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Background: In the pathogenesis of herpes simplex keratitis, herpes simplex virus type 1 

(HSV-1) infection begins in corneal epithelium cells and then progresses through the sensory 

nerve endings and finally travels up forward to the trigeminal ganglion (TG), where it remains as 

latent virus. The available anti-HSV therapies do not completely suppress the recurrence of active 

HSV-1 infection. The aim of this study was to establish a novel replication-defective (rd) HSV-1 

(rdHSV) vector (rdHSV-interferon gamma [IFNγ]) that could effectively target the TG.

Methods: Recombinant HSV-1 virus was inserted into a shuttle plasmid carrying IFNγ to 

establish the rdHSV-IFNγ vector. Safety was evaluated in vitro by 50% cellular cytotoxicity 

in transfected SH-SY5Y neuroblastoma cells and in vivo by Kaplan–Meier survival estimate 

and infection rate. Wistar rats were immunized with rdHSV-IFNγ to evaluate the TG targeting 

efficiency. Real-time polymerase chain reaction and Western blot assays were used to evaluate 

IFNγ mRNA and protein expression and rdHSV-IFNγ localization.

Results: The rdHSV-IFNγ vector was successfully constructed and showed high in vitro safety 

and overall survival and a corneal infection rate similar to that of control rats immunized with 

saline (control group; P.0.05). Real-time polymerase chain reaction and immunohistochemistry 

assays confirmed IFNγ expression and effective TG targeting on days 14 and 21, which increased 

with postimmunization time. Moreover, IFNγ was expressed sufficiently in the TG tissues.

Conclusion: The rdHSV-IFNγ can act as an effective gene transporting vector that carries the 

therapeutic genes to the TG and triggers its expression.

Keywords: replication-defective HSV-1, interferon gamma, trigeminal ganglion, therapeutic gene

Introduction
Herpes simplex virus (HSV) infection in the corneas is the main kind of keratitis, 

which always develops to a chronic or an acute corneal inflammation.1,2 Among sev-

eral HSVs, the herpes simplex virus type 1 (HSV-1) is the most common cause of the 

herpes simplex keratitis (HSK). The HSK is a prevalent reason for corneal blindness in 

the modern clinical ophthalmology.3 Regarding the pathology of the HSK, the HSV-1 

first infects the corneal epithelium cells, then invades the sensory nerve endings, and 

finally travels to the trigeminal ganglion (TG).4 When the HSV-1 passes the acute 

stage, it becomes latent in the TG.4 It is well known that HSK is one of the most fre-

quently recurrent corneal diseases based on the reactivation of the latent HSV-1 in the 

trigeminal sensory neurons. The recurrence rate of HSK within 2 years is ∼23%–33%. 

Approximately 20%–25% of the recurrent HSK could develop to the T-cell-mediated 

HSK, which is the prevalent reason for the unilateral blindness.5

Although some anti-HSV or immunoregulatory treatments are available, they do 

not eliminate the latent virus and therefore cannot completely suppress the recurrence 

of the HSV-1 infection.6 Recently, DNA vaccines or vectors have been shown to trigger 

a cell-mediated immune response in the HSK rat models. However, HSV-1 infection 
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was blocked only in the acute stage of HSK and there was 

no effect against the latent HSV-1 infection of the TG. Hu et 

al7 developed a DNA vaccine that triggered a better immune 

protection against the HSV-1 infection of the ocular surface 

but did not inhibit the recurrence of corneal HSV-1 infection. 

Over the past 20 years, investigations to develop therapies for 

HSV-1 infection have been focused on developing effective 

treatment on the removal of latent infection of the TG and on 

the elimination of the latent virus in the TG. In this study, we 

attempted to establish an effective therapeutic system target-

ing the TG and cleaning up the latent virus in the TG. We 

took advantage of the neurotrophic properties of HSV-1 to 

make a recombinant, replication-defective (rd) HSV-1 vector 

that could be efficiently transported along neurons and could 

carry therapeutic IFN to the TG without any toxicity.

Materials and methods
animals, cell lines, and viruses
Male specific pathogen-free Wistar rats aged 5–6 weeks were 

purchased from the Experimental Animal Center of Xi’an 

Jiaotong University (Xi’an, People’s Republic of China). The 

rats were raised under pathogen-free conditions in contain-

ers supplied with filtered air. The Ethics Committee of the 

No 1 Hospital of Xi’an, Xi’an, People’s Republic of China, 

approved all the animal experiments.

The human neuroblastoma cell line SH-SY5Y and Vero 

cells were obtained from the Chinese Center for Disease 

Control and Prevention (Beijing, People’s Republic of 

China), grown in a 5% CO
2
 atmosphere at 37°C in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% 

fetal bovine serum, 100 μg/mL streptomycin sulfate, and 

100 units/mL penicillin G sodium.

The HSV-1 strain SM44 was obtained from Professor 

Xiuping Zhu at the Ophthalmological Institute of Shaanxi 

Province (Xi’an, People’s Republic of China) and was 

propagated, activated, and cultured in Vero cells. No ethics 

statement was required from the institutional review board 

for the use of these cell lines.

recombination of rdhsV-1
To control the replication of the established vector, we removed 

the immediate-early, ICP27, ICP4, and ICP34.5 genes, which 

are essential for replication, to form the rd viruses.8 In order to 

inhibit the cytotoxicity of the rdHSV-1, the pathogenic gene, 

VP16, was inactivated and mutated.9 To allow prolonged 

expression of the exogenous genes, we inserted a strong heter-

ologous promoter at the location of the 1.4 kb downstream under 

the latency-associated promoter 1 TATA box (Figure 1A).

iFnγ clone and establishment of rdhsV-1 
therapeutic system
Lymphocytes were isolated from the blood of a healthy 

volunteer and were grown in primary culture in the DMEM 

solution supplemented with 10% fetal bovine serum. The 

HSV-1 strain SM44 virus was used to activate the lympho-

cytes, and the total RNA was extracted from the activated 

lymphocytes. The total RNA was employed to synthesize the 

cDNA. IFNγ was amplified from the cDNA by PCR using  

5′-ACGAAGCTTATGAAATATACAAGTTATATCTTG-

3′ as the forward primer and 5′-ATCCTCGAGTTACTGGG

ATGCTCTTCGAC-3′ as the reverse primer.

The amplified IFNγ gene was cloned and inserted into 

a shuttle plasmid (Figure 1B). The rdHSV-1 vector was 

generated by calcium phosphate cotransfection of comple-

menting cells with the shuttle plasmid and HSV-1 backbone 

as previously described.9,10 The rdHSV-1 system (rdHSV-

IFNγ) was established successfully (Figure 1C), and titers 

were evaluated by using tenfold serial dilution as previously 

reported.11 The plaque forming units (PFUs) typically ranged 

from 3×108 PFU/mL to 2×109 PFU/mL.

XTT cytotoxicity assay
SH-SY5Y cells cultured in 96- or six-well plates were 

infected with the rdHSV-IFNγ vector (at final concentrations 

of 25 TCID
50

, 50 TCID
50

, 100 TCID
50

, and 200 TCID
50

,
 

respectively). After 48 hours, antiviral activity and cytotox-

icity were determined by XTT assay. The dimethyl sulfoxide 

solubilization solution was used as a negative control, and the 

assay was performed as previously described.12 The results 

of XTT assay were reported as the percentage inhibition of 

cytotoxicity calculated as follows: inhibition% = [100− (A
t
/

A
s
) ×100]%, where A

t
/A

s
 is the ratio of the absorbance of 

the formazan-containing assay solution to the absorbance 

of the XTT solubilization solution at 48 hours. The vector 

concentration resulting in 50% cellular cytotoxicity (CC
50

) 

was determined as described by Chiang et al.13

immunization with rdhsV-iFnγ
Wistar rats were anesthetized, and their corneas were scari-

fied with a syringe needle (1 mL type) for at least ten times. 

The rats were then randomly assigned to three groups (n=20 

per group), including blank rdHSV vector group (blank 

rdHSV-1), rdHSV-IFNγ group, and control (CN) group 

(treated with saline), that is, to the topical treatment of the 

cornea with 10 μL of blank rdHSV (2×106 PFU), rdHSV-

IFNγ (2×106 PFU/mL), and a CN group given normal saline 

solution.
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immunohistochemistry analysis
Trigeminal ganglia were isolated from the rats, fixed in 4% 

paraformaldehyde, embedded in commercial tissue freezing 

medium (TIANGEN Biotech Co., Ltd., Beijing, People’s 

Republic of China), and immediately frozen in isopentane. 

Cryosections (4 μm) were cut, fixed in 70% ethanol, and 

incubated with mouse anti-HSV-1 monoclonal antibody 

(1:1,000; sc-57862; Santa Cruz Biotechnology Inc., Dallas, 

TX, USA) for at least 1 hour. The sections were also stained 

with hematoxylin and eosin, and all the procedures were 

performed according to the manufacturer’s instructions.

iFnγ detection by Western blot assay
Trigeminal ganglia were isolated for the detection of IFNγ 

expression by Western blot assay. The treatment of trigemi-

nal ganglia and the Western blot processes were performed 

according to the previous study.14 The primary antibodies 

were mouse anti-IFNγ monoclonal antibody (1:2,000) and 

mouse anti-β-actin monoclonal antibody (1:2,000). The 

secondary antibody was horseradish-peroxidase-conjugated 

rabbit anti-mouse antibody (1:1,000; all from Santa Cruz 

Biotechnology Inc.). The Western blot bands were scanned, 

and the pixel count and intensity of each band were semi-

quantified. The signals were normalized against β-actin, and 

the data were expressed as the percentage of the negative 

control signals.

iFnγ assay by real-time polymerase chain 
reaction
The expression of IFNγ mRNA in trigeminal ganglia was 

assayed by real-time polymerase chain reaction (RT-PCR). 

The forward primer was 5′-ACGAAGCTTATGAAATA

TACAAGTTATATCTTG-3′, and the reverse primer was  

5′-ATCCTCGAGTTACTGGGATGCTCTTCGAC-3′. 
β-actin was used as the internal control; the forward primer 

was 5′-GGACTTC GAGCAGGAGATGG-3′, and the 

reverse primer was 5′-GCACCGTG TTGGCGTAGAGG-3′. 
The isolation of total RNA and cDNA syntheses was carried 

out using a commercial kit (TIANGEN Biotech Co., Ltd.). 

The procedure and conditions of the RT-PCR were fol-

lowed according to the requirement or the instruction of the 

PCR reaction kit (Takara Biotechnology Co., Ltd., Dalian, 

γ

γ

γ γ

Figure 1 construction of the rdhsV-iFnγ therapeutic system.
Notes: (A) hsV backbone of the recombined hsV-1. (B) shuttle plasmids carrying the iFnγ gene. (C) The complete rdhsV-1-iFnγ therapeutic system.
Abbreviations: hsV-1, herpes simplex virus type 1; iFnγ, interferon gamma; rdhsV, replication-defective hsV-1; eF-1α, elongation factor 1 alpha; cMV, cytomegalovirus 
promoter.
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People’s Republic of China), using the ABI7500 RT-PCR 

System (Thermo Fisher Scientific, Waltham, MA, USA). The 

amplified DNA was run on 1.5% agarose gels; images were 

then digitally captured with a charge-coupled device camera 

and analyzed with an imaging analysis system.

statistical analysis
The analyses were performed using SPSS 20.0 statistical 

software (IBM Corporation, Armonk, NY, USA). Student’s 

t-test was used to evaluate the significance of differ-

ences between groups. P-values ,0.05 were statistically 

significant.

Results
safety evaluation for rdhsV-iFnγ
As therapeutic vectors must display high and proven safety, 

we evaluated the safety of rdHSV-IFNγ both in vivo and 

in vitro. There was no evidence of HSV-1 or HSV-1 infec-

tion in any of the specific pathogen-free rats when the study 

began (data not shown). First, we also evaluated the safety 

of the rdHSV-IFNγ in vivo. Rats were immunized by the 

topical administration of drops containing rdHSV-IFNγ in 

their scarified corneas (Figure 2A). Second, we examined the 

survival rate and infection rate of rdHSV-IFNγ-immunized 

rats. Kaplan–Meier estimate confirmed that cumulative 

γ  

γ

γ

γ

γ

Figure 2 safety evaluation of rdhsV-iFnγ in vivo and in vitro.
Notes: (A) immunization procedure for the rdhsV-iFnγ vector. Corneas were scarified ten times with syringe needle (1 mL type), and drops of rdHSV-IFNγ solution were 
applied to the ocular mucosa. (B) Kaplan–Meier survival analysis for the three treatment groups. (C) infection rates in the three treatment groups. (D) cc50 of 0.1% DMsO, 
aciclovir, and rdhsV-iFnγ. ***P,0.001, cc50, or ec50 in the rdhsV-iFnγ group vs the aciclovir group.
Abbreviations: cc50, 50% cellular cytotoxicity; cn, control; DMsO, dimethyl sulfoxide; ec50, 50% effective concentration; hsV-1, herpes simplex virus type 1; iFnγ, 
interferon gamma; rdhsV, replication-defective hsV-1.
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survival in the rdHSV-IFNγ group was equal to that in the 

CN group (Figure 2B, P.0.05). Furthermore, the side effects 

of rdHSV-IFNγ treatment were also evaluated from day 1 to 

day 21 following the immunization and found no significant 

difference in the infection rate in the rdHSV-IFNγ group 

compared with that in the CN group (Figure 2C).

In addition, the cytotoxicity of rdHSV-IFNγ in SH-SY5Y 

cells, as indicated by the CC
50

 results, was significantly lower 

than that of aciclovir (P,0.05) and not different from that 

of 0.1% dimethyl sulfoxide (Figure 2D, P.0.05). Overall, 

the results support the safety of rdHSV-IFNγ as a therapeutic 

system for the treatment of latent HSV-1 infection.

Therapeutic rdhsV-iFnγ effectively 
targets the Tg
The targeting efficiency of rdHSV-IFNγ was assayed by the 

detection and amplification of the cloned IFNγ protein. In 

this experiment, we isolated and detected the IFNγ protein in 

cornea, trigeminal nerve, and TG on days 1, 7, 14, and 21 by 

RT-PCR. The IFNγ mRNA was found in the cornea on days 1 

and 7, but the expression had significantly decreased by day 

14 and day 21 compared with day 1 and day 7 (P,0.05, 

Figure 3). Meanwhile, IFNγ mRNA was not found in the TG 

on days 1 and 7, but the expression increased significantly 

from day 7 to day 21 (Figure 3). On day 21, IFNγ mRNAs 

were primarily distributed in the TG and were very low in 

the cornea. The pattern of IFNγ mRNA distribution over time 

from day 1 to day 21 led us to conclude that rdHSV-IFNγ 

could finally target the TG on day 21, which may indicate 

that day 21 is optimal for the clearance of latent HSV-1 in 

the HSK rat models (Figure 3).

The rdHSV-IFNγ targeting and expression were also char-

acterized by immunohistochemistry (Figure 4). The results 

showed that IFNγ protein expression in the cornea decreased 

significantly from day 1 to day 21 (Figure 4A). The IFNγ 

protein was located mainly in the cornea on days 1 and 7, 

but the level was significantly lower on days 14 and 21. IFNγ 

protein was expressed in the trigeminal nerve on days 7 and 

14 but was no longer detected there on day 21 (Figure 4B). 

Most important, IFNγ expression in the TG began on day 

14 and rapidly reached a peak level on day 21 (Figure 4C). 

IFNγ expression in the TG thus increased with time after 

immunization.

effective expression of rdhsV-iFnγ in Tg 
tissue
The results described earlier indicated that the rdHSV-IFNγ 

could effectively localize in TG tissue, where IFNγ mRNA 

(Figure 5A) and protein expression (Figure 5B) were found to 

be the strongest on days 14 and 21. The peak expression was 

coincident with the time that rdHSV-IFNγ was present in the 

TG. The findings thus suggest that the rdHSV-IFNγ not only 

targeted the TG tissues but also carried the therapeutic gene 

to the TG, where it could then clear the latent HSV-1.

Discussion
Key objectives of drug design are the effective targeting of 

the diseased region and the induction of protective responses 

that lead to significantly shortened duration of illness and 

relief of disease symptoms.7,15 In the present study, we con-

structed an rdHSV-1 vector with the potential to effectively 

target the latent HSV-1 in TG tissue. We also cloned a 

therapeutic antiviral IFNγ gene fragment with the potential 

of increasing host immunogenicity.

Although there are many methods of delivering genes 

into mammalian cells in the past few decades, no spe-

cific vector targeting the trigeminal nerve or TG has been 

developed.16–18 Such a vector is especially important for 

γ

Figure 3 rT-Pcr assay of mrna expression in the cornea, trigeminal nerve, and Tg from day 1 to day 21.
Notes: (A) iFnγ mrna on day 1 to day 21 post immunization in the cornea, trigeminal nerve, and Tg. (B) statistical analysis for change in iFnγ mrna expression in the 
cornea, trigeminal nerve, and Tg from day 1 to day 21.
Abbreviations: iFnγ, interferon gamma; rT-Pcr, real-time polymerase chain reaction; Tg, trigeminal ganglion.
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treating HSK, because the available antiviral drugs do not 

target and eliminate the latent HSV-1 virus in the TG and thus 

cannot prevent recurrences.19,20 Therefore, we successfully 

constructed an rdHSV-1 vector system that could be used to 

effectively deliver therapeutic genes or immune regulators 

to the TG and clear the latent HSV-1.

In this study, we took an advantage of the neurotrophic 

properties of HSV-1 to reconstruct an rdHSV-1 vector that 

had lost its pathogenicity and ability to replicate and was 

effectively transported into the TG. For a clinically useful 

therapeutic tool, to confirm its safety in vitro, we transfected 

SH-SY5Y cells with the rdHSV vector. The results showed 

that rdHSV is very safe, with a CC
50

 six- to sevenfold higher 

than that of aciclovir, which is a drug having a wide clinical 

use.21Actually, aciclovir has been used in ophthalmology 

practice for many years and is clinically effective with few 

side effects and low cytotoxicity for patients.22,23 Further-

more, we have also immunized the rdHSV-IFNγ vector to 

the rats and examined the overall survival and the infection 

rate of the rats in every group. The results also indicated that 

γ

γ γ γ

Figure 4 immunohistochemical assay of iFnγ protein localization in the cornea (A), trigeminal nerve (B), and Tg (C) from day 1 to day 21 post immunization.
Notes: The long arrow in the graph illustrates the direction of change in the expression of iFnγ protein. The gray arrow illustrates the rdhsV-iFnγ targeting pathway from 
cornea to Tg.
Abbreviations: hsV-1, herpes simplex virus type 1; iFnγ, interferon gamma; rdhsV, replication-defective hsV-1; Tg, trigeminal ganglion.

Figure 5 iFnγ mrna (A) and protein (B) expression in the Tg tissues from day 1 to day 21 post immunization.
Notes: **P,0.01. iFnγ mrna or protein expression at 21 days vs 14 days.
Abbreviations: iFnγ, interferon gamma; mrna, messenger rna; Tg, trigeminal ganglion.

γ

γ γ

β

γ

β
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there was no significant difference between the rdHSV-IFNγ 

vector treatment group and the CN group. The removal of 

pathogenic gene fragments and genes needed for replication 

prevented the occurrence of treatment-related side effects 

and wild-type viral infections previously seen with some 

recombinant HSV-1 vectors.24–27 The in vivo and in vitro 

experiments demonstrated the safety of rdHSV-IFNγ.

To evaluate the targeting effectiveness of rdHSV-IFNγ, 

we isolated trigeminal ganglia from immunized rats and 

assayed IFNγ expression on days 1, 7, 14, and 21 after 

immunization. IFNγ protein was expressed following immu-

nization, and the expression level reflected the amount of 

rdHSV-IFNγ contained in the TG. The IFNγ mRNA and 

protein expression results indicate that rdHSV-IFNγ targeted 

the TG, continuously following a pathway from the cornea to 

the trigeminal nerve and the TG. Therefore, the rdHSV-IFNγ 

vector could effectively carry a therapeutic gene to HSV-1 

virus-infected cells in the HSK rat model or HSK patients. 

This characteristic of the rdHSV-IFNγ vector could make the 

elimination of the latent HSV-1 in the TG possible.

In this study, we cloned the human IFNγ gene and incor-

porated it into the rdHSV-IFNγ vector. Previous studies28,29 

have reported that IFNγ always has both antiviral and immu-

noregulatory roles in virus-infected cells and the intercellular 

substance. Upstream of the therapeutic gene insertion loca-

tion in the rdHSV-IFNγ vector, we added a strong promoter, 

CMV, to ensure sufficient expression of the therapeutic 

gene. Our results also confirmed that IFNγ was expressed 

in the TG where it could carry out its antiviral therapy and 

immunoregulatory functions.

Conclusion
Overall, the results confirm that rdHSV-IFNγ can act as a 

vector to carry therapeutic genes to regions with the latent 

HSV-1 infection and to trigger the expression of the therapeu-

tic genes (eg, the TG in the HSK model). The rdHSV-IFNγ 

vector carrying therapeutic genes may become a promising 

method to inhibit the reactivation of the latent HSV-1 and 

to prevent the recurrence of the HSK in clinical practice; 

however, much more evidence is required before the clini-

cal application of rdHSV-IFNγ becomes possible. We are 

planning to investigate the antiviral effects of rdHSV-IFNγ 

against various HSV-1 strains in this rat model system.
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