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Abstract: Carbon nanotubes (CNTs) are considered one of the most interesting materials in 

the 21st century due to their unique physiochemical characteristics and applicability to various 

industrial products and medical applications. However, in the last few years, questions have been 

raised regarding the potential toxicity of CNTs to humans and the environment; it is believed 

that the physiochemical characteristics of these materials are key determinants of CNT inter-

action with living cells and hence determine their toxicity in humans and other organisms as 

well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have 

cytotoxic effects on human and animal cells, which occur via the alteration of key regulator 

genes of cell proliferation, apoptosis, survival, cell–cell adhesion, and angiogenesis. Meanwhile, 

few investigations revealed that CNTs could also be harmful to the normal development of the 

embryo. In this review, we will discuss the toxic role of single-walled CNTs in the embryo, 

which was recently explored by several groups including ours.
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Introduction
The 21st century has seen an emergence of nanotechnology, which has been applied 

to a wide range of scientific disciplines including agri-food industry, electrical and 

electronic equipment, and construction.1–8 Another area of application is in the realm 

of nanoparticles (NPs) use in medicine, giving rise to the field of nanomedicine. This 

field holds the promise of providing great benefits for society in the future,9–11 but the 

toxicity of the NPs still needs more investigations.

Nanomaterials have sizes ranging from approximately 1 nanometer up to several 

hundred nanometers, comparable to many biological macromolecules such as enzymes, 

antibodies, DNA plasmids, and others. In this size range, materials exhibit interesting 

physical properties, distinct from both the molecular and bulk scales, present new 

opportunities for biomedical research and applications in various areas including 

biology and medicine.12,13 In the latter, carbon nanotubes (CNTs) offer a wide range of 

applications due to their unique atomic configuration, optical, mechanical and electronic 

properties, high surface-area-to-volume ratios, and easy functionalization.14,15 The use 

of these NPs in humans for diagnostic or treatment purposes would involve consider-

able exposure to particles and therefore understanding their effect is of paramount 

importance.16–19 Although several in vitro and in vivo studies have been undertaken 

in the past few years on their toxicity,16,17,20–24 a comprehensive knowledge of their 

effects is still far from being obtained. This gap is even larger when considering their 

effects on embryonic development, for which only sparse data are available.25–30 Most 

of these studies have focused on zebrafish embryo because it is easy to manipulate. 

However, other models were used to explore the effect of CNTs in the embryo such 
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as chicken and mouse.28,29 These studies revealed clearly that 

CNTs could harm the normal development of the embryo. 

CNTs are classified as single-walled carbon nanotubes 

(SWCNTs) and multiwalled carbon nanotubes (MWCNTs), 

which differ in the arrangement of their graphene cylinders. 

SWCNTs contain only one single layer of graphene, while 

MWCNTs have many layers,31,32 as illustrated in Figure 1. 

The present review focuses on the toxicity of SWCNTs in 

the normal development of the embryo.

Single-walled carbon nanotubes
SWCNTs are monocylindrical carbon layers, made of 

hollow graphitic nanomaterials with a diameter range of 

0.4–2 nm, built from carbon atoms; their structures are orga-

nized in harmony with helical, armchair, zigzag, and chiral 

arrangements.33–35 These one-dimensional NPs with capabil-

ity to behave distinctly from spherical NPs in biology offer 

new opportunities in biomedical research. The nanotubes 

are flexible and able to bend, facilitating multiple binding 

sites of a functionalized nanotube to one cell; this leads to 

a multivalence effect and improved affinity of nanotubes 

conjugated with targeting ligands.36,37

SWCNTs have raised considerable interest worldwide due 

to their unique shape and the resulting versatile and unique 

properties.34,38–40 Numerous studies have presented them in 

the form of seamless concentric tubes.38,41,42 SWCNTs are 

highly absorbing materials with a strong optical absorption 

in the near-infrared range because of the first optical transi-

tion (E11); therefore, SWCNTs have been utilized in pho-

tothermal applications,10,43–45 and photoacoustic imaging.46,47 

Moreover, when semiconducting, SWCNTs with small band 

gaps (approximately 1 eV), exhibit photoluminescence in the 

near-infrared range. The emission range of SWCNTs was 

found to be 800–2,000 nm,48,49 which covers the biological 

tissue transparency window, and is therefore suitable for 

biological imaging.

In human health, it is important to rapidly and accurately 

detect glucose levels in biological environments, especially 

for diabetes mellitus; for this purpose, Chen et al20 have 

recently proposed an accurate, highly sensitive, convenient, 

low cost, and disposable glucose biosensor on a single chip, 

functionalized through a layer-by-layer assembly of SWCNTs 

and multilayer films of different needed types. Moreover, 

Giraldo et al50 have investigated the separation and function-

alization of SWCNT by their electronic type; this has enabled 

the development of ratiometric fluorescent SWCNT sensors, 

used to detect trace analytes in complex environments such as 

strongly scattering media and biological tissues.50 However, 

their toxic effect on human health could have an important 

impact on their use worldwide; presently, it was demonstrated 

that SWCNTs have a toxic effect on cells, including human 

normal cells, and living organisms.24,51–53 The toxic effect of 

these NPs could be influenced by a number of factors includ-

ing the surface chemistry, surface area, functional groups, 

shape, photochemistry, charge, and aggregation as well as 

preparation method.6,24,54 Hence, we will review the recent 

publications related to the effect of SWCNTs on embryo 

development, which is unfortunately limited to a few number 

of studies including one from our group.

SWCNTs in the embryo
Today, SWCNTs have widespread applications in many 

technological fields; however, several studies demonstrated 

that pulmonary deposition of SWCNTs causes acute 

Figure 1 Different types of CNTs: (A) SwCNT and (B) MwCNT.
Abbreviations: CNTs, carbon nanotubes; MwCNT, multiwalled carbon nanotube; SwCNT, single-walled carbon nanotube.
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pulmonary inflammation, as well as chronic responses such 

as fibrosis.31,55–61 On the other hand, we have identified a list 

of genes that are differentially expressed between matched 

primary human normal bronchial epithelial (HNBE) cells 

exposed to SWCNTs and unexposed ones using microarray 

technology. Our data showed that SWCNTs inhibit and pro-

voke cell proliferation and apoptosis, respectively, through 

the deregulation of several important gene controllers of cell 

survival and apoptosis.51 These studies suggest that SWCNTs 

can induce toxicity in bronchial tissues and probably other 

organ tissues of the exposed organisms. In parallel, it was 

demonstrated by few investigations, including ours, that 

SWCNTs can affect the embryo of the exposed organisms. 

Herein, we will review the outcome of SWCNTs on the 

embryo of several organisms from Drosophila to mammalian 

(Table 1).

SwCNTs and Drosophila embryo
Few groups investigated the effect of SWCNTs on Drosophila 

embryo; however, they did not observe any toxicity in this 

organism.62,63

SwCNTs and aquatic embryo
Cheng et al27 explored the impact of raw SWCNTs on the 

embryo of aquatic organisms using zebrafish embryos. 

They reported that SWCNTs induce a significant hatching 

delay in the zebrafish embryos between 52 and 72 hours 

postfertilization (hpf) at concentrations greater than 120 mg/L. 

Meanwhile, they revealed that the embryonic development 

of the exposed embryos (up to 96 hpf) is not affected at 

SWCNT concentrations of up to 360 mg/L. In parallel, they 

indicated that the chorion of zebrafish embryos is an effec-

tive protective barrier to SWCNT agglomerates. Finally, they 

stated that the hatching delay observed in their study is likely 

induced by the Co and Ni catalysts used in the production 

of SWCNTs, which remained at trace concentrations after 

purification. However, a recent study revealed that SWCNTs 

can provoke hatching delay in the zebrafish embryos; the 

main mechanism of hatching inhibition by SWCNTs and 

other NPs is likely related to the interaction of NPs with the 

zebrafish hatching enzyme.30

SwCNTs and avian embryo
Belyanskaya et al64 showed that SWCNT suspensions could 

induce acute toxic effects in primary cultures from both the 

central and peripheral nervous systems of chicken embryos. 

The level of toxicity is partially dependent on the agglomera-

tion state of these particles. Therefore, the authors suggested 

that SWCNTs are likely to cause adverse effects on glial 

cells and neurons if the nervous system is exposed to high 

concentrations.64

On the other hand, our group has investigated the effect 

of SWCNTs on the chicken embryo at the third day of 

incubation.28 We deposited 25 μg of SWCNTs, diluted 

in 25 μL of phosphate-buffered saline, on the embryos. 

We reported that SWCNTs treatment inhibits the angiogenesis 

of the chorioallantoic membrane and in the chicken embryo, 

especially in the brain and the liver (Figure 2). Meanwhile, our 

study revealed that SWCNTs can harm the normal develop-

ment of the embryo since all SWCNTs-exposed embryos are 

smaller in comparison with the controls. We also noted that 

the majority SWCNTs-exposed embryos die before 12 days 

of incubation. Macroscopic examination did not reveal any 

anomalies in these embryos. However, histological analysis 

of liver tissues from these embryos revealed an important 

necrosis and inhibition of blood vessels development.

In order to define gene targets of SWCNTs in the 

embryo, we examined the expression patterns of INHBA, 

ATF-3, FOXA-2, CASPAS-8, MAPRE2, BCL-2, RIPK-1, 

Cadherin-6 type-2, SPI-4, KIF-14, and VEGF-C genes in 

brain and liver tissues from SWCNTs-treated and their 

matched control embryos; these selected genes were recently 

identified, by our group, as major gene targets of SWCNTs 

in HNBE cells.51 Our investigation revealed that INHBA, 

Table 1 Summarize the outcome of SwCNTs on the embryo

Embryo Outcome References

Drosophila No toxicity 62, 63
Zebrafish Hatching delay 26, 30
Avian Cytotoxic effect on glial and neurons cells 64

Inhibition of angiogenesis, gene deregulation, and abnormal development 28
Mouse Increase of reactive oxygen species, malformation, and skeletal abnormalities 63, 65

Cytotoxic effects and DNA damages on embryonic cells 66
Low cell proliferation and viability of glioblastoma cells 67
Apoptotic effect and DNA damage on mouse embryonic cells 29

Hamster Cytotoxic and genotoxic effects on embryonic cells 52

Abbreviation: SwCNT, single-walled carbon nanotube. 
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ATF-3, FOXA-2, CASPAS-8, MAPRE2, BCL-2, RIPK-1 

genes are upregulated, while Cadherin-6 type-2, SPI-4, 

KIF-14, and VEGF-C are downregulated in brain and liver 

tissues of SWCNTs-exposed embryos in comparison with 

their matched tissues from control embryos; these data are 

consistent with our microarray data in HNBE cells.

SwCNTs and mammalian embryo
Pietroiusti et al65 explored the effect of pristine and oxidized 

SWCNTs on the development of the mouse embryo. 

In this study, SWCNTs (from 10 ng to 30 μg/mouse) were 

administered to female mice after implantation (postcoital 

day 5.5). The authors revealed that there was a high 

percentage of early miscarriages and fetal malformations 

in females exposed to oxidized SWCNTs, and lower 

percentages in animals exposed to the pristine material. 

The lowest effective dose was identified as 100 ng/mouse. 

Meanwhile, they reported extensive vascular lesions and 

increased production of reactive oxygen species in placen-

tas of malformed embryo but not in normally developed 

fetuses. The data of this investigation clearly suggest 

that SWCNTs could act as embryotoxic agents in mam-

mals.65 Meanwhile, Philbrook et al63 demonstrated that 

oral administration of SWCNTs (10 mg/kg) to pregnant 

CD-1 mice during organogenesis leads to increased 

resorptions, external morphological defects, and skeletal 

abnormalities.

Later on, Yang et al66 investigated the cytotoxicity, 

genotoxicity, and oxidative effects of SWCNTs on primary 

mouse embryo fibroblast (MEF) cells. They revealed that 

these particles have moderately cytotoxic effect but can 

induce more DNA damage in comparison with other NPs 

such as zinc dioxide. The authors also argued that the 

potential genotoxicity of these NPs could be attributed to 

the particle shape.66 On the other hand, Bobrinetskii et al67 

examined the effect of SWCNTs on cell viability and prolif-

eration of human embryo fibroblasts and glioblastoma cells. 

They found that SWCNTs have a low cytotoxic activity on 

these cells. 

Earlier, Tong et al29 explored the role of the p21 and 

hus1 genes in the toxicity of SWCNTs on wild type and 

p21−/−, hus1+/+ MEF cells. They revealed that the yield of the 

micronucleus ratio in p21 gene knockout MEF cells is lower 

than that in their wild type counterpart, which can suggest 

that p21 might play a role as antiapoptosis factor during the 

signal transduction of DNA damage caused by SWCNTs in 

mammalian embryonic cells.29

Recently, Darne et al52 examined the outcome of SWCNTs 

on Syrian hamster embryo cells; they found that SWCNTs 

induce cytotoxic and genotoxic effects in this cell line.

Finally, we believe that it is important to review the 

biomedical utility of using SWCNTs with other molecules 

during gestation in mammals. Bari et al68 investigated the 

outcome of carboxylic acid functionalized single-walled 

carbon nanotubes (f-SWCNT-COOH) on nonenriched 

hematopoietic stem and progenitor cells in human umbilical 

cord blood-mononucleated cells. The authors of this 

investigation reported that f-SWCNT-COOH can increase 

the viability of the CD45(+) cells even without cytokine 

stimulation; it also reduced mitochondrial super oxides and 

Figure 2 Outcome of SwCNTs on the chicken embryo at 12 days of incubation.
Notes: The SwCNTs-exposed embryo (A) is smaller in comparison with its matched control (B). Additionally, we note that SwCNTs inhibit blood vessels development in 
SwCNTs-treated embryo in comparison with the control (arrows). The embryos were treated by 25 μg of SwCNTs at 3 days of incubation, reprinted from Nanomedicine, 
2013;9(7), Roman D, Yasmeen A, Mireuta M, Stiharu I, Al Moustafa AE, Significant toxic role for single-walled carbon nanotubes during normal embryogenesis, Pages 
945–950,28 Copyright ©2013, with permission from elsevier.
Abbreviation: SwCNTs, single-walled carbon nanotubes.
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caspase activity in CD45(+) cells. On the other hand, phe-

notypic expression analysis and functional colony forming 

units showed significant ex vivo expansion of hematopoietic 

stem and progenitor cells. The data of this study suggested 

that f-SWCNT-COOH could improve repopulation of immu-

nodeficient mice models with minimal acute or subacute 

symptoms of graft-versus-host disease.68 Separately, Cam-

pagnolo et al69 examined the effect of SWCNTs with polyeth-

ylene glycol (PEG) chains for their use as biomedical carriers 

in mammalian pregnancy. They reported no adverse effects 

both on embryos and dams up to the dose of 10 μg/mouse. 

However, they revealed occasional teratogenic effects, asso-

ciated with placental damage at a dose of 30 μg/mouse; this 

dose is equivalent to an ~70 mg dose for a 60 kg pregnant 

patient. It is reasonable to assume that such a dose might be 

used for biomedical application of PEG-modified CNTs in 

humans. However, the authors of this study stated that PEG-

SWCNTs might cause occasional teratogenic effects in mice 

beyond a threshold dose. Therefore, they conclude that the 

data of this investigation should be considered if exposing 

women during pregnancy.69

Finally, all of the above studies, including ours, suggest that 

SWCNTs could harm the normal development of the embryo 

from aquatic to mammalian (Table 1) including human via 

the deregulation of specific genes related to cell proliferation, 

apoptosis, survival, cell cycle, and angiogenesis. Meanwhile, 

it is important to emphasize that organism embryos could be 

simply exposed to NPs via water and/or food contaminations, 

which could have a dramatic effect on these organisms and 

particularly on their embryos (Figure 3).

Conclusion
In this paper, we aimed to provide a concise review of the 

most updated understanding of embryotoxicity of SWCNTs. 

Overall, the limited amount of studies published necessitates 

more systematic and thorough investigations to elucidate the 

real effect of SWCNTs and their mechanism in the embryo. 

Such knowledge will allow the determination of a more 

rounded safety profile and is mandatory toward harmless 

use of any kind of nanomaterial, which is not restricted to 

SWCNTs.

Meanwhile, it seems that common critical parameters that 

determine SWCNTs toxicity include the chemical nature of 

surface modifications, surface charge, nanotube structure, 

and nanotube surface area available for interactions;31,70 

thus, additional studies are necessary to explore the exact 

role of these parameters in induced toxicity by CNTs on the 

organisms and their embryos. Finally, we believe that modi-

fication of CNTs structure could have an important influence 

on limiting their toxic effect on human health, including the 

normal development of the embryo, which could allow us 

to use them in the industry as well as in the medical field 

without any hesitation.
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Notes: water and/or food could be contaminated by SwCNTs; therefore, these particles can penetrate organism and embryonic cells and thereby induce apoptosis and/or 
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