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Abstract: Chronic hypoxia leads to muscle atrophy. The molecular mechanisms responsible 

for this phenomenon are not well defined in vivo. We sought to determine how chronic hypoxia 

regulates molecular markers of protein synthesis and degradation in human skeletal muscle and 

whether these regulations were related to the regulation of the hypoxia-inducible factor (HIF) 

pathway. Eight young male subjects lived in a normobaric hypoxic hotel (FiO
2
 14.1%, 3,200 m) 

for 15 days in well-controlled conditions for nutrition and physical activity. Skeletal muscle 

biopsies were obtained in the musculus vastus lateralis before (PRE) and immediately after 

(POST) hypoxic exposure. Intramuscular hypoxia-inducible factor-1 alpha (HIF-1α) protein 

expression decreased (−49%, P=0.03), whereas hypoxia-inducible factor-2 alpha (HIF-2α) 

remained unaffected from PRE to POST hypoxic exposure. Also, downstream HIF-1α target 

genes VEGF-A (−66%, P=0.006) and BNIP3 (−24%, P=0.002) were downregulated, and a ten-

dency was measured for neural precursor cell expressed, developmentally Nedd4 (−47%, P=0.07), 

suggesting lowered HIF-1α transcriptional activity after 15 days of exposure to environmental 

hypoxia. No difference was found on microtubule-associated protein 1 light chain 3 type II/I 

(LC3b-II/I) ratio, and P62 protein expression tended to increase (+45%, P=0.07) compared to 

PRE exposure levels, suggesting that autophagy was not modulated after chronic hypoxia. The 

mammalian target of rapamycin complex 1 pathway was not altered as Akt, mammalian target 

of rapamycin, S6 kinase 1, and 4E-binding protein 1 phosphorylation did not change between 

PRE and POST. Finally, myofiber cross-sectional area was unchanged between PRE and POST. 

In summary, our data indicate that moderate chronic hypoxia differentially regulates HIF-1α 

and HIF-2α, marginally affects markers of protein degradation, and does not modify markers 

of protein synthesis or myofiber cross-sectional area in human skeletal muscle.

Keywords: HIF-1α, hypoxia, autophagy, mTORC1

Introduction
Hypoxia, a state of lowered oxygen tension, can have opposite effects on the regulation 

of muscle mass according to its duration.1 While acute and intermittent hypoxia can 

favor muscle hypertrophy,2 chronic hypoxia generally leads to a loss of muscle mass. 

Several studies in hikers3,4 and subjects exposed to simulated chronic hypoxia,5 but not 

all,6,7 report reductions in skeletal muscle fiber cross-sectional area (CSA). As chronic 

hypoxia often induces decreased physical activity and appetite and is usually related to 

cold temperatures, it is difficult to know which factors contribute to hypoxia-induced loss 

of muscle mass. Nevertheless, animal studies using pair-fed groups to account for the 

restricted energy intake in hypoxia still find reductions in skeletal muscle CSA or muscle 

weight after hypoxia,8–10 suggesting hypoxia per se can cause skeletal muscle atrophy.
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Muscle mass is regulated by the balance between protein 

synthesis and protein breakdown.11 Long-term disruption of 

this equilibrium can promote muscle hypertrophy or atrophy. 

The mammalian target of rapamycin complex 1 (mTORC1) is 

a master regulator of protein synthesis coordinating upstream 

signals from growth factors, intracellular energy levels, and 

amino acid availability to promote cell growth.12 mTORC1 

phosphorylates S6 kinase 1 (S6K1) and 4E-binding protein 1 

(4E-BP1) to promote translation initiation and elongation.13 

Severe hypoxia suppresses mTORC1 via various pathways.14 

As a result of prolonged hypoxic stress, (AMP + ADP)/ATP 

ratio increases, activating AMP-activated protein kinase 

(AMPK).15 Once activated, AMPK phosphorylates the tuber-

ous suppressor complex 2 (TSC2)16 and regulatory-associated 

protein of mTOR,17 leading to mTORC1 inhibition. Further-

more, low oxygen levels increase the expression of a small 

molecule called regulated in development and DNA damage 

responses 1 (REDD1) through stabilization of the transcrip-

tion factor hypoxia-inducible factor-1 alpha (HIF-1α). An 

increase in REDD1 expression has been associated with an 

activation of TSC218 and a dephosphorylation of Akt,19 both 

leading to a decreased mTORC1 signaling.

Compared with protein synthesis, the regulation of 

protein degradation by hypoxia has been much less stud-

ied. In skeletal muscle, the ubiquitin-proteasome system 

and autophagy-lysosomal system are two main proteolytic 

pathways.20 The mRNA level of the two muscle-specific E3 

ligases, muscle RING-finger protein-1 (MuRF-1) and muscle 

atrophy F box (MAFbx), has been shown to be increased 

after both acute and chronic hypoxia.21–23 In addition, short-

term hypoxia could increase the autophagic flux in human 

skeletal muscle as an increase in microtubule-associated 

protein 1 light chain 3 type II/I (LC3b-II/I) ratio, together 

with a decrease in P62 expression, were measured after 

8-hour exposure to environmental hypoxia.24

Protein turnover is determined not only by protein syn-

thesis and degradation but also by cell turnover, namely, the 

addition of new myonuclei through satellite cell fusion and 

the loss of myonuclei through nuclear apoptosis.25 The activa-

tion and differentiation of satellite cells is mainly regulated 

by a family of factors called myogenic regulatory factors 

(MRFs).26 While hypoxia promotes satellite cell proliferation 

in vitro,27 it is not known whether this is the case in vivo and 

what the molecular mechanisms are.

While chronic hypoxia can lead to a loss of muscle 

mass, the molecular mechanisms are far from being defined. 

Therefore, the purpose of the present study was to quantify 

markers of protein synthesis and degradation as well as 

markers of cell turnover before and after 15 days of expo-

sure to environmental hypoxia. To decrease the influence 

of confounding factors, physical activity, temperature, and 

nutritional intake were monitored and controlled through-

out the experiment. Based on in vitro and animal studies, 

we hypothesized that chronic hypoxia would inhibit the 

mTORC1 pathway and would activate the proteasome and 

autophagy pathways, potentially resulting in a decreased 

myofiber CSA.

Methods
subjects and ethical approval
The data presented here are original and are part of a larger 

study investigating the effects of chronic hypoxia on skel-

etal muscle adaptations (Victoria University, Melbourne,  

Australia). In brief, eight recreationally active, nonsmokers 

male (mean ± standard deviation: age, 24±1 years; body mass, 

83.8±20.1 kg; body mass index, 26.5±5.1 kg/m2; maximal 

oxygen consumption [VO
2
] peak, 43.0±10.5 mL⋅min−1⋅kg−1) 

volunteered to participate in this study. All participants were 

screened for cardiovascular (eg, high blood pressure, diabe-

tes, and arrhythmias) or pulmonary diseases (eg, asthma, 

bronchitis, etc) by a medical doctor before all experiments 

took part. All subjects gave their written informed consent 

before the experiment started. The experimental protocol 

received the approval by the Victoria University Human 

Research Ethics Committee. All the procedures conformed 

to the standards set by the Declaration of Helsinki.

experimental design
Each participant underwent two muscle biopsies after a 

12-hour overnight fast in normoxia: one at basal (PRE) and 

one after 15 days of exposure to normobaric hypoxia, within 

15 minutes after returning to normoxia (POST). Muscle 

biopsies were taken under local anesthesia (1% xylocaine). 

A small incision (∼5 mm) was made in the skin of the left 

musculus vastus lateralis, and a muscle sample was taken 

(∼150–300 mg) using a Bergström biopsy needle with 

the application of manual suction. Once obtained, muscle 

samples were cleaned of excess blood, fat, and connective 

tissue and snap frozen in liquid nitrogen and stored at −80°C 

for further analyses. Both muscle biopsies were taken at the 

sea level, and one biopsy was taken per leg. Four days after 

basal muscle biopsy, the participants went to live in a hypoxic 

hotel for a total of 15 days. The volunteers were gradually 

exposed to an incremental decrease in the O
2
 concentration 

over 4 days, corresponding to simulated altitudes of 2,500 m 

(FiO
2
 15.4%), 2,800 m (FiO

2
 14.8%), 3,000 m (FiO

2
 14.4%), 
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and 3,200 m (FiO
2
 14.1%). SpO

2
 was 89.2%±0.8% during the 

hypoxic stay. To standardize the experimental procedures and 

to maximally exclude confounding factors such as physical 

activity and food intake, participants were asked to wear a 

small accelerometer (Sensewear, BodyMedia, Inc., Pitts-

burh, PA, USA) and fill out a dietary recall questionnaire 

for 1 week and 1 month before main experiments started. 

The hypoxic facility was furnished with a treadmill and 

some dumbbells to allow the participants to replicate their 

previously recorded physical activity levels via the afore-

mentioned accelerometers. The physical activity that was 

measured before entering the hotel and maintained while in 

the hotel was 10,747±3,602 kJ/day. A nutritionist calculated 

the self-reported food intake and replicated composition and 

total calories from the participant’s diet. For 2 weeks before  

entering the altitude hotel and while living in the altitude 

hotel, the participants were required to follow their own 

individually designed diet (all food supplied by a nutrition-

ist). Participants cooked their own personal food provided 

by the nutritionist. The nutritional intake that was measured 

before entering the hotel and maintained while in the hotel 

was 6,027±1,920 kJ/d, 72.3±25.2 g/d protein, 151.3±38.2 g/d 

carbohydrate, and 65.1±26.5 g/d fat.

Measurements
enzyme activity assay
Methods for the measurements of the activity of AMPK28,29 

and S6K130 have been described in detail previously.

Western blot
Frozen muscle tissue (∼20 mg) was homogenized 3×5 sec-

onds with a Polytron mixer in an ice-cold buffer (1:10, w/v) 

(50 mM Tris–HCl pH 7.0, 270 mM sucrose, 5 mM ethylene 

glycol tetraacetic acid (EGTA), 1 mM ethylenediaminetet-

raacetic acid (EDTA), 1 mM sodium orthovanadate, 50 mM 

glycerophosphate, 5 mM sodium pyrophosphate, 50 mM 

sodium fluoride, 1 mM DTT, 1% Triton-X 100, and a protease 

inhibitor cocktail [Hoffman-La Roche Ltd., Basel, Switzer-

land]). Homogenates were then centrifuged at 10,000× g 

for 10 minutes at 4°C. The supernatant was collected and 

immediately stored at −80°C. The protein concentration was 

measured using the DC protein assay kit (Bio-Rad Labora-

tories Inc., Hercules, CA, USA).

Proteins (15–30 µg) were separated by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (7.5%–12.5%) 

and wet transferred to polyvinylidene difluoride membranes. 

Subsequently, membranes were blocked with 3% nonfat 

milk or 3% bovine serum albumin for 1 hour and afterward 

incubated overnight (4°C) with the following antibodies: 

p-mTOR Ser2448 (#5536), mTOR (#2983), p-4E-BP1 Thr37/46 

(#2855), 4E-BP1 (#9644), p-Akt Ser473 (#5171), Akt pan 

(#2920), p-S6K1 Thr389 (#9206), S6K1 (#2708), p-AMPKα 

Thr172 (#2535), AMPKα (#2532), phospho-forkhead box 1 

Thr24/forhead box 3a Thr32 (p-FoxO1/3a, #9464), HIF-1α 

(#3716), LC3b (#3868), and α-tubulin (#3873) from Cell 

Signaling (Leiden, the Netherlands). P62 antibody was 

from PROGEN Biotechnik GmbH (#GP-62; Heidelberg, 

Germany), REDD1 from Proteintech (#10638-1-AP; 

Chicago, IL, USA), and hypoxia-inducible factor-2 alpha 

(HIF-2α) from Abcam (#ab109616; Cambridge, UK). 

Appropriate horseradish peroxidase-conjugated secondary 

antibodies (Sigma-Aldrich Co., St Louis, MO, USA) were 

used for chemiluminescent detection of the proteins of inter-

est. Membranes were scanned and quantified with GeneSnap 

and GeneTools software (Syngene, Cambridge, UK), 

respectively. Then, membranes were stripped and reprobed 

with the antibody against the total form of the respective 

protein to ascertain the relative amount of the phosphorylated 

protein compared with the total form throughout the whole 

experiment. The data are presented as the ratio protein of 

interest/α-tubulin or as the ratio of phosphorylated/total 

form of the protein when the phosphorylation status of the 

protein was measured. The POST value of each subject was 

reported to his own PRE value. The mean of the PRE values 

was assigned the arbitrarily value of 1.0.

rna extraction and cDna synthesis
RNA was extracted using TRIzol (Thermo Fisher Scientific, 

Waltham, MA, USA) from 20 to 25 mg of frozen muscle 

tissue. RNA quality and quantity were assessed by spectro-

photometry with a Nanodrop (Thermo Fisher Scientific). 

One microgram of RNA was reverse transcribed using the 

High-Capacity cDNA Reverse Transcription Kit (Thermo 

Fisher Scientific) according to the manufacturer’s instruc-

tions. A SYBR Green-based Master Mix (Thermo Fisher 

Scientific) was used for real-time polymerase chain reac-

tion analyses using the ABI PRISM 7300 (Thermo Fisher 

Scientific). Real-time polymerase chain reaction primers 

were designed for BNIP3, Cathepsin L, HIF-1α, HIF-2α, 

GABA(A) receptor-associated protein-like 1 (Gabarapl1), 

LC3b, MAFbx, MRF4, MuRF-1, myogenin, myogenic dif-

ferentiation (MyoD), Myf-5, Nedd4, P62, PCNA, PLIN2, 

Psmb1, REDD1, and VEGF-A (Table 1). Thermal cycling  

conditions consisted of 40 three-step cycles, including 

denaturation of 30 seconds at 95°C, annealing of 30 seconds 

at 58°C, and extension of 30 seconds at 72°C. All reactions 
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were performed in triplicate. To compensate for variations 

in input RNA amounts and efficiency of reverse transcrip-

tion, cyclophilin A and ribosomal protein L4 mRNA were 

quantified, and the results were normalized to these values. 

These genes were chosen out of four normalization genes 

using the GeNorm applet according to the guidelines and 

theoretical framework described elsewhere.31 The POST 

value of each subject was reported to his own PRE value. 

The mean of the PRE values was assigned the arbitrarily 

value of 1.0.

Immunofluorescence
Serial sections (4 µm) from biopsy samples were laid together 

on uncoated glass slides. Cryosections were prehybridized 

in 1% bovine serum albumin in phosphate-buffered saline 

for 60 minutes. Thereafter, slides were incubated for 2 hours 

at room temperature with the following primary antibodies: 

LC3b (#3868, Cell Signaling) and P62 (#GP62-C; PROGEN 

Biotechnik GmbH) to determine LC3b and P62 migration as 

described in Ching et al32 and Myosin heavy chain I, BA-F8 

(Developmental Studies Hybridoma Bank, Iowa City, IA, 

USA) and Myosin heavy chain IIa, SC-71 (Developmental 

Studies Hybridoma Bank) to determine fiber types I and 

IIa, respectively, as described in Vaisy et al.33 After a three 

5-minute washes with phosphate-buffered saline, slides 

were incubated with the appropriate secondary conjugated 

antibodies and with wheat germ agglutinin (#w11263; 

Thermo Fisher Scientific). Slides were examined with a 

Nikon E1000 fluorescence microscope (Nikon Corpora-

tion, Tokyo, Japan) equipped with a high-resolution digital 

camera. Captured images (×20 for fiber typing and ×40 for 

LC3b and P62 overlays) were analyzed and processed using 

ImageJ software (National Institutes of Health, Rockville 

Pike, USA).

statistics
Levene’s test and D’Agostino and Pearson omnibus normality 

test were used to calculate if the data were normally distrib-

uted. If not, the appropriate pairwise Wilcoxon signed-rank 

test was used to assess statistical significance between PRE 

and POST. When normally distributed, the paired Student’s 

t-test was used. The Benjamini and Hochberg false discovery 

rate test was used to correct for multiple hypothesis test-

ing. Pearson product–moment correlation was applied for 

intraindividual correlation. Statistical threshold was set at 

α=0.05. Power analysis (β.0.8) for paired t-tests showed 

that eight subjects would suffice to find an effect on the 

desired parameters.

Table 1 Primer sequences used for real-time Pcr

Gene Forward Reverse

BNIP3 cTg aaa cag aTa ccc aTa gca TT ccg acT Tga cca aTc cca
Cathepsin L gTg aag aaT cag ggT cag TgT g gcc cag agc agT cTa cca gaT
CycloA cTT caT ccT aaa gca Tac ggg Tc Tgc caT cca acc acT cag TcT
Gabarapl1 gTg ccc TcT gac cTT acT gTT g caT TTc cca Tag aca cTc Tca Tc
HIF-1α gcc cca gaT Tca gga Tca ga Tgg gac TaT Tag gcT cag gTg aac

HIF-2α aag cTg aag cga cagc Tgg agT aT gTa caT TTg cgc Tca gTg gcT TgT
LC3b TgT ccg acT TaT Tcg aga gca gca TTc acc aac agg aag aag gcc Tga
MAFbx ccc aag gaa aga gca gTa Tgg aga ggg Tga aag Tga aac gga gca
MRF4 aaT cTT gag ggT gcg gaT TTc cTg Tgc Tcc Tcc TTc cTT agc cgT TaT
MuRF-1 aaa cag gag Tgc Tcc agT cgg cgc cac cag caT gga gaT aca
Myf-5 Tga gag agc agg Tgg aga acT acT aga cag gac TgT Tac aTT cgg gca
MyoD Tgc cac aac gga cga cTT cTa Tga aag Tgc gag Tgc TcT Tcg ggT TT
Myogenin aaa cTa ccT gcc TgT cca ccT c aca ccg acT Tcc TcT Tac aca ccT
Nedd4 ccg gag aaT Ta Tggg TgT caa cTc Tgg caa cTc cTc caT aaTc
P62 aaa Tgg gTc cac cag gaa acT gga Tca acT Tca aTg ccc aga ggg cTa
PCNA aTc cTc aag aag gTg TTg gag gca acg agT ccaT gcT cTg cag gTT Ta
PLIN2 cTc aTg Tcc Tca gcc TaT cT Tag gca gTc TcT ccT caa Tc
Psmb1 cTg TaT Tca agg cgc TTc TTT c TcT cTc Tgg Taa gac ccT acT g
REDD1 Tga ggc acg gag Tgg gaa cag cTc gaa gTc ggg caa
RPL4 aTa cgc caTc TgT TcT gcc cT gcT Tcc TTg gTc TTc TTg Tag ccT
VEGF-A TTT cTg cTg TcTT ggg Tgc aTT gg acc acT Tcg Tga Tga TTc Tgc ccT

Abbreviations: BniP3, Bcl2/adenovirus e1B 19 kDa protein-interacting protein 3; cycloa, cyclophilin a; gabarapl1, gamma-aminobutyric acid receptor-associated protein-
like 1; hiF-1α, hypoxia-inducible factor-1 alpha; hiF-2α, hypoxia-inducible factor-2 alpha; lc3b, microtubule-associated protein 1 light chain 3; MaFbx, muscle atrophy F 
box; MRF4, muscle regulatory factor 4; MuRF-1, muscle RING-finger protein-1; Myf-5, myogenic factor-5; MyoD, myogenic differentiation 1; Nedd4, neural precursor cell 
expressed, developmentally downregulated 4; Pcna, proliferating cell nuclear antigen; Pcr, polymerase chain reaction; Plin2, perilipin 2; Psmb1, proteasome subunit beta 
type 1; reDD1, regulated in development and Dna damage responses 1; rPl4, ribosomal protein l4; VegF-a, vascular endothelial growth factor a.
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Results
chronic hypoxia decreases hiF-1α 
protein expression and downstream 
targets
Fifteen days of chronic hypoxia decreased HIF-1α protein 

content in all but one subject, resulting in a mean decrease 

of 49% (P=0.03, Figure 1A), while HIF-2α (Figure 1B) and 

REDD1 (Figure 1C) protein content did not change. We 

then analyzed the mRNA expression of genes specifically 

regulated by either HIF-1α or HIF-2α. Compared with 

PRE, HIF-1α target genes were downregulated as VEGF-A 

(−66%, P=0.006; Figure 1D) and BNIP3 (−24%, P=0.002; 

Figure 1E) mRNA content decreased, while Nedd4 (−47%, 

P=0.07; Figure 1F) and REDD1 (−46%, P=0.12; Figure 1G) 

mRNA content tended to decrease. The mRNA level of 

PLIN2, a HIF-2α target gene, was not modified between 

PRE and POST (Figure 1H). Of note, HIF-1α (Figure 1I) 

and HIF-2α (Figure 1J) mRNA content was not different 

between PRE and POST. These results show that chronic 

hypoxia differently and specifically regulates the HIF-1α 

and HIF-2α pathways; HIF-1α being downregulated, while 

HIF-2α remaining unaltered.

high interindividual variability in the 
response of mTOrc1 signaling to 
chronic hypoxia
A large interindividual variability was observed in 

the response of the mTORC1 pathway to 15-day envi-

ronmental hypoxia. The phosphorylation state of Akt 

Ser473 (Figure 2A), mTOR Ser2448 (Figure 2B), S6K1 

Thr389 (Figure 2C), 4E-BP1 Thr37/46 (Figure 2D), and 

AMPK Thr172 (Figure 2E) increased up to three times in 

some subjects, while it decreased up to six times in others. 

Hypoxia-induced changes in phosphorylation resulted in 

a mean value that was not different from PRE values, and 

these results were confirmed by measuring the activity of 

S6K1 (Figure 2F) and AMPK (Figure 2G). Interestingly, 

although chronic hypoxia did not modify mean S6K1 or 

AMPK activity or phosphorylation, the changes in activity 

induced by hypoxia (POST–PRE values) were highly nega-

tively correlated (r=−0.92, P,0.001; Figure 2H). Despite 

the high interindividual response of the mTORC1 pathway, 

such strong negative correlation indicates a strong intrain-

dividual similarity between hypoxia-induced changes in 

S6K1 and AMPK activities. Likewise, the changes PRE–

POST of phospho-S6K1 Thr389, a surrogate of mTORC1 

activity, and LC3b-II/I ratio (r=−0.75, P=0.02, Figure 

2I) as well as HIF-1α protein content (r=−0.80, P=0.01; 

Figure 2J) were also negatively regulated. This further 

suggests a strong intraindividual regulation of members 

of mTORC1 signaling.

Markers of autophagy and ubiquitin-
proteasome system remain unaltered by 
chronic hypoxia
Acute exposure to hypoxia (8 hours) has recently been 

shown to increase markers of autophagy in human skeletal 

muscle,34 but data are lacking on a longer term. LC3b lipi-

dation, measured by the LC3b-II to I ratio, was unaltered 

(P=0.11, Figure 3A). Furthermore, neither the lipidated 

form LC3b-II (Figure 3B) nor the nonlipidated form LC3b-I  

(Figure 3C) changed from PRE to POST. LC3b mRNA 

content (Figure 3D) was unaffected compared with PRE 

values. In addition, P62, the molecular link between LC3b 

and ubiquitinated substrates to deliver them selectively 

into the autophagosome increased by 45%, however, 

without reaching the statistical threshold due to one sub-

ject responding the opposite way (P=0.07, Figure 3E). 

A representative immunofluorescent image for LC3b 

and P62 is provided in Figure 4. Panels A–C represent a 

positive control image we acquired from a human sample 

after 30 minutes of exercise in normobaric hypoxia (FiO
2
 

10.7%) from an earlier study in our laboratory.24 In these 

autophagy-positive control myofibers, a bright migration 

of P62 and LC3b toward the center of the cell is visible. 

In contrast, in the present study, the distribution pattern 

is scattered in PRE conditions (Figure 4D–F), and the 

migration of P62 and LC3b toward the center of the cell is 

only partial in POST conditions (Figure 4G–I). Clearly, the 

overall abundance of both LC3b and P62 was substantially 

lower in our samples compared with the positive controls 

from Masschelein et al.24 Similar to LC3b, P62 mRNA 

content did not change from PRE to POST (Figure 3F). 

Gabarapl1 mRNA, an autophagy-related gene, decreased 

after 15 days of hypoxia (P=0.03, Figure 3G). Finally, 

Cathepsin L mRNA content was unaffected by chronic 

hypoxia (Figure 3H). Taken together, these data suggest 

that 15 days of environmental hypoxia did not regulate the 

autophagy–lysosomal pathway.

Next to autophagy, we further examined the effect of 

chronic hypoxia on the proteolytic pathways by measuring 

the phosphorylation state of FoxO1/3a as well as ubiquitin-

proteasome-related genes. The phosphorylation state of 

FoxO1/3a Thr24/32 (Figure 3I) and the mRNA content of 

MAFbx (Figure 3J) and Psmb1 (Figure 3K), a proteasome 
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subunit, were not modified, while MuRF-1 mRNA decreased 

compared with PRE (−39%, P=0.012, Figure 3L). All 

together, these results show that 15 days of moderate chronic 

hypoxia is insufficient to either regulate autophagy or mark-

ers of the ubiquitin-proteasome system in human skeletal 

muscle.

chronic hypoxia reduces markers of 
cellular proliferation
The MRF genes have a well-described role in the regula-

tion of satellite cell proliferation and differentiation into 

new myofibers,26 including transcription factors myogenin 

(Figure 5A), MyoD (Figure 5B), MRF4 (Figure 5C), and 
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Figure 1 effect of chronic hypoxia on key markers of the hiF pathway.
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Myf-5 (Figure 5D). Myf-5 mRNA content was 38% lower after 

hypoxia (P=0.007), whereas MRF4, MyoD, and myogenin 

were unaffected. PCNA mRNA content, a marker of DNA 

replication and cellular proliferation,35 decreased by ∼50% 

after chronic hypoxia (P=0.045; Figure 5E). The lower 

mRNA content of Myf-5 and PCNA suggests that satellite 

cell proliferation could be altered after 15 days of exposure 

to environmental hypoxia.
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Myofiber CSA is unaffected by 15 days of 
hypoxia
In line with the unaffected key markers of autophagy, 

ubiquitin-proteasome, mTORC1, and cellular prolif-

eration systems, no difference in skeletal muscle fiber CSA 

(Figure 6A) or distribution (Figure 6B and C) was measured 

between PRE and POST.

Discussion
We show for the first time that 15 days of simulated altitude 

exposure corresponding to 3,200 m decreases HIF-1α protein 

stabilization and the mRNA expression of its downstream 

target genes BNIP3, VEGF-A, and Nedd4 in human skeletal 

muscle, while HIF-2α signaling was unaffected. Further-

more, chronic hypoxia was insufficient to alter autophagy or 
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Figure 4 Effect of chronic hypoxia on LC3b and P62 migration in myofibers.
Notes: (A–C) autophagy-positive muscle cell immunostained with antibodies for lc3b (A), P62 (B), and merged (C). a representative image for the Pre biopsy is shown 
in (D–F), and for the POsT biopsy in (G–I). The white arrows indicate punctae representative for lc3b and P62.
Abbreviation: lc3b, microtubule-associated protein 1 light chain 3.

ubiquitin-proteasome-related markers. Finally, a very high 

intersubject variability was observed on mTORC1 signaling 

with some subjects responding in opposite directions. How-

ever, the different markers of this pathway were consistently 

regulated within each subject leading to a high intrasubject 

similarity as shown by the strong correlation between the 

regulation of AMPK and S6K1 activities by chronic hypoxia, 

indicating a profound connection between these two elements. 

Contrary to our hypothesis, no decrease in myofiber CSA was 

measured after exposure to hypoxia. The lack of decrease in 

fiber section contrasts with some studies in human3,5 and in 

mice10,21 but not all.6,7 Fiber atrophy has been found when 

hypoxic conditions were higher (from 5,250 to 7,400 m) and 

when exposure duration was longer (from 3 weeks to 75 days) 

compared to the present study (3,200 m for 15 days). However, 

more severe hypoxic conditions and a longer duration do not 

imply that muscle atrophy occurs as observed by Green et al6 

(21 days at 6,194 m) and Lundby et al7 (8 weeks at 4,100 m). 

It still remains difficult to know in which conditions muscle 

atrophy occurs after exposure to hypoxia.

Downregulation of the hiF-1α pathway
Although oxygen supply (SaO

2
) to skeletal muscle is vastly 

reduced in hypoxia, there is only a slight intramuscular drop 

in pO
2
 at extreme altitude in resting skeletal muscle (eg, 

from ∼25 mmHg in normoxia to ∼20 mmHg at 4,000 m).36,37 

Moreover, 8–9 mmHg has been put forward as a critical 

threshold below which HIF-1 is stabilized.36 Although not 

measured, it is plausible to assume that such severe drops 

in intramuscular pO
2
 have not occurred in this study, since 

the physical activity patterns were submaximal and altitude 

exposure was only modest (3,200 m). Indeed, this suggests 

that the hypoxic stimulus to the muscle was too low to 

induce increases in HIF-1α activity, changes in CSA, or 

modification of any other parameter tested here. This is in 

line with an earlier study from Viganò et al that reported 
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a lack of HIF-1α stabilization in humans after a 5-day 

inactive sojourn at 4,559 m.38 Conversely, several animal 

studies found a stabilization of HIF-1α after long-term 

hypoxia in various tissues.39,40 A higher contractile activity 

pattern of the postural hindlimb muscles in rodents41 and a 

∼15-fold higher resting VO
2
 in mice compared to humans42 

could contribute to the differences seen in both models. 

Based on the fact that intramuscular pO
2
 likely did not drop 

much in the present study, a similar expression of HIF-1α 

was projected between basal and postexposure conditions. 

Unexpectedly, HIF-1α expression was decreased as well as 

its transcriptional activity. Chronic intermittent stimuli, such 

as repeated exercise, blunt the increase in HIF-1α,43 arguing 

for limited long-term stabilization of HIF-1α. In addition, 

HIF-1α and other oxygen-sensitive proteins are known to be 

rapidly ubiquitinated and degraded by the proteasome after 

reoxygenation, resulting in a 5–8-minute half-life.44–46 Since 

the POST biopsy was taken at normoxia, shortly (maximum 

15 minutes) after hypoxic exposure, a prompt degradation of 

HIF-1α likely occurred, leading to a rapid downregulation of 

the transcription of its target genes.

no effect of environmental hypoxia on  
the mTOrc1 pathway, despite high 
intraindividual regulation
In vitro data using very low levels of oxygen (,1%) clearly 

demonstrate that hypoxia inhibits mTORC1.47 In rodents, the 

phosphorylation state of the mTORC1 pathway in basal condi-

tions is either unchanged9,48,49 or reduced21 after exposure to 

hypoxia for ∼2–3 weeks. The present study is the first to mea-

sure the phosphorylation state of different components of the 

mTORC1 pathway in humans exposed to environmental hypoxia 

for .2 weeks. None of the key components of the mTORC1 

pathway was modified when the results of the eight subjects were 

averaged. However, a high correlation between the changes in 

S6K1 and AMPK activities indicates a strong intraindividual 

regulation of the mTORC1 pathway. As nutrition and physical 

activities, two main regulators of the mTORC1 pathway, were 

controlled, it remains unknown why some subjects showed 

increased phosphorylation while others showed decreased phos-

phorylation of the latter pathway after exposure to hypoxia.

autophagy and proteasome-related 
markers are marginally regulated by 
chronic hypoxia
Autophagy is regulated by mTORC1-dependent mechanisms, 

including Unc-51-like autophagy activating kinase 1 (ULK1) 

complex dissociation, and by FoxO-mediated transcription of 

AtG genes.50 Hypoxia specifically activates autophagy via a 

HIF-dependent suppression of mTORC1, resulting in an acti-

vation of the ULK1/Atg/LC3b pathway.51 Indeed, although no 

difference in the mTORC1 pathway was found after hypoxic 

exposure due to a high interindividual variability, the intrain-

dividual changes in S6K1 phosphorylation, a surrogate of 

mTORC1 activity, were highly correlated with the changes 

in LC3b-II/I ratio (r=−0.75, P=0.02, Figure 2I). These results 

suggest that mTORC1 could contribute to the regulation of 

autophagy. Therefore, together with previous observations 

from this laboratory,24 we expected an increased autophagic 

flux, measured by LC3b-II/I ratios and P62 protein content 

after chronic hypoxia. In contrast to our hypothesis, our 

results do not indicate any elevated autophagic flux after 

15 days of moderate environmental hypoxia. In our previ-

ous study, a clear increase in LC3b-II/I ratio and a decrease 

in P62 protein expression were measured after 8 hours of 

seated rest in 10.7% O
2
, reflecting an increased removal of 

damaged cellular components.24 Based on this previous study 

and the results of the present work, it could be hypothesized 

that the autophagic flux is activated after a few hours expo-

sure to hypoxia and turns off afterward unless the intensity 

of the hypoxic stimulus, more than the duration, is the key 

factor for activating autophagy. Indeed in Masschelein et al, 

FiO
2
 was equal to 11% compared with 14% in the present 

study. Together with autophagy, the ubiquitin-proteasome 

system constitutes a main proteolytic system in the skeletal 

muscle. Contrary to our hypothesis but likewise markers 

for the autophagy flux, markers for the proteasome pathway 

were either unchanged or decreased. Unexpectedly, MuRF-1 

mRNA level was lower after exposure to hypoxia for 15 days, 

while it has previously been shown to increase after chronic 

hypoxia in the diaphragm52 and heart53 of rodents as well as 

in skeletal muscle of patients with COPD,54 although not 

confirmed at the protein level.55,56

environmental hypoxia reduces markers 
for cell proliferation
Satellite cells are the primary contributors to muscle cell 

homeostasis and muscle regeneration after injury or stress. 

Some in vitro studies have established a role for hypoxia 

to accelerate their proliferation.27 In contrast, we show a 

decreased Myf-5 and PCNA mRNA content after chronic 

hypoxic exposure, while myogenin, MRF4, and MyoD 

showed high variation between subjects and were unaf-

fected by chronic hypoxia. This suggests reduced conver-

sion of nonmuscle cells into muscle,57 whereas markers 
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of later stage myogenesis were unaffected. However, the 

changes in mRNA content seen here do not necessarily 

imply changes in protein expression; extrapolation must 

therefore be done with caution. In addition, the role of 

satellite cells in models of muscle atrophy is far from 

being elucidated.

limitations and strengths
The inclusion of a normoxic control group would have made 

it possible to isolate differences due to the duration of the 

experiment, that is, 15 days and not due to environmental 

hypoxia per se. However, as the duration of the experiment 

was limited to 2 weeks, it is likely that the time effects were 

minimal. Owing to the small sample size, caution should 

be made with statements regarding the lack of effect of 

hypoxia. Nevertheless, a power analysis indicated that 

eight subjects would suffice for adequate power (β.0.8). 

Likewise, a biopsy in the middle of the hypoxic period or 

at the end of hypoxia could have strengthened the discus-

sion and the interpretation of early events in molecular 

signaling, which was not performed due to ethical conside-

rations. Lastly, we have to acknowledge the lack of direct 

measurement of protein synthesis and/or breakdown since 

indirect markers such as mTORC1 signaling have been 

reported to not fully relate to the actual protein synthesis 

rate. Nevertheless, these limitations are largely overcome 

by the originality of the study and the unique character of 

the latter. This is the first study to systematically screen 

markers for both protein synthesis and protein breakdown 

at a molecular level after chronic environmental hypoxia 

in human skeletal muscle in a well-controlled setup for 

nutrition and physical activity.

Conclusion
We show here for the first time that chronic environmental 

hypoxia differently and specifically regulates the HIF-1α 

and HIF-2α pathways in human skeletal muscle, HIF-1α 

being downregulated, while HIF-2α remaining unaltered. In 

addition, contrary to our hypothesis, chronic hypoxia did not 

affect markers for protein synthesis and marginally modified 

markers for protein degradation. In line with these results, 

no difference in myofiber CSA was found.
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