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Abstract: Anthropogenic CO
2
 emissions are being taken up from the atmosphere by the oceans, 

increasing the availability of dissolved inorganic carbon but reducing both the carbonate satura-

tion and pH of seawater. This ocean acidification affects biological processes in a wide range of 

marine taxa. Here, we assess the likely responses of ‘nuisance’ species to ocean acidification, 

meaning those organisms that have undesirable effects from a human perspective. Based on a 

synthesis of evidence available to date, we predict increased growth and toxicity in harmful algal 

bloom species, and a significant increase in invasive algae in response to increased CO
2
 avail-

ability. Blooms of stinging jellyfish are also expected to increase since they are highly resilient 

to acidification. The effects of ocean acidification on invasive molluscs (eg, oyster drills), dam-

aging echinoderms (eg, crown-of-thorns starfish), and a wide range of nuisance taxa will vary 

depending on species and location. In the USA, for example, the invasive crab Carcinus maenas 

is resilient to projected increases in CO
2
 and its impact on marine communities is expected to 

increase since it feeds on organisms that respond to ocean acidification with weaker defensive 

traits and lower recruitment. Conversely, the Red King Crab, Paralithodes camtschaticus, is 

adversely affected by acidification and so is expected to die back in the Barents Sea which it has 

invaded. Overall, we suspect that there will be an increase in nuisance species, as many have 

traits that are resilient to the combined warming and acidification caused by rising CO
2
 levels; 

region-specific assessments are needed to understand responses of nuisance species in local 

habitats. Finally, we highlight the need for targeted studies of the effects of global change on 

particularly harmful marine taxa such as the seaweed Caulerpa taxifolia, the starfish Asterias 

amurensis, several invasive ascidians, and the lionfish Pterois volitans.

Keywords: ocean acidification, anthropocene, multiple impacts, harmful algal blooms,  

invasive species

Introduction
In 2013, atmospheric carbon dioxide reached 400 ppm at the long-term monitoring 

station of Mauna Loa, higher than at any time in the past 800,000 years and up from 

280 ppm in the pre-industrial period of the 1700s.1 This rapid increase in atmospheric 

CO
2
 levels is causing ocean acidification, since 30% of human CO

2
 emissions have 

been absorbed by surface waters, driving down seawater pH and making it increasingly 

corrosive to calcium carbonate.2

A rapidly growing body of research indicates that ocean acidification will severely 

disrupt marine ecosystems, since it alters the balance of success between competing 

organisms.3 Ocean acidification can impact a wide range of processes across marine 

taxa, including photosynthesis, acid-base homeostasis, calcification, and behavior.4–7 
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Dissolved inorganic carbon is a resource for photosynthesis, 

and so increases in CO
2
 can benefit groups such as diatoms, 

brown algae, and seagrasses.8,9 Falling carbonate saturation 

is expected to degrade biogenic reef habitats and negatively 

impact calcified organisms.10–13 Organisms incapable of 

acid-base homeostasis may suffer metabolic depression, 

while those that are capable of regulation incur associated 

energetic costs.5 Observations show that there will be win-

ners as well as losers as the oceans acidify, just as there were 

in previous high-CO
2
 mass extinction events.6,14 There is 

also a growing realization that secondary effects, mediated 

through changes in habitat and species’ interactions, will 

drive ecosystem change.15

Syntheses of the effects of ocean acidification have 

focused on key groups, such as photosynthetic organisms 

or on commercially important species, and show that even 

closely related species can have very different responses to 

ocean acidification.9–16 Over-arching meta-analyses conclude 

that ocean acidification will drive substantial changes in 

marine ecosystems and cause long-term biogeographic shifts 

because some organisms gain a competitive advantage over 

others.5,13 We were prompted to undertake this review since 

we have noticed that invasive algae and jellyfish thrive as CO
2
 

levels ramp up around volcanic seeps in the Mediterranean 

(Figures 1 and 2). Here, we consider the possibility that ocean 

acidification may preferentially benefit ‘nuisance’ organisms, 

ie, those organisms that have undesirable effects from a 

human perspective. Such organisms include invasive spe-

cies, which are ecologically disruptive non-native organisms, 

as well as native organisms such as harmful algal blooms, 

jellyfish swarms, and crown-of-thorn starfish outbreaks. 

Given that ocean acidification is occurring alongside other 

stressors, such as global warming and eutrophication,17 we 

include those investigations that consider these combined 

drivers of global change.

Algae
Algae can benefit from ocean acidification since increased 

availability of CO
2
 and HCO

3
- can stimulate photosynthesis.18 

As some primary producers are better able to capitalize on 

increasing carbon availability than others, this is expected to 

alter marine communities.15,19 Invasive algae are expected to 

benefit in competitive interactions under acidified conditions 

since they tend to be non-calcareous, have wide thermal 

and salinity tolerances, are highly fecund, grow rapidly, 

and are often parthenogenic.9 As an example, elevated CO
2
 

is expected to extend the range of the invasive warm water 

alga Neosiphonia harveyi since experiments have shown 

that the increased availability of dissolved inorganic carbon 

allows this seaweed to cope with colder temperatures, so 

it is expected to extend into higher latitude regions where 

native species die back due to warming.9 This carbon-boost to 

invasive algae may be coupled with temperature-driven range 

extensions of warm water herbivorous fish that can remove 

temperate macroalgae, facilitating the spread of warm water 

invasive species, such as N. harveyi.20

Surveys of Mediterranean CO
2
 seeps have repeatedly 

shown that coralline algae become less common as CO
3
2- lev-

els fall, whereas brown seaweeds and invasive Asparagopsis 

taxiformis (Figure 1) and Caulerpa spp. proliferate as CO
2
 

and HCO
3
- levels rise.21,22 A strength of using these natural 

analogs for the effects of ocean acidification is that they 

reveal the long-term response of marine communities in 

areas where CO
2
 levels have been elevated for 100s of years. 

Shorter term mesocosm experiments (,1 year) allow tighter 

control of CO
2
 doses and have shown that Caulerpa taxifolia 

Figure 1 invasive Asparagopsis taxiformis thrive in endemic Posidonia oceanica seagrass beds at CO2 seeps in the Mediterranean (A). Fish farmers are facing increased losses 
due to blooms of spiky phytoplankton, such as this Chaetoceros sp., which are resilient to rising CO2 levels but damage gills and can kill fish (B).
Note: image B courtesy of Gemma Brice at The Sir Alister Hardy Foundation for Ocean Science.
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are resilient to simulated acidification. This is a concern as 

C. taxifolia has spread rapidly causing significant alterations 

to native algal communities worldwide.23 Mesocosm work 

on the ocean acidification response of invasive canopy-

forming algae such as Sargassum muticum and Undaria 

pinnatifida (Table 1) also raises concerns since they may 

benefit from increased CO
2
 levels thereby decreasing native 

algal species’ richness and altering communities.24 S. muticum 

settlement increases when algal diversity is low, suggesting 

that less diverse communities will be more vulnerable to 

Figure 2 invasive Mnemiopsis contributed to the collapse of Black Sea and Caspian Sea pelagic fisheries (A). Native Pelagia noctiluca at CO2 seeps off Vulcano; jellyfish and 
anemones thrive where the water is too corrosive for hard corals (B).
Note: image A courtesy of Renee Blunden.

Table 1 Algal responses to ocean acidification

Species Condition Parameter Effect

Undaria pinnatifida45 pH 5.9–6.5 Photosynthetic cost ↓
Sargassum muticum21 1,000 ppm CO2 High temp survival (3 d) ↓
 1,000 ppm CO2 Low temp survival (3 d) ↑
 1,000 ppm CO2 High temp survival (10 d) ↑
 1,000 ppm CO2 Low temp survival (10 d) =
 1,000 ppm CO2 Recruitment ↓
 1,000 ppm CO2 Percentage cover ↓
Neosiphonia harveyi45 pH 7.6 Low temp photosynthetic efficiency ↑
 pH 7.6 Net photosynthesis ↑
 pH 7.6 Growth ↑
Ulva prolifera30 1,000 μatm CO2 

1,000 μatm CO2

Growth 
Net photosynthetic rate

↑ 
=

Pseudo-nitzschia fraudulenta34 pH 7.9 + Si(OH)4 limited Cellular toxicity ↑
Pseudo-nitzschia multiseries32 pH 7.9 + P-replete Cellular toxicity ↑
 pH 7.9 + P-limited Cellular toxicity ↑
 pH 7.9 + P-replete Growth ↑
 pH 7.9 + P-limited Growth ↑
Karenia brevis35 1,000 ppm CO2 Growth ↑
 1,000 ppm CO2 Cellular toxicity =
 1,000 ppm CO2 Total toxin production ↑
Phaeocystis globose39 pH 7.9 Colony formation ↑
 pH 7.9 Maximum colony growth rate ↑
Alexandrium fundyense41 pH 7.5–7.8 Growth ↑
 pH 7.5–7.8 Cellular toxicity =
 pH 7.6–7.7 Density ↑
Alexandrium tamarense47 800 μatm CO2

Cellular toxicity =
 1,200 μatm CO2

Growth =
Dolichospermum spp.48 pH 7.5 Growth =
 pH 7.5 Cellular toxicity =

Notes: ↑ indicates increase, ↓ indicates decrease, = indicates no significant difference. Refer to individual studies for full details, such as duration of experiments, as these 
can affect the results.
Abbreviations: temp, temperature; d, days.
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species’ invasions.25 Field sites with the elevated CO
2
 levels 

predicted this century show approximately 5% reduction in 

algal community diversity accompanied by wholesale shifts 

in community structure due to losses of calcified algal cover, 

with invasive algae look set to fill niches left by intolerant 

native species.21,26 Mesocosm work shows that the physi-

ological performance of macroalgal assemblages invaded 

by S. muticum under near-future conditions may be superior 

to non-invaded assemblages, potentially accelerating the 

proliferation of the invasive species.27

Ulva spp. have become notorious in recent years as they 

have started to regularly form green tides that rot and kill 

marine life, reducing the amenity value of beaches.28 In the 

Yellow Sea, for example, blooms of Ulva prolifera are causing 

large-scale disruption;29 experiments show that ocean acidi-

fication is likely to increase U. prolifera growth, with rising 

atmospheric CO
2
 levels expected to increase the intensity of 

green tide events.30

Harmful algal blooms cause significant problems through 

mechanical damage (such as to fish gills), toxic effects, and 

competition for resources. Increased availability of dissolved 

inorganic carbon risks increasing the toxicity of harmful algal 

blooms.31 Tests show that the Pseudo-nitzschia diatoms pro-

duce more of the toxins that cause amnesic shellfish poisoning 

with increases in pCO
2
 in nutrient limited conditions.32–34 

Similarly, Karenia brevis, which causes neurotoxic shellfish 

poisoning, grew significantly faster and maintained the same 

toxin production per cell in laboratory simulations of ocean 

acidification.35 As increased growth rates increase the likeli-

hood of blooms becoming nutrient limited, ocean acidifica-

tion is expected to increase K. brevis bloom toxicity and the 

severity of its mechanical effects.36

Simulated acidification benefits Alexandrium minutum 

which can form harmful blooms,37 and genetic adaptation 

accentuates their positive responses to reduced pH.38 In the 

harmful algal bloom forming alga Phaeocystis globosa, 

elevated CO
2
 stimulates colony formation and increases 

maximal colonial growth rates although this may render them 

more susceptible to viral infection.39,40 Despite widespread 

inter- and intra-specific variability in responses (Table 1),41 

trends of increased growth, toxicity, and synergistic effects 

are likely to increase the severity of future harmful algal 

bloom events. Furthermore, temperature stratif ication 

induced nutrient scarcity and elevated CO
2
 may interact to 

increase the likelihood of blooms becoming nutrient limited, 

subsequently leading to increased toxin production.36 This 

has implications for aquaculture and fisheries; the synergis-

tic effects of simulated harmful algal bloom exposure and 

elevated CO
2
 resulted in increased mortality and decreased 

development and growth in the scallop Argopecten irradians, 

versus exposure to these stressors independently.37 The rela-

tionship between harmful algal blooms and climate change 

remains a research priority.42,43 Overall, ocean acidification 

is expected to profoundly alter benthic and pelagic algal 

communities,21,44 and is expected to benefit invasive species, 

increasing their range, diversity, and abundance.9,45–48

Jellyfish
‘Jellyfish’ refers to gelatinous zooplankton, including scy-

phozoans, cubozoans, and ctenophores. Many scientists are 

convinced that they are on the increase due to marine eco-

system degradation, for example due to eutrophication and 

overfishing.49 Jellyfish stings can be painful and even fatal 

to humans, impacting tourism and fish farm industries.50,51 

Blooms of the invasive ctenophore Mnemiopsis coincided 

with the collapse of Black Sea and Caspian Sea pelagic fish-

eries,52–54 and may play a role in suppressing the population 

recovery of fish planktivores.52 Although anemones and soft 

corals are thought to be resilient to ocean acidification, to 

date little research effort has been committed to investigating 

the responses of jellyfish,55–57 which is surprising considering 

their economic impact.

Aurelia labiata is highly resilient to acidification in 

culture conditions, although the acidification slows statolith 

development.58 A similar study also found smaller statoliths 

and retarded asexual polyp reproduction at pH 7.6 in Alatina 

nr mordens.59 As statoliths are not exposed to seawater, it is 

likely that reduced statolith size results from the stress of 

living in high CO
2
 waters which alters energy budgets in 

many marine taxa.3,60 Attrill et al linked ocean acidification to 

increased jellyfish nematocyst abundance in the North Sea in 

plankton surveys, suggesting negative impacts on calcareous 

plankton as the indirect cause of the increase.61 A follow-up 

study analyzed coelenterate tissue occurrence instead of 

nematocyst presence and did not find a significant relation-

ship between pH and jellyfish abundance.62 The contribution 

of ocean acidification to jellyfish blooms is clearly a matter 

of debate,63 yet as a group they seem resilient to the levels of 

acidification expected this century (Table 2). Our own obser-

vations show jellyfish can survive well in high abundance at 

CO
2
 seeps in the Mediterranean (Figure 2).

Invasive molluscs
Laboratory studies show that calcifying marine molluscs 

are predominantly negatively affected by ocean acidifica-

tion, with adverse effects spanning calcification, growth, 
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respiration, and survival (Table 3).5,64,65 Field observations 

in the Mediterranean show that mollusc recruitment and 

shell thickness are significantly reduced across a range of 

taxa under acidified conditions.12,66–68 In 2006, the oyster 

farming industry in the Northeast Pacific struggled to cope 

with the adverse effects of CO
2
-rich upwelling waters and 

now have to manipulate the carbonate chemistry of their 

hatcheries to help the spat survive.16 So what evidence is 

there for the effects of ocean acidification on highly invasive 

marine molluscs?

The American slipper limpet, Crepidula fornicata, is now 

widespread in Europe and is considered one of the 100 worst 

invasive species.69 In the Atlantic it can reduce growth and 

survival in Mytilus edulis.70 Ocean acidification may benefit 

adult C. fornicata since calcification increased at 606 ppm 

and 903 ppm CO
2
, with negative responses only observed at 

2,856 ppm.71 However, larval shell growth was significantly 

reduced at 750 ppm CO
2
.72 As delayed larval develop-

ment increases vulnerability to predation this may reduce 

recruitment. So it is hard to predict how ocean acidification 

Table 2 Jellyfish responses to ocean acidification parameters

Taxa Stage Condition Parameter Effect

Jellyfish spp.61  Reduced pH Abundance ↑
Jellyfish spp.62  Reduced pH Abundance =
Aurelia labiata58 Polyp/ephyra pH 7.5/7.2 Polyp survival =
  pH 7.5/7.2 ephyra/polyp-1 =
  pH 7.5/7.2 Statolith/statocyst-1 =
  pH 7.5/7.2 Statolith size ↓
Alatina nr mordens59 Polyp/ephyra pH 7.6 Polyp survival =
  pH 7.6 Statolith width ↓

Notes: ↑ indicates increase, ↓ indicates decrease, = indicates no significant difference.

Table 3 Responses of invasive molluscs to ocean acidification

Species Stage Condition Parameter Effect

Urosalpinx cinerea71 Adult 606/903 ppm Calcification ↓
Crepidula fornicata72 Larval 750 ppm Shell size ↓
  1,400 ppm Normal development ↓
 Adult71 606/903 ppm Calcification ↑
 Adult86 1,000 μatm Thermal tolerance =
Crassostrea gigas75 Fertilization pH 7.8 Sperm motility =
  pH 7.8 Sperm velocity =
  pH 7.8 Fertilization =
 Fertilization76 pH 7.8 Fertilization =
 Larval pH 7.8 Survival ↓
  pH 7.8 Normal development ↓
  pH 7.8 Shell length ↓
  pH 7.8 Shell height ↓
 Larval87 pH 7.75/7.65 Survival =
  pH 7.65 Full shell development ↓
  pH 7.65 Size ↓
 Larval77 Ωaragonite 2.2–0.8 early growth =
  Ωaragonite 2.2–0.8 Midstage growth ↓
  Ωaragonite 2.2–0.8 Larval production (biomass) ↓
 Larval88 pH 7.4 Normal development ↓
  pH 7.4 Shell length ↓
  pH 7.4 Shell height ↓
  pH 7.4 Full shell development ↓
 Larval78 1,000 ppm Shell height ↓
  1,000 ppm Growth ↓
  1,000 ppm Shell strength ↑
Mya arenaria71 Adult 606/903 ppm Calcification ↓

Notes: ↑ indicates increase, ↓ indicates decrease, = indicates no significant difference.
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will affect the spread of C. fornicata, it is a very robust organ-

ism as an adult yet the costs of coping with hypercapnia at 

the larval stage may impair recruitment.

The invasive NE Pacific oyster Crassostrea gigas has 

been introduced for aquaculture worldwide and has subse-

quently spread, becoming a threat to native bivalves such as 

the Sydney Rock oyster Saccostrea glomerata in Southern 

Australia.73,74 The fertilization of an invasive strain of C. gigas 

was not affected at pH 7.8,75,76 but larval mortality increased 

dramatically in acidified treatments with larval developmen-

tal abnormalities increasing from ,20% in normal conditions 

to 54% at pH 7.8 and significantly reduced larval shell growth 

after 6 days.76 Natural reductions in carbonate saturation 

correlate with decreases in larval production, suggesting that 

ocean acidification may reduce C. gigas recruitment.77 In 

aquaria, juvenile and adult growth rates of the invasive oyster 

also decrease.78 However, the direct responses of C. gigas to 

ocean acidification vary as resilient genotypes are present in 

current populations which may facilitate adaptation to future 

ocean acidification.78 S. glomerata fertilization and early 

life history are more severely impacted than in C. gigas so 

the impact of invasive species on native oysters may increase 

due to ocean acidification.79

An invasive predatory snail from the Northwest Atlantic 

(Urosalpinx cinerea) is spreading in the Northeast Atlantic 

and the Northeast Pacific where it is impacting oyster and 

scallop aquaculture.80,81 Ries et al found a linear reduction 

in calcification in U. cinerea in response to rising pCO
2
 with 

significantly reduced adult growth at 606 ppm.71 Yet although 

it appears to respond negatively to ocean acidification in 

aquaria, its harmful effects in the wild may increase. San-

ford et al found that ocean acidification caused a 29%–40% 

reduction in growth of the native oyster Ostrea lurida and that 

U. cinerea ate significantly more oysters in acidified treat-

ments.82 This effect may be the result of reduced energetic 

value in prey species, increased energetic requirement in the 

predator, reduced prey handling time, or any combination of 

these points.83

The role of invasive predatory gastropods may increase 

in response to ocean acidification if recruitment rates are 

maintained as per capita consumption rates can increase.78,82,83 

This may enhance disruption to bivalve fisheries and the 

destruction of native biogenic habitats by invasive snails.84 

Indeed, bivalve aquaculture may increase in importance as 

global fish landings are expected to decrease significantly in 

response to climate stressors.85 Literature is lacking regard-

ing the effect of ocean acidification in predatory gastropod 

recruitment, and this gap should be filled.65

Invasive crustaceans
Laboratory experiments indicate that although crustaceans 

may be one of the most resilient animal taxa to ocean 

acidification, ∼30% of species studied to date are negatively 

impacted,5,13 which helps explain reduced crustacean diversity 

in acidified conditions at CO
2
 seeps.10,66,89 The resilience of 

certain crustaceans to near-future ocean acidification has 

been attributed to their high capacity for extracellular pH 

regulation.13,90

The barnacle Amphibalanus improvisus is native to the 

Atlantic Ocean, but has spread through fouling of artificial 

structures,91 vessels,92 and larval transport in ballast water, 

leading to a global distribution. It competes with native organ-

isms for space, and may alter habitats since it promotes mac-

roalgal colonization and creates refugia in empty shells.93,94 

Furthermore, the species can foul native or co-invasive 

bivalves, altering predator-prey interactions.95 This barnacle 

is particularly resilient to the effects of ocean acidification, 

with no significant effects observed on larval growth and 

development, or juvenile growth and shell strength, even at 

pH conditions far below 2100 projections.96–98 Furthermore, 

intra-specific variability in response exists, suggesting popula-

tions are genotypically diverse, which may increase adaptive 

capacity in response to ocean acidification.97 The studies 

demonstrate the exceptional capacity of A. improvisus to 

persist under near-future acidified conditions. Contrastingly, 

Semibalanus balanoides show retarded embryonic develop-

ment and reduced adult survival at pH 7.7.99 Thus, in certain 

situations, invasive barnacles may gain a competitive advan-

tage over native barnacles due to ocean acidification.

The crab Carcinus maenas is native to the Northeast 

Atlantic but has established populations in Australia, 

 Southern Africa, and North America where it has disrupted 

native communities and impacted mollusc fisheries.100–103 

These crabs cope well with elevated CO
2
 by regulating extra-

cellular pH, although the associated energetic costs,90,104,105 

may have knock-on effects.106 Chemoreception may be 

impaired and limit predation in decapods as a result of ocean 

acidification,107 and mollusc prey may be less well defended 

due to ocean acidification.71,108,109 Despite this, no response in 

prey handling time or per capita consumption rate has been 

observed in C. maenas in response to ocean acidification,105,106 

so we expect the impact of this invasive crab will increase as 

they are remarkably resilient.

The Red King Crab, Paralithodes camtschaticus, has 

invaded the Barents Sea, where it has disrupted native benthic 

communities.110–112 It is not as resilient as C. maenas to ocean 

acidification since larval survival and growth are reduced 
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at pH 7.7 and juvenile survival and growth are dramati-

cally reduced at pH 7.8.113,114 Thus, ocean acidification may 

have severe effects on P. camtschaticus populations, which 

would alleviate its effects in its invasive range but could also 

negatively impact crab fisheries in its native range, although 

the role of adaptation remains to be considered.114

Despite crustaceans being one of the most resilient taxo-

nomic groups to near-future ocean acidification, there is such 

a high level of inter-specific variance in responses that the 

effects of ocean acidification on invasive crustaceans should 

be considered on a case-by-case basis (Table 4).

Echinoderms
Sea urchins appear to be especially vulnerable to ocean 

acidification, as demonstrated in laboratory and field stud-

ies.115–117 Centrostephanus rodgersii (Figure 3) recently 

spread to Tasmania due to a temperature-driven range 

extension. It is a prolific algal grazer, creating and main-

taining coralline algal dominated ‘barrens’ with reduced 

biodiversity such that it now threatens commercially impor-

tant abalone.118,119 Although acidification impedes embryo 

development, temperature appears to have a stronger effect 

on the early life history of C. rodgersii so the benefits of 

 rising ocean temperature may outweigh the negative effects 

of  acidification,120 as shown in other sea urchins.121 Thus, the 

impact of C. rodgersii in Tasmania is likely to be maintained, 

despite ocean acidification, since genotypes resilient to both 

acidification and warming are present in C. rodgersii popula-

tions of Southeast Australia.122 Sticking with Tasmania for a 

moment, the invasive cushion star Patiriella regularis may 

recede from this island as the oceans acidify, since its growth 

and survival are impaired in mesocosm experiments with 

elevated CO
2
 (Table 5).

Crown-of-thorns starfish, Acanthaster planci, eat coral 

and their outbreaks can cause .50% coral mortality at 

affected sites;123 they also increase coral vulnerability to 

disease (Katz et al).124 Uthicke et al found that elevated 

CO
2
 reduced A. planci sperm motility and estimated that 

fertilization success reduced by 29% at pH 7.8 and by 75% 

at pH 7.6.125 The rates of larval development and growth are 

Table 4 Responses of invasive crustaceans to ocean acidification

Species Stage Condition Parameter Effect

Carcinus maenas106 Adult pH 7.7 Claw strength =
  pH 7.7 Prey choice =
  pH 7.7 Prey handling time =
 Adult105 pH 7.84 Feeding rate =
  pH 7.84 Hemolymph pH =
Amphibalanus improvisus96 Larval pH 7.7–7.8/7.3–7.4 Survival (nauplii) =
  pH 7.7–7.8/7.3–7.4 Survival (cyprid) ↑
  pH 7.7–7.8/7.3–7.4 Metamorphosis =
  pH 7.7–7.8/7.3–7.4 Development rate =
  pH 7.7–7.8/7.3–7.4 Settlement =
 Larval97 pH 7.8/7.6 Survival =
  pH 7.8/7.6 Development rate =
 Juvenile*,98 pH 7.4 Basal diameter =
  pH 7.4 Dry weight =
  pH 7.4 Break resistance ↓
  pH 7.4 Shear force resistance =
 Juvenile**,98 1,930 μatm Basal diameter ↓
  1,930 μatm Dry weight ↓
  1,930 μatm/2,870 μatm Break resistance =
  1,930 μatm Shear force resistance ↓
Paralithodes camtschaticus Adult113 pH 7.7 Survival ↓
 Larval pH 7.7 Survival ↓
  pH 7.7 Hatch duration ↑
  pH 7.7 Size ↑
 Juvenile114 pH 7.8 Survival ↓
  pH 7.8 Growth ↓
  pH 7.8 Calcification =

Notes: ↑ indicates increase, ↓ indicates decrease, = indicates no significant difference. *indicates the a study with 8 week batch culture. **indicates a 12 week water flow 
through.
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also reduced under near-future acidified conditions.125,126 

Retarded development led to an extended duration in the 

plankton, where larvae were vulnerable to predation, likely 

reducing recruitment.125 Compounding the effect of ocean 

acidification on A. planci early life history stages, near-

future acidified conditions affect crustose coralline algae and 

biofilms, reducing the successful settlement of A. planci on 

these substrata by an average of 36%.125 Based on the effects 

of fertilization and settlement alone, A. planci recruitment is 

projected to reduce by approximately 50% under near-future 

acidified conditions.125

Thus, ocean acidification may reduce the impact of 

echinoderm outbreaks (Table 5); however, responses must 

be considered in conjunction with other factors such as food 

availability and temperature, which may be more influential 

than pCO
2
 levels in seawater in determining the response 

Table 5 Examples of responses of echinoderms to ocean acidification

Species Stage Condition Parameter Effect

Acanthaster planci125 Fertilization pH 7.9 Sperm motility ↓
  pH 7.9 Sperm velocity ↓
  pH 7.9 Fertilization ↓
 Larval pH 7.6 Normal development ↓
  pH 7.8 Development rate ↓
  pH 7.9 Overall recruitment ↓
 Fertilization126 pH 7.8/7.6 Fertilization (direct contact) =
 Larval pH 7.8/7.6 Growth ↓
  pH 7.8/7.6 Normal development ↓
Patiriella regularis133 Fertilization pH 7.8/7.6 Fertilization (direct contact) =
 Larval pH 7.8/7.6 Normal development ↓
  pH 7.6 Survival ↓
  pH 7.8 Size ↓
Asterias rubens130 Juvenile pH 7.64 Consumption ↓

pH 7.64 Growth ↓
Centrostephanus rodgersii134 Fertilization pH 7.6 Fertilization =
 Fertilization120 pH 7.6 Fertilization ↓
 Larval pH 7.6 Cleavage ↓
  pH 7.6 Hatching ↓
  pH 7.6 Gastrulation ↓
  pH 7.6 Normal development ↓
 Larval135 pH 7.8 Normal development ↓
  pH 7.6 Growth ↓
 Larval122 pH 7.8/7.6 Cleavage ↓
  pH 7.8/7.6 Gastrulation =

Notes: ↑ indicates increase, ↓ indicates decrease, = indicates no significant difference.

Figure 3 The spread of Centrostephanus rodgersii sea urchins due to sea surface warming has created ‘Barrens’ in Tasmania (A).119 Acanthaster planci starfish seem resilient to 
rising CO2 levels but their outbreaks result in mass coral mortality on the Australian Great Barrier Reef (B).123

Notes: image A courtesy of Natalie Soars. image B courtesy of Sven Uthicke.
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of A. planci outbreaks in future.127,128 There is clearly room 

for further investigation – for example, the starfish Asterias 

rubens is a significant pest to Irish bivalve fisheries,129 and 

responds to ocean acidification with reduced consumption, 

growth,130 and increased vulnerability to pathogens.131 But, 

little work has been conducted on the congeneric North 

Pacific seastar, Asterias amurensis, despite the fact that it is 

considered to be one of the most disruptive invasive species 

in the world.132

Ascidians
Invasive ascidians are having significant impacts worldwide, 

outcompeting native species, smothering benthic habitats, 

and biofouling maritime infrastructure such as vessels, 

marinas, and aquaculture facilities.136–138 Few studies have 

investigated the impact of ocean acidification on ascidians. 

Ciona intestinalis and Ascidiella aspersa appear to benefit 

from increased larval development rates and survival under 

near-future acidified conditions,139 which could enhance their 

recruitment. Field data from CO
2
 seep studies describe vari-

able responses. Fabricius et al found that ascidian abundance 

decreased at elevated CO
2
 conditions in Papua New Guinea.10 

At comparable CO
2
 seeps in Italy, Donnarumma et al found 

that ascidians dominated faunal assemblages at extremely low 

pH sites (6.57) on seagrass beds.140 Peck et al investigated 

biofouling communities and found ascidian abundance dra-

matically increased in response to a 100-day exposure to pH 

7.7.141 Thus, certain ascidians can be expected to benefit from 

ocean acidification,139 although competitive interactions will 

determine their site-specific success. As with other invasive 

groups of organisms, there is significant scope for further 

investigation of ascidian responses to ocean acidification, due 

to their environmental impacts and threats to aquaculture.

Fish
Fish have high metabolic rates and a well-developed capacity 

for extracellular pH regulation.5 Their early life stages are 

often resilient to elevated CO
2
 and adult fish survive well 

in tests.13,142 However, ocean acidification has significant 

behavioral and sensory impacts attributed to impacts on 

the nervous system of several species of fish.143,144 Dixson 

et al (2010) found that settlement-stage larvae could not 

discriminate between predator and non-predator chemical 

cues at pH 7.8,145 and studies at CO
2
 seeps demonstrate 

altered predator cue responses in juvenile fish,146 increasing 

vulnerability to predation. Visual and auditory predator cue 

responses can also be compromised by near-future ocean 

acidification.144,147,148

Although no work on ocean acidification has been carried 

out on invasive fish, we can consider what current knowl-

edge might mean for Pterois volitans, a lionfish native to 

the Indo-Pacific that has invaded the Atlantic coast of North 

America.149 P. volitans has had profound impacts on food 

webs and on prey fish populations in the Caribbean.150,151 

Lesser and Slattery consider the invasive lionfish has played 

a key role in shifting benthic communities from coral to 

algal dominance by reducing herbivorous fish populations 

(Figure 4).152 On balance, negative effects on tropical coral 

reef prey species are expected to outweigh effects on preda-

tory species.153

We fear that predation pressure from P. volitans could 

maintain low populations of herbivorous fish.151,154 This could 

combine with the adverse effects of ocean acidification on 

grazing sea urchins and the benefits of elevated CO
2
 on fleshy 

seaweeds and contribute to an ongoing decline in coral reefs 

due to algal overgrowth, especially in areas affected by eutro-

phication.155 Studies of the effects of ocean acidification on 

Figure 4 The invasive lionfish Pterois volitans eats native fish in the Caribbean (A). Caribbean reefs are shifting toward algal dominance, partially through the suppression of 
herbivorous fish (B).
Notes: Figure A courtesy of Renee Blundon. Figure B courtesy of Michel Lesser.
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P. volitans and its ecological interactions would be worthwhile 

considering the rapid spread of this species.

Conclusion
There is plenty of evidence that ocean acidification can be 

expected to exacerbate the problems associated with ‘nui-

sance’ species thereby degrading ecosystem services. The 

traits that help many invasive organisms succeed, such as 

wider physiological tolerance and a reproductive advantage 

in the face of multiple stressors,156 are traits that look set to 

help them in an acidifying ocean.

We expect that the impacts of harmful bloom-forming 

algae and invasive seaweeds will increase as oceans acidify, 

although responses in other groups are less predictable. Inter-

specific variance in responses to near-future ocean acidifica-

tion is prevalent, with even closely related species showing 

very different responses.115,157 This highlights the importance 

of species-specific investigations, as extrapolations from 

similar organisms could be inaccurate. It will be important 

to consider the limitations in applying organism responses 

from laboratory experiments to predictive modeling of natural 

habitats, as laboratory responses will not necessarily translate 

to the wild. The effect of ocean acidification on nuisance spe-

cies must be considered in the context of their community, 

as their impact will largely depend on the relative responses 

of surrounding organisms.15,158

Invasive species are, by nature, adaptable and this will 

play an important role in determining their success as the 

chemistry of the oceans continues to change.159 The role of 

adaptation has not been explored extensively with regard to 

ecologically harmful marine species, however, the increas-

ing rate of ocean acidification is narrowing the time window 

available for marine organisms to adapt,17 thus organisms 

with resilient genotypes present in current populations have 

an advantage.97,122 Some invasive species have strains that 

are particularly resilient to ocean acidification, for example 

the invasive C. gigas may adapt more readily to ocean acidi-

fication than its native competitor S. glomerata in Southern 

Australia.78

Although this review focuses on ocean acidification, 

multiple drivers of global change such as warming, eutro-

phication, overfishing, and oxygen depletion will determine 

the prevalence of outbreaks of nuisance marine organisms. 

For example, ocean acidification can enhance the success 

of invasive marine organisms near their thermal limits 

at the same time as causing a decline in native marine 

organisms.9,120,160 Indeed, strong variability in responses to 

multiple climatic stressors have been identified in marine 

taxa, and moving forward, these stressors should be con-

sidered synergistically wherever possible.161 In carrying 

out this review we found a few instances where invasive or 

harmful marine organisms might be negatively affected by 

ocean acidification, but far more instances in which ocean 

acidification can be reasonably expected to make matters 

worse. This highlights the necessity of regional studies of 

the responses of harmful marine taxa (e.g. C. taxifolia, A. 

amurensis, invasive ascidians, P. volitans) to rising CO
2
 

levels. This review also reinforces the overall imperative to 

reduce CO
2
 emissions, since they may be opening the door 

to the spread of harmful marine organisms.
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