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Abstract: Several proteins interact either to activate or repress the expression of other genes 

during transcription. Based on the impact of these activities, the proteins can be classified into 

readers, modifier writers, and modifier erasers depending on whether histone marks are read, 

added, or removed, respectively, from a specific amino acid. Transcription is controlled by 

dynamic epigenetic marks with serious health implications in certain complex diseases, whose 

understanding may be useful in gene therapy. This work highlights traditional and current 

advances in post-translational modifications with relevance to gene therapy delivery. We report 

that enhanced understanding of epigenetic machinery provides clues to functional implication 

of certain genes/gene products and may facilitate transition toward revision of our clinical 

treatment procedure with effective fortification of gene therapy delivery.
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Introduction
The identical twins that originate from same egg and sperm are genetically identical, 

but may perhaps be different epigenetically due to influences that may occur later 

during zygotic cell differentiation and beyond. The epigenetics mechanism and its 

usefulness in the control of gene activity for several critical physiological and develop-

mental processes, is sometimes marred by unattended process mistakes which become 

catastrophic when not urgently reversed by self or other cell processes. An intriguing 

question which the medics continue to grapple with or address is the understanding 

of the dynamics of heritable phenotypic changes without any underlying genotypic 

DNA sequence alterations.

Sometimes, our diagnosis fails and we are unable to pin-point any specific 

diagnostic basis for a continued ill-health condition. Cases like this may sometimes 

be an outcome of current limitation or gaps in modern medical delivery, and possibly 

an unnoticed epigenetic misregulation.

Post-translational modifications (PTM) in histone,1,2 DNA methylation3,4 

mechanisms, and gene therapy are emerging fields; hence details of their processes need 

to be rigorously explored. Invariably, chromatin remodeling, which is an epigenetic 

modification, requires a great deal of ATP to form complexes which tend to shift and 

alter the stability of the nucleosome. In addition, there exists some histone variants 

which alter the functional mechanism of the nucleosome thereby creating epigenetic 

occurrences. Nevertheless, the long noncoding RNAs and noncoding RNAs consisting 

of piRNAs and siRNAs respectively, are able to influence and direct the epigenetic 

machinery. This may perhaps be by recruitment of epigenetic enzymes to epigenetic 

sites in the genome.
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These factors notwithstanding, environmental influences 

could impact and instigate epigenetic changes. Similarly, 

some chemicals function as obesogens and increase the likeli-

hood of obesity in an individual, thereby causing diseases such 

as diabetes. Tributyltin is an organotin biocide with serious 

epigenetic impact in organisms, causing endocrine disorder 

when inhaled, absorbed through the skin, or ingested along 

with contaminated water or food.5 It is a general antifouling 

industrial agent for paints used for underwater ship hull. When 

the fetus is exposed to this chemical, it initiates the reprogram-

ming of the fetal stem cells to preferentially differentiate into 

fat cells at the expense of bone cells by epigenesis, leading 

to a series of disorders and malformations.

The knowledge of gene products as a function of epige-

netic change clearly marks the way to go toward gene therapy 

intervention. This article highlights the role of some proteins 

in epigenetics while noting some epigenetic drugs and exam-

ining special considerations in gene therapy techniques. In 

considering why DNA methylation may not be seen strictly as 

a true epigenetic occurrence, we follow up with an overview 

of nucleosome structure and histone marks and then unravel 

a compendium of recent advances and discoveries in PTMs. 

We finally look at future perspectives of synergy between 

epigenetics and gene therapy.

Epigenetic drug and gene therapy 
techniques
As great research results are born in epigenetic studies, gene 

therapy with personalized approach will revolutionize our 

current traditional treatment method of drug delivery. Gene 

therapy, which involves the targeted transfer of recombinant 

genes into ailing tissues affected by known or unknown 

changes in gene activity/expression, offers great hope in 

epigenetic landscape discovery. As noted in several studies,6,7 

cancer is thought to be a disease principally attributed to 

epigenetic misregulation. Some authors believe that there are 

many causes of cancer, some of which are unknown, while 

the known ones include benzene, alcohol consumption, envi-

ronmental poison, poisonous mushrooms, excessive sunlight 

exposure, genetic problems, obesity, viruses, radiation, etc.8,9 

In addition, transposon10 insertion into DNA can also cause 

cancer, depending on the site of insertion.

As an output of epigenetics, epigenetic drugs can initiate 

a gene-repressive-oriented therapy administered to influ-

ence gene activity toward disease amelioration. Azacitidine 

injection at the correct dosage is shown to be effective in the 

treatment of several types of cancers, such as myelodysplastic 

syndromes, which are diseases of the bone marrow, includ-

ing chronic myelomonocytic leukemia. Interestingly, the 

phase III randomized clinical trials of Fenaux et al11 indicate 

that Vidaza (Azacitidine) injection prolongs overall survival 

compared to conventional care regimens in elderly patients 

with low bone marrow blast count acute myeloid leukemia. 

Vidaza is a chemotherapeutic drug belonging to the antime-

tabolite class of drugs that represses the expression of genes 

responsible for the growth of cells. This ultimately blocks 

the growth of cancer by preventing the synthesis of DNA 

and RNA thereby inhibiting tumor cell growth in leukemia 

patients. The functional implications of certain genes and 

knowledge on how their products interact are important for 

improved clinical treatment procedure and gene therapy12 

intervention.

As discussed in the next section on DNA methylation, 

the state of methylation of O6-methyl guanine DNA methyl 

transferase (MGMT) gene can define the impact of the suc-

cess story of gene therapy by using a two-component vector, 

a transgene, and MGMT against tumor cells. Furthermore, 

the clinical implication is that temozolomide is known to be 

more effective in patients with brain tumors such as glio-

blastoma having methylated MGMT promoter. In nature, 

viruses are adapted with the ability to enter specific cells for 

the purpose of transferring genetic material borne by them as 

carrier vectors. This event can be tweaked experimentally in 

the lab by deleting or mutating sequences from the wild-type 

viruses that code for viral replication proteins. This is done 

in a way that they are substituted with expression cassettes 

that encode the gene of interest, rendering them unable to 

replicate in the host cell. This transformed wild-type virus, 

which is now called a recombinant virus/vector, still retains 

the ability to penetrate host cells, but while carrying a 

recombinant gene of interest for delivery at target tissues. In 

this way, several disease conditions are ameliorated through 

systemic circulation of a recombinant protein. An example 

is seen in hemophilia B where the adeno-associated virus 

(AAV) expression cassette is loaded with factor IX (FIX), 

which tends to stop hemorrhagic diathesis.13,14

Current challenges to a successful gene therapy revolve 

around:

•	 The antigen–antibody response of host cell to transduced 

gene.

•	 Proper selection of appropriate vector system to 

deliver the gene of interest, whose malfunctioning is 

responsible for the ailing condition.

•	 Consideration of a targeted tissue or organ, a critical 

aspect of any gene delivery strategy, which often affects 

the choice of vector system used.

•	 Size of recombinant gene, which should be small so as 

to be accommodated inside the vector to deliver it to the 
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required site in the body. (This may pose a problem if it 

is too large to be packaged into the vector).

•	 The process of vector development and the entire gene 

therapy being laborious.

•	 Gene therapy treatment option being too expensive.

Popular targets of choice for the delivery of injected 

gene therapy vectors in clinical trials, for selected fit indi-

viduals, are liver and muscle.15,16 Upon administration, the 

natural immunity of the body may act, causing antibody 

binding and subsequent eviction of the introduced vector 

particle from the body.17 In this regard, the preferred choice 

of several investigators is the AAV. A unique feature of 

AAV is its use as a nonintegrating vector,18,19 principally 

due to the existence of an episome that facilitates a transient 

and attenuating effect20 in cell division processes in tissues 

such as the liver in some animals.21,22 This confers a wider 

acceptance for AAV as they are more readily accommodated 

by the host immune system compared to other types of viral 

vectors. Besides, the lentivirus subclass of the retroviruses, 

such as HIV, is an integrating virus that has high propensity 

to insert itself into the host DNA. They multiply continu-

ously to yield several copies during replication, hence it 

has a longer lasting effect, especially when the immune 

system is evaded.

MeCP and MGMT in DNA 
methylation mechanisms
The methylation of DNA, unlike that of histones, may not 

be seen as a true epigenetic event or PTM due to the end 

product containing a sequence change. The underlying factor 

is that methylation epigenetic event occurs by the addition of 

methyl group to specific amino acid for histone methylation 

(PTM) or to the fifth carbon atom of the cytosine ring of a 

pyrimidine nucleotide (DNA methylation). It is known that 

this methylated cytosine quickly deaminates and transform to 

thymine (Figure 1), causing disorder. This complex case of 

disease exacerbation is seen as a complicated situation beyond 

the process of epigenetics, to possibly a single nucleotide 

polymorphism.

In 1994, Zhang and Mathews23 described an experiment 

that portrayed a 21-time higher susceptibility of methylated 

cytosine to deamination compared to unmethylated cytosine 

on the DNA. This suggests that DNA methylation is a hot 

spot for mutagenesis. Preferably, DNA methylation chose to 

occur mostly at locations of the CpG where there are either 

repeats or at transposon-inserted positions10 or regions. 

Although promoters have the tendency not to be methylated, 

due to the presence of CpG clusters of motif that is refrac-

tory to methylation,4 they are sometimes overwhelmed by 

hypermethylation in some human cancers that represses 

the activities of genes (tumor repressors gene) originally 

supposed to defend any methylation occurrence. With high 

susceptibility to deamination, Methyl-CpG (meCpG) in a 

CpG island creates room for the formation of a repressive 

chromatin structure. It occurs such that we have methylated 

CpG-binding proteins, MeCP1 and 2, which have great 

affinity binding to meCpG. MeCP proteins, with its inherent 

DNA-binding domain and transcription repression domain, 

can recruit other factors that condense the chromatin.

The purification and functional analysis of MeCP1 by 

Feng and Zhang3 reveals that it contains 10 other polypeptides, 

including MBD2 (the meCpG-binding protein), which recruit 

chromatin remodelers, deacetylate histones, resulting in gene 

silencing in methylated DNA. However, gel shift experiments 

with nuclear extracts and a CpG-methylated DNA probe 

indicate that recombinant MBD3L2 (meCpG-binding protein 

3-like 2) can displace a form of the MeCP1 complex from 

methylated DNA to restore transcription.24,25

During DNA replication and as fallout of DNA methyla-

tion, in a cell with O6 methyl-guanine, the replication fork 

proceeds, thereby creating a mis-pair with thymine, thus 

leading to a GC→AT transition. A repair protein, MGMT 

is thereby activated to restore and preserve genome integ-

rity. In this case, the MGMT protein accepts the methyl 

Figure 1 Mutagenic deamination of DNA methylation.
Notes: This process started originally with an epigenetic change of cytosine during methylation, but a resultant deamination of an intermediate product (5-methyl cytosine) made 
it a complicated situation beyond epigenetics, to a possible SNP. This is therefore not strictly an epigenetic change, notwithstanding that it started like usual DNA methylation.
Abbreviation: SNP, single nucleotide polymorphism.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

864

Osamor et al

using its cysteine residue by a demethylation process of 

O6-methylguanine back to guanine. This role clinically por-

trays the importance of MGMT gene activities in ameliorat-

ing cases of patients susceptible to carcinoma and ultimately 

determines the success level of azacitidine, temozolomide, 

and gene therapy intervention.

Nucleosome and histone marks
Ever since the discovery of histone protein 1 and the win-

ning of the 1910 Nobel Prize in Physiology or Medicine26 

by Albrecht Kossel, other related discoveries continued to 

evolve. The idea that the number of chromosome is same 

in all somatic cells instigated Stedman and Stedman27 to 

suggest that histone totally represses gene expression.28 

The landmark discovery by Allfrey et al29 opined that the 

chemical changes of methylation and acetylation impact the 

transcription process, and this revelation opened up several 

advances into today’s epigenetics. Rogers Kornberg, a 2006 

Chemistry Nobel Laureate and American Scientist, unraveled 

the relationship between histones and DNA by discovering 

the nucleosome as repeating unit of histones along the DNA.30 

The trio of Aaron Ciechanover, Avram Hershko, and Irwin 

Rose similarly won the 2004 Nobel Prize in Chemistry for 

their discovery of ubiquitin conjugation on lysine, which 

they reported as a procedure that picks protein for onward 

degradation.31

One of the most abundant and highly conserved eukary-

otic proteins in the body are the histones, which are cred-

ited to facilitate the maintenance of structural framework 

and compaction of the genome. Indeed, their major role is 

more appreciated in the mediation of several biochemical 

processes32,33 that take place in the body at their N-terminal 

tail by other proteins.34,35 It is also known that not only pro-

teins are able to recruit complexes that modify or remodels 

histones, but noncoding RNAs are also involved.36 In mouse, 

Pasque et al37 showed that X chromosome can be repro-

grammed to maintain static irreversible process by inclusion 

of histone variant macroH2A.

The nucleosome represents a DNA wound almost 

1.7 times around nuclear proteins called histones, which are 

of 4-paired types (H2A, H2B, H3, and H4) usually seen as an 

octamer core with a single unpaired H1 histone. The resulting 

architecture leaves H1 histone on the outside, thereby locking 

the entire set firmly as a tight unit as shown in Figure 2. It is 

now known that nucleosomes form a complex when one H1 

histone interacts with another H1 histone. Earlier studies38–40 

have shown that histones are able to recruit other proteins 

to form a complex.

Each histone octamer bears a protruding tail with 

C-terminal end and a more reactive N-terminal that plays a 

pivotal role in epigenetic marks.

By this tendency of the 146 bp DNA length to wind on 

histones, nature has provided a mechanism for the 2 m DNA 

to be stacked in a 10 nm diameter nucleus. A collection of 

the chemical structure conformations of the resultant histone 

marks in the modification of amino acids like lysine, serine, 

and arginine are represented in Figure 3. N-monomethyl, 

NN-dimethyl, and NNN-trimethyl lysines are the histone 

methylation marks formed by the covalent modification of 

lysine via addition of one molecule of -CH
3
, two molecules 

of -CH
3
, and three molecules of -CH

3
 group, respectively. 

Another histone acetylation mark is created by the covalent 

addition of the -OCH
3
 group to lysine to form N-acetyl 

lysine. Similarly, arginine can covalently add one or two 

molecules of -CH
3
 group to form histone methylation marks 

such as N-monomethyl arginine and NN-dimethyl arginine, 

respectively. However, NN-dimethyl arginine has two types 

of conformation, namely, the symmetric and the asym-

metric NN-dimethyl arginine. The PO
4
-	(phosphate group) 

modifies the amino acid serine by phosphorylation to form 

phosphoserine.

Compendium of recent advances in 
PTM discoveries and their roles
Lysine acetylation
Acetylation of histone is important for transcription and DNA 

repairs. Acetyl-coenzyme A (CoA) is the major substrate 

for histone acetyl transferases (HATs). How the nucleus 

got the abundance of its acetyl CoA synthesized primarily 

in the mitochondria by the pyruvate dehydrogenase complex 

(PDC) remained a mystery until 2014, when Sutendra et al41 

showed that mitochondrial PDC translocates to the nucleus 

at the instance of some signaling event to synthesize more 

acetyl CoA for continued histone acetylation. This was 

Core DNA Histone tail

Octamer of core histone:
H2A, H2B, H3, H4
(each one x2)

Linker DNA

H1 histone

Figure 2 Nucleosome and component histones.
Notes: The octamer histone core (H2A, H2B, H3, and H4) is wrapped by the DNA 
and locked on the outside by H1 histone.
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about the same time that Li et al42 discovered a novel family 

of histone acetylation readers called the YEATS domains, 

which is different from the usual royal family readers of bro-

modomains, chlorodomains or PHD. This difference shows 

that AF9 YEATS adopts an eight-stranded immunoglobin 

fold and utilizes a serine-lined aromatic “sandwiching” cage 

for acetyllysine readout. They showed that AF9 YEATS TF 

motif binds to H3K9ac readily than to other lysine acetylation 

marks like H3K18 and H3K27, while at the same time AF9 

recruits DOTIL that ultimately deposits H3K79 methylation 

on active chromatin. This is arguably a positive count on the 

total number of possible cross talks between lysine acetyla-

tion and methylation.

Lysine methylation
Currently, interest on the group of proteins called the 

polycomb has grown, especially to explore the biological 

role of PRC2 complexes that contains Ezh2/E(Z) protein 

component.43 This is because Ezh2/E(Z) is able to engage 

in the methylation of H3 at lysine K27 to yield a histone 

mark (H3K27me1) indicted for heterochromatin forma-

tion (closed chromatin that represses gene expression). 

Similarly, further studies reveal that at histone mark 

H3 lysine 9 position, Eed/ESC which is another mem-

ber of PRC2 complex, is able to engage a methylated 

H3K27me3 by binding to it44 and using its domains to 

interact with itself,45 thereby stimulating methyltrans-

ferase for Ezh2.46,28

Grossniklaus and Paro47 report that polycomb genes are 

for silenced chromatin development, and they participate in 

multimeric complexes where they bind to specific histone 

modification such as H3K27me3 and H2AK119ub1 to 

repress transcription processes. The Suv39 H1 (suppres-

sor of variegation 3–9 homologue 1 [Drosophila] gene 

codes for histone methyl transferase [HMT]) responsible 

for trimethylating lysine 9 of histone 3 (H3) – H3K9me3. 

Bannister et al48 reported that a methylated histone H3 at 

position 9 lysine led to the recruitment of heterochromatin 

protein (HP1), which is a transcription repressor.49,50 This 

HP1 may perhaps choose to recruit Suv39H1 and in turn 

trigger the original methylation activity. Disease associated 

with Suv39H1 is idiopathic pulmonary fibrosis. This is 

similar to Suv91_Human that encodes histone trimethyl-

transferase, which specifically uses monomethylated H3K9 

(H3K9me1) to trimethylate in other to yield H3K9me3 

mark. This again suggests that several molecular activities 

may occur in a revolving cyclic manner via interactions of 

same or different protein component for the same histone 

mark. Ultimately, the effect of these repeated interactions 

by several different domains is quite complicated and will 

always have peculiar effects on the totality of the organism’s 

constitution and life.

H O
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PO4
–

H H

N

CH2

CH3

NH2

H3C

HN

COR

N-acetyl lysine

NN-dimethyl lysine NNN-trimethyl-lysine NN-dimethyl arginine
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Figure 3 Chemical structures of major histone modifications.
Notes: The chemical structure represents the histone marks for some lysine and arginine amino acid modifications. They are formed by covalent addition of either acetyl 
or methyl groups or their multiples.
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Phosphorylation
Phosphorylation, which adds PO

4
- via kinases to serine or 

threonine, applies not only to H2A and H2B but also H3 and 

H4 histones. Phosphorylation is known to be reversed by 

phosphatases like PPI, and phosphorylation has functional 

roles in transcription, mitosis, DNA repair, and apoptosis. 

Specific examples include H2BS33ph (fruit fly) for DNA 

repair and condensation, H3S10ph supports apoptosis and 

H4S1ph for DNA repair and chromatin assembly. More 

recently, the knowledge horizon has been expanded by the 

work of Basnet et al51 who demonstrated that transcription 

elongation is impaired by tyrosine 57 mutation in H2A (Y57F) 

or casein kinase 2 (CK2) inhibition in both yeast and mam-

mals. Furthermore, the strange mutation is implicated in the 

concomitant loss of active transcription in H3K4me3 and H3K 

79me3, and another loss of H2B mono-ubiquitination in Spt-

Ada-Gcn5 acetyltransferase (SAGA) complex portrays that 

the critical role of SAGA is phosphorylation dependent.

Sometimes, PTM-associated proteins exhibit the charac-

teristics of allosteric regulation by metabolites around their 

binding site, but not attaching at the actual active/binding 

site. This depicts a usual conserved regulatory mecha-

nisms phenomenon. Some phosphorous-containing PTM 

such as the primary glycolytic electrolytic intermediate 1, 

3-bisphosphoglycerate are capable of reacting and modify-

ing specific lysine under no required catalytic conditions to 

produce 3-phosphoglyceryl-lysine (pgK), which ultimately 

inhibits glycolytic activities.52

Ubiquitination
Unlike acetylation and methylation, which covalently add 

acetyl and methyl groups, respectively, to histone protein 

such as lysine, ubiquitin modifies lysine residues by an 

interesting process of conserved conjugation cascade.53,54 

Ubiquitin is common in eukaryotes and is involved in several 

body processes. However, they look similar but have different 

sequences with a signature diglycine sequence that is exposed 

after proteolytic processing. They are characterized by a 

biochemical mechanism of isopeptide bond that is formed 

between the modifier’s terminal glycine and an amino group 

of the target protein.

Ubiquitin has a wide variety of substrates, but most of its 

various domains are highly specific. Examples of its domains 

are activating enzymes E1, conjugating enzyme E2, and 

RING E3 domains. Ubiquitin’s modification of lysine will 

first involve the conjugative cascade machinery involving the 

domains that recognized the substrate lysine. It is important 

to state that Mdm2 is a RING E3 domain that controls the 

level of the tumor suppressor p53 interactions.55 The binding 

of Mdm2 with a hydrophobic cleft to p53 with a hydrophobic 

face interrupts the transcriptional activities of p53, which in 

turn induces Mdm2 to aid its nuclear transport. This is a typi-

cal case of autoregulatory negative feedback mechanism.56

SUMOylation
SUMOylation is the covalent addition of small ubiquitin-like 

modifiers to proteins by which the lysine at specific posi-

tions in a histone are marked for critical biological roles. 

These roles include protein homeostasis, trafficking and 

signal transduction, protein localization, gene regulation, 

and nucleocytoplasmic signaling and transport, are subject 

to reversible sumoylation, and are beginning to attract atten-

tion as an intervention method against diseases.57 The tumor 

suppressor protein, INhibitor of Growth (ING) exists in 

five isoforms (ING1–5), and they repress cell growth when 

overexpressed. Satpathy et al58 found that lysine K193 is a 

good ING1b SUMO acceptor site. This is believed to activate 

ING1b SUMOylation on K193, which is facilitated by S199D 

phosphomimic mutant. Ultimately, the binding of ING1b to 

promoter ISG15 and DGCR8 regulates transcription.

Proline isomerization
Through peptidyl-prolyl (proline) isomerase (PPIases) 

catalysis, the amino acid proline has a unique attribute of 

undergoing isomerism by its ability to interconvert between 

the cis and trans isomers (Figure 4) of the N-terminal amide 

bond.59 Conformations of these isomers have a role to play in 

protein folding and molecular switch formation in metabolic 

pathways for several processes, and reactions in this class of 

molecules are usually slow due to the double bond but are usu-

ally catalyzed by peptidyl-prolyl isomerase. Camilloni et al60 

showed that a proline isomerase called cyclophilin A, “uses 

electrostatic handle” mechanism by creating: 

Electrostatic environment in its catalytic site that rotates a 

peptide bond in the substrate by pulling the electric dipole 

associated with the carbonyl group preceding the peptide 

bond itself.60

O

R

COR′

cis trans

N

R

O

COR′

N

Figure 4 The cis and trans isomers of proline.
Notes: The process of the formation of trans and cis conformation is via isomerism, 
and the reaction is a reversible process.
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This outcome suggests a situation for the application of 

electrostatics in explaining enzyme catalytic process.

Different states like stress and several metabolic signals 

may affect and influence gene transcription. The organism has 

to respond to these influences, and changes will be noticed in 

its gene transcription profile to ensure that the organism sur-

vives or grows at the optimum prevailing state. Howe et al61 

demonstrated that H3K14ac is responsible for change of state 

and the cis–trans isomerization of H3 at alanine-15-proline-16 

peptide bond. Changes in lysine 14 (K14) acetylation improve 

the availability of the conformation of A15-P16trans. The 

ribosomal genes use K4me3 for repression during stress and 

are affected by the balancing action of Spp1 subunit of Set1 

K4 methyltransferase complex and Jhd2 demethylases.

Biotinylation
The addition of biotin to proteins or other substances, a 

phenomenon often called biotinylation has found importance 

in application areas such as tagging and labeling of 

biomolecules. Due to biotin’s tight coupling with streptavi-

din, it is also known to efficiently refract light or fluoresces 

under light to reveal tags placed on them. However, there 

are various methods of biotinylation that range from chemi-

cal methods to enzymatic methods using some bacteria. In 

vivo biotinylation of bacterial magnetic particles (BacMPs) 

from Magnetospirillum magneticum AMB-1 was carried out 

by Maeda et al62 using simultaneous expression method of 

biotin acceptor protein (BAP) fused with Mms13 (which is 

BacMP surface protein) in truncated, DNA-binding domain-

free E. coli biotin ligase. This biotinylation was confirmed by 

applying the resultant biotinylated BAP-BacMP to alkaline 

phosphatase-conjugated anti-biotin antibody and exposing it 

to streptavidin which has a higher affinity for in vivo bioti-

nylation compared to in vitro biotinylation.

Biotinylation of RNA adds biotin to lysine protein molecules 

during investigative studies on RNA–protein interaction or  

in protein–protein interaction or DNA–protein interaction. 

Some nucleotides are also biotinylated. All these interactions 

with biotin are able to invoke some PTM to occur, including 

chromatin remodeling activities as demonstrated in E. coli 

with SW1/SNF2 proteins for RNA-directed binding.63

ADP-ribosylation
These sets of PTM are not well characterized relatively com-

pared to other PTM. This may be attributable to the less fre-

quent nature of their activities, as summed by the fact that they 

were discovered later. ADP-ribosyltransferase64 facilitates the 

addition of one or more moieties of ADP-ribose (comparable 

to methyl or acetyl) from nicotinamide adenine dinucleotide 

(NAD+) to the glutamate (E) or aspartic acid or arginine it 

modifies. This has found application in DNA repair and toxi-

cology, where microbes like M. cholerae65 releases proteinous 

ADP-ribosylate-based toxins that act against human cells by 

adding moieties responsible for the deadly diarrhea.

Citrullination
Citrullination or deimination is the conversion of an argin-

ine residue to the noncoded amino acid citrulline, mediated 

by peptidylarginine deiminases (PADIs). This enzyme has 

been linked with autoimmunity, cancer, neurodegenerative 

disorders, prion diseases, and thrombosis. In a recent work, 

Christophorou et al66 identified a linker histone (H1) variant 

that aids compact chromatin. However, H1 variant displace-

ment from chromatin on citrullination of arginine activates 

transcription and may influence pluripotency.

Newer lysine modifications
Newer protein lysine modifications include butyrylation,67 

propionylation,68 malonylation,69,70 crotonylation,71 and succi-

nylation.72 Currently, there is the provision of a compendium 

of protein lysine modification database (CPLM) updated 

from a previously developed compendium of protein lysine 

acetylation (CPLA). The authors revealed that manual col-

lection of experimentally identified substrate and sites was 

carried out for 12 types of protein lysine modifications to 

attain a current capacity of 203,972 modification events on 

189,919 modified lysines in 45,748 proteins for 122 species.73 

This suggests an increase in cross talk activities, which is 

estimated to be highest between acetylation and methylation 

as opposed to other PTMs.

Future perspective of epigenetics 
in gene therapy advances
It becomes imperative that as far as antibody binding 

response is a challenge, appropriate choice of vector and 

targeted tissue/organ consideration becomes inevitable. Since 

in some cases, there could be possible avoidance of systemic 

circulation (in vivo) by alternative means without necessarily 

injecting the patient with vector, strategies for transduction by 

direct application on the tissue (ex vivo).12 This suggests that 

perhaps the best way to advance is to re-emphasize research 

focus on direct application. However, it is impossible, and 

may be impracticable, to isolate some tissue/organ for such 

treatment delivery. Perhaps, evolution of more methods is 

desirable in this direction to ensure that vector particles are 

delivered to the target sites unhindered.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

868

Osamor et al

In addition to the impending challenges, there is the dif-

ficulty in packaging some relatively large genes/products of 

interest into vector particles due to their large size. This is 

known to hinder some treatment advances in hemophilia A, 

where the relatively large size of human factor VIII (FVIII) 

is a challenge for packaging into AAV2. Notwithstanding, 

McIntosh et al74 was able to obtain some level of successes 

while contending with difficulties inherent in the study of 

FVIII in mouse and nonhuman primates. This suggests that 

McIntosh et al’s codon optimized human FVIII variant 

(codop-hFVIII-V3) is safe and potent, at least in nonhuman 

animals, raising great hope that a gene therapy solution for 

hemophilia A in humans is at sight.

The process of generating and manufacturing a viral 

vector particle like AAV remains a tedious process further 

surmounted by a complex cellular procedure. This is evident 

in the work of Allay et al75 and Nathwani et al14 despite the 

success story of hemophilia B gene therapy. Gene therapy 

is a laborious relatively complex process with a risky nature 

compared to the traditional way of drug administration or 

conventional treatment regimen taken either orally, intra-

muscularly, or intravenously. Due to the attendant difficul-

ties, gene therapy is currently too expensive for developing 

nations. The hope is that as more discoveries and improve-

ments are made, especially in the epigenetics domain, it will 

in turn ignite gene therapy advances, which will necessitate a 

drop in price similar to what we witnessed in next-generation 

sequencing evolution.

Across the various modifications, are some antagonistic 

situations of feedback mechanisms which can be investigated 

and exploited to further advance gene treatment delivery. 

Mdm2, which is a RING E3 domain in ubiquitination, is 

overexpressed in several human cancers, and the inhibition 

of Mdm2 expression has been shown to lead to the activa-

tion of p53.76 When the binding of Mdm2/p53 is disrupted, 

p53 is activated; so a suitable small-molecule antagonist 

is needed to bind Mdm2 into the binding pocket of p53 to 

prevent the its ubiquitination and thereby opening of its 

pathway.22,56 This suggests that cancers arising from this type 

of modification, especially those indicted via the active p53 

pathway, may be arrested by using therapy along the lines 

of this knowledge.

Originally, the widely used retroviral episomal transfer 

frequently cause biosafety77 issues and concerns in gene 

therapy delivery, resulting in several clinical trial failures.78,79 

This is principally caused by the integration of the vector 

genome into the target cell chromatin thereby deregulat-

ing neighboring genes subsequently by the phenomenon 

of insertional mutagenesis. Recent advances has led to 

improved mutation of the retroviral integrase that converts 

these vectors into safer, transient, and integration-deficient 

gene delivery vehicles for gene therapy, thus reducing inte-

gration frequencies by 100- to 1,000-fold via introduction of 

a missense mutation into the DDE catalytic triad of retroviral 

integrase.80 Furthermore, Schott et al81 recently provided a 

proof of concept for episomal transfer of transcription factor 

Oct4, which was potent enough to mediate conversion of 

human fibroblasts stably expressing Klf4, Sox2, and c-Myc 

into induced pluripotent stem cells, which were mainly free 

of residual Oct4 vector integration. Interestingly, this evi-

dence further confirms that the use of episomal expression 

enhanced by epigenetic modifiers as Oct4 activity increases 

following fusion to a minimal transactivation motif of herpes 

simplex virus VP16. In addition, long terminal repeat-driven 

γ-retroviral vectors’ architecture is seen as the most suitable 

vector for episome transfer of transcription factors for cell 

fate conversion, which further suggests the provision of new 

insight into a safer gene therapy treatment delivery.

In epigenetics, there exists a relationship between the 

effect of DNA methylation and the choice of vector for gene 

therapy. It has been discovered that self-complementary 

AAV vectors stimulate toll-like receptor 9, with stimula-

tion stronger than that which occurs with single-stranded 

AAV vectors.82,83 This is because toll-like receptor 9 is a 

well-known pattern recognition receptor able to recognize 

unmethylated CpG dinucleotides. It is not clearly understood 

how the stimulation of toll-like receptor 9 will impact on 

vector’s efficacy and design strategies, and, as such, this 

has become an area to be explored.84,85 So far, after several 

decades of research, there are some rays of successes, but 

with greater hope that epigenetics research output will be the 

final knowledge depot for gene therapy advances in quest 

for healthy mankind.

Conclusion
The pivotal task in ameliorating epigenetic misregulation is 

to administer products with inherent ability to interact either 

directly or indirectly with the misregulated gene to stabilize 

or suppress its expression. The indirect approach may require 

the induction of other known repressors proteins complexes. 

Gene therapy has shown to handle some cases of absence 

or lack of specific gene activity, and the administration of 

such genes through recombinant vectors has produced some 

results. As molecular research effort progresses with time, 

more information have continued to emerge, giving fur-

ther insight on new mechanisms and sources of epigenetic 
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modifications, especially in humans. Over the past few years, 

minor epigenetic misregulation has been seen as synonymous 

with disease conditions like cancer, despite its positive role in 

developmental processes. Nevertheless, the enhanced under-

standing of epigenetic machinery will always provide clues on 

the functional implications of certain genes and may perhaps 

draw us close from different dimensions toward revision of 

our clinical treatment procedure with efficient infusion of gene 

therapy.12 Our increasing knowledge of the role of the MGMT 

gene and similar genes in combination with epigenetic drugs 

can fortify our advancement and further build on the gains of 

gene therapy in ameliorating cases of complex diseases.
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