarker detection.

Nanotechnology has proven its potential in prostate 

cancer biomarker detection. Nanotechnology-based bioas-

says have demonstrated a much higher detection sensitivity 

compared to the conventional enzyme-linked immunosorbent 

assay (ELISA) method. The higher sensitivity has much ben-

efit because it means a stable detection – even of a trace of a 

biomarker. Higher sensitivity, therefore, allows for biomarker 

detection via urine instead of serum. The current initial 

screening of prostate cancer requires a blood sample for the 

PSA assay. It usually takes more than a drop to obtain and 

requires a syringe with a needle to acquire. Since this kind of 

operation needs a professional to carry out, the conventional 

method is still not enough to be patient friendly. Furthermore, 

the conventional method needs to be carried out by a profes-

sional, and thus, it cannot be a point-of-care for the general 

population to use. If we are able to take advantage of what 

nanotechnology can offer, it would be a great advancement 

in patient care because it is highly anticipated to minimize 

both overdiagnosis and underdiagnosis of cancer – due to 

its excellent specificity and sensitivity, respectively – and 

could monitor the disease for people at risk of recurrence 

after recovery.

To overcome the limitations of conventional initial 

screening methods, a significant number of studies proposed 

their nanotechnology-based bioassays. Most of the bioassays 

have measured biomarkers – PSA and beyond-PSAs – from 

serum. They outnumber the studies tested from other body 

fluids. Of the studies with serum, the majority of them chose 

PSA as the targeting biomarker. It is quite interesting to 

Table 3 Device platforms for the nanotechnology-based bioassays

Device Body fluid Nanomaterial Limit of detection References

ICGS Semen CGP 1/200 dilution 167–169
ICGS Serum GNP 250 pg/mL 194
Cantilever GF 200 pg/mL 146
CNT network TR SwCNT 1 ng/mL 178
CNT 4-electrode array 8 fM 183

PSMA: 10 ng/mL, PF-4:  
1 ng/mL, IL-6: 30 pg/mL

148

CNT FeT CNT 30 fM 191
1 ng/mL 152

Poly-Si Nw FeT Poly-Si Nw 5 fg/mL 149
MGIDeA AgNP 0.9 fg/mL 155
Microarray GNP N/A 190

1 fM 182
QCM QD 750±10 pg/mL 184
QCM Urine QD 750±10 pg/mL 184

Abbreviations: AgNP, silver nanoparticle; CGP, colloidal gold particle; GNP, gold nanoparticle; CNT, carbon nanotube; CNT FET, carbon nanotube field-effect transistor; 
GF, gold film; ICGS, Immunochromatographic strip; IL-6, interleukin-6; MGIDEA, microgapped interdigitated enzymatic assay; PF-4, platelet factor-4; poly-Si NW FET, 
polysilicon nanowire field-effect transistor; PSMA, prostate-specific membrane antigen; QCM, quartz crystal microbalance; QD, quantum dot; SWCNT, single-walled carbon 
nanotube; TR, transistor.
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note that some studies are not aware of what the clinical 

community demands and what the exact problem with cur-

rent initial screening with PSA detection is. This misunder-

standing should be avoided to make further research more 

effective. Thus, the communication between the clinical 

research and nanotechnology engineering fields must be up 

to date at all times.

PSA has been a good reference to compare with other 

bioassays that have a measured PSA level. Using PSA detec-

tion as the proof of principle for their developed bioassays 

will not be as advantageous as before. The complications of 

the initial screenings turned out to be due to PSA itself being 

an unreliable biomarker rather than the low sensitivity of the 

enzyme-linked immunosorbent assay method. As the notion 

has grown that it is unlikely to find a perfect biomarker to 

diagnose a disease, PSA might still be used as one of the 

panel of prostate cancer biomarkers. To establish other 

prostate cancer biomarkers into the panel, testing the bioas-

say detection of the novel biomarkers is needed. However, 

compared to PSA, other biomarkers have less of a chance 

to get tested in the development of nanotechnology-based 

bioassays.

Clinical trials are important for the development of the 

bioassays in order to make them clinically relevant. Finding 

the cutoff value for a diagnosis or initial screening is another 

problem. Clinical researcher must have their attention on 

these nanotechnologies for the development of a more effec-

tive initial screening strategy.

Another important clinical implication is that 

nanotechnology-based bioassays can also contribute to 

monitoring the stage progression of the disease. Dynamic 

changes of biomarkers occur as prostate cancer develops 

and advances. Thus, detecting different biomarkers that 

represent particular stages of the disease may add an addi-

tional benefit to an accurate diagnosis. It has been reported 

that benign and malignant tumors must be differentiated 

and subjected to different treatments. Attempting to treat a 

benign tumor can only exacerbate the diseased state while 

undertreatment can also bring consequences. In that regard, 

aggressive stratification of the disease’s stages is one of 

the urgent needs. To achieve this stratification, developing 

diagnostic tools capable of discerning the different stages 

of the disease could significantly improve the quality of 

life of the diagnosed patients by delivering an accurate 

treatment.

Finally, the development of nanotechnology-based bioas-

says is a highly interdisciplinary area that will require a robust 

multidisciplinary approach. Active collaboration between 

clinicians and experts in nanotechnology is a must in order 

to take development toward commercialization. It would be 

highly favorable for future investors and policy officials to 

put their interest in this area of research.

Review criteria
Pubmed and Web of Science were used in search, and the 

keywords were “seminal” OR “serum” OR “urine” AND 

“prostate cancer” AND “nano*”.
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