
© 2008 Payne et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article 
which permits unrestricted noncommercial use, provided the original work is properly cited.

Clinical and Experimental Gastroenterology 2008:1 19–47 19

R E V I E W

Hydrophobic bile acids, genomic instability, 
Darwinian selection, and colon carcinogenesis

Claire M Payne
Carol Bernstein
Katerina Dvorak
Harris Bernstein

Department of Cell Biology 
and Anatomy, College of Medicine, 
University of Arizona, Tucson,
 Arizona, USA

Correspondence: Claire M Payne
Department of Cell Biology and Anatomy, 
College of Medicine, University of Arizona, 
1501 N. Campbell Ave., PO Box 245044, 
Tucson,  Arizona 85724-5044, USA
Tel +1 520 626 8704
Fax +1 520 626 2097
Email bmdiagnostics@cox.net

Abstract: Sporadic colon cancer is caused predominantly by dietary factors. We have selected 

bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a 

Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-

induced stresses cause cell death in susceptible cells, contribute to genomic instability in 

surviving cells, impose Darwinian selection on survivors and enhance initiation and progression 

to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce 

stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are 

described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result 

in the activation of pro-survival stress-response pathways, and the modulation of numerous 

genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms 

by which hydrophobic bile acids contribute to genomic instability are discussed, and include 

oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since 

bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and 

increased genomic instability through this mechanism is also described. This review provides 

a mechanistic explanation for the important link between a Western-style diet and associated 

increased levels of colon cancer.
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Introduction
Sporadic colon cancer is caused predominantly by dietary factors, most notably a 

high-fat diet accompanied by low intake of micronutrients (folate, niacin, zinc), 

antioxidants and other plant phytochemicals. A high intake of fat induces the release of 

bile acids from the gall bladder into the small intestine. Bacteria in the colonic lumen 

then convert conjugated and hydrophilic bile acids to unconjugated, hydrophobic bile 

acids such as deoxycholic acid and lithocholic acid (Figure 1). These hydrophobic 

bile acids, deoxycholic acid in particular, have been reported to be multiple stress 

inducers and at high physiologic levels can create chaos within colon epithelial cells. 

These stresses include membrane perturbation, oxidative DNA damage, decrease in 

DNA repair proteins, mitotic stress, micronuclei formation, mitochondrial damage 

(metabolic stress) and endoplasmic reticulum (ER) stress (Figure 2).

Although excessive stress will lead to apoptosis, this altruistic act of removing 

DNA-damaged cells for the survival of the organism becomes largely circumvented in 

cells with activated survival pathways. In this “war zone”,1 stimulated by the presence of 

hydrophobic bile acids, mutated epithelial cells may act in a selfi sh manner,2 like bacterial 

cells, and Darwinian selection3–10 can come into play at the cellular level. The very stress-

response pathways that result in cell survival (eg, activation of nuclear factor-kappa B 

[NF-κB], autophagy) (Figure 3) can become constitutively upregulated through clonal 

selection of mutated cells, and can serve to propagate cells even with unrepaired DNA 

damages and genomic instability. Although it has been known for decades (using animal 
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models of carcinogenesis) that hydrophobic bile acids can 

promote colon cancer,11–14 the evidence is now convincing that 

bile acids are also carcinogens.15–17 Evidence that bile acids are 

carcinogens in human gastrointestinal (GI) cancers has been 

reviewed by Bernstein and colleagues.15 Proof that hydropho-

bic bile acids cause mutation in vitro in epithelial cells of the 

GI tract was provided by the elegant studies of Jenkins and 

colleagues.16,17 Even though proliferation is essential to cancer 

development, it is not the high level of proliferation itself that 

is responsible for cancer. For example, adenocarcinomas are 

infrequent in the small intestine, although the proliferation rate 

of epithelial cells at this site is similar to that of the epithelial 

cells of the colon. The colon may be particularly susceptible 

to cancer because it contains tissues that are often exposed 

to unique stresses (eg, high levels of hydrophobic bile acids 

resulting from anaerobic bacterial metabolism). Since there 

may be insuffi cient time for DNA repair in this “war zone”,18 

the selection of mutated cells with a proliferative advantage 

may occur repeatedly. This proliferative advantage may 

take the form of apoptosis resistance and/or increased cell 

division.

How, in particular, do bile acids contribute to colon 

carcinogenesis? Since somatic mutation rates are normally 

too low to account for the high incidence of colon cancers, 

it has been proposed that genomic instability (ie, a mutator 

phenotype) plays a major role in producing the plethora of 

random genomic changes needed to produce a malignancy.19–21 

A mutator phenotype can explain the complex histopathology 

Figure 1 The primary bile acids, cholic acid and chenodeoxycholic acid, are formed in the liver from cholesterol and conjugated, usually with glycine or taurine. They are then 
secreted into the gall bladder. From the gall bladder, glyco-and tauro- conjugated primary bile acids are released into the duodenum to aid in the digestion of fats. In the terminal 
ileum and in the cecum, the primary bile acids are deconjugated. Further, in the cecum, they are dehydroxylated through the action of bacterial 7-alpha dehydroxylases. By this 
reaction, cholic acid and chenodeoxycholic acid are converted to the more genotoxic-hydrophobic bile acids deoxycholic acid and lithocholic acid, respectively.
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and behavior of tumors,22–24 including different tumor 

subsets,25 divergence of clonal populations,26 and different 

molecular pathways27,28 that may be selected during colon 

cancer progression and lead to different clinical outcomes.29,30 

Genomic instability in cancer appears in three major forms: 

(i) aneuploidy, in which entire chromosomes are gained 

or lost, (ii) intrachromosomal instability, characterized by 

insertions, deletions, translocations, amplifi cations, and other 

forms all sharing the feature of utilizing DNA breakage as an 

early step, and (iii) point or oligobase mutations.31 Genomic 

instability is a dynamic process in which the three major 

forms of genetic instability may co-exist at different stages 

Figure 2 Schematic diagram indicating some of the hydrophobic bile acid (HBA)-induced signaling pathways that begin with the activation of surface enzymes, the subsequent 
generation of ROS, and the resultant stresses/damages that, if excessive, result in cell death. The most well documented deleterious effects of HBAs in colon cells are DNA 
damage, mitochondrial stress and ER stress. DNA damage results in the activation of mitotic checkpoint proteins leading to growth arrest. Mitochondrial damage results in 
the activation of caspases and the cleavage of multiple substrates in the cell. ER stress activates several pro-apoptotic molecules that result in cell death. Repair processes 
responsive to DNA damage, mitochondrial stress and ER stress can deplete the energy reserves of the cell, resulting in “metabolic stress”. Too much stress on the cell results 
in cell death through mechanisms that involve apoptosis, necrosis, and/or autophagy. HBA-induced mitotic stress can lead to abnormal cell division. Excessive mitotic stress 
may lead to mitotic catastrophe and cell death, although the details of this mode of cell death have not been well described. Necrotic cells induced by HBA may, especially, elicit 
an infl ammatory response in vivo, and this could explain, in part, the induction of colitis by chronic feeding of HBA in mouse models. See text for details.
Abbreviations: AA, arachidonic acid; COX, cyclooxygenase; PKC, protein kinase C; PLA2, phospholipase A2; LOX, lipoxygenase; ROS, reactive oxygen species; XO, xanthine 
oxidase.
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Figure 3 Schematic diagram illustrating a probable sequence of events resulting from exposure to high levels of hydrophobic bile acids (HBAs) that accompany a high-fat 
diet. This exposure leads to HBA-induced generation of ROS/RNS, activation of survival pathways (eg, autophagy, NF-κB), the generation of cells with genomic instability 
(eg, mutations, aneuploidy) and clonal selection of mutant cells with survival and proliferative advantages. The end results are the production of adenomas that progress to colon 
cancer. The epithelial cells of the colon of a person on a Western-style (high-fat/low vegetable/low micronutrient) diet are probably in a persistant “war zone” (bombardment 
with HBA-induced ROS/RNS, presence of food carcinogens, toxins, etc.). Cells in different stages of progression to malignancy are thus persistently receiving damages to 
their genome, resulting in clones of cells that are selected for survival in the adverse environment of the colon. While cells in the previous population, if receiving excessive 
DNA damage, underwent cell death altruistically for the overall benefi t of the organism, the new clones of cells may behave selfi shly. The new clones may acquire resistance 
to apoptosis and undergo clonal selection on the basis of their survival advantage, even when their DNA is damaged and after their genomes become unstable. This allows 
progression to adenomas and colon cancer.
Abbreviations: AA, arachidonic acid; COX, cyclooxygenase; LOX, lipoxygenase; PLA2, phospholipiase A2; NO, nitric oxide; ROS, reactive oxygen species; RNS, reactive nitrogen 
species.
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of colon carcinogenesis, providing support for the chaotic 

roots of neoplastic development and continuous growth of 

aberrant clones.32,33

Mutations, aneuploidy or other chromosomal aberrations 

affecting genes that govern genetic stability5,34–37 could be 

the cause of a mutator phenotype.38,39 The occurrence 

of a mutator phenotype would be made more likely by 

conditions that cause DNA damage, such as increased 

oxidative stress, due to persistent exposure to high levels 

of bile acids that accompanies a high-fat diet. Increased 

levels of oxidative stress caused by defective mitochondria 

have been proposed as a possible mechanism by which a 

“mutator phenotype” could arise.40 As discussed below, 

bile acids cause oxidative DNA damage, double-strand 

DNA breaks (evidenced by activation of phosphorylated 

H2AX41), aneuploidy,16,17 broken chromosomes16,17 and 

aberrant mitoses (unpublished data from our laboratory). 

In addition, high concentrations of bile acids in the lumen 

provide a persistent stressful environment that may select 

for mutated cells that can better survive in that environ-

ment (Figure 3). Hydrophobic bile acids thus may serve to 

both initiate and propagate the mutator phenotype. Cycles 

of aneuploidization42 coupled with specifi c mutations (eg, 

APC, ras, p53) and large-scale structural alterations to 

chromosomes (eg, nonreciprocal translocations, inversions, 

deletions and insertions resulting in “genome scrambling”43) 

may then give rise to a population of cells with multiple 

karyotypes and genotypes. The clonal selection of cells with 

particular karyotypes and/or mutations may then produce 

a “fi eld defect” or “fi eld cancerization” associated with 

gene expression changes. Frequently, one of the selected 

genotypes will be apoptosis resistance as found in the 

normal-appearing fl at colonic mucosa of humans44,45 which 

is by defi nition a “survival genotype”. Within such a fi eld 

defect, further mutations may then be selected for increased 

proliferation, altered cell-cell interactions and/or migratory 

behavior. On this basis a neoplastic clone can emerge (eg, 

as found in fl at adenomas and polyps). These neoplastic 

survival karyotypes may undergo further mutation and 

selection to produce a cancer.

This review emphasizes the plethora of cellular stresses 

imposed by hydrophobic bile acids. Our review provides 

possible mechanisms by which a high-fat diet can lead to 

the development of sporadic colon cancers. The roles of 

mutations in critical genes (eg, APC, ras, p53) during colon 

carcinogenesis was previously addressed in the insightful 

discussions by the Vogelstein group46–48 and will not be 

discussed in this review.

Hydrophobic bile acids generate cellular reactive oxygen 

species (ROS) and reactive nitrogen species (RNS) that dam-

age DNA and proteins. These damages can lead to genomic 

instability (eg, point mutations and aneuploidy).49 Point 

mutations, aneuploidy, and other gross structural alterations 

of chromosomes (eg, balanced or unbalanced translocations, 

dicentric chromosomes) appear to interact to produce the 

unstable and/or aberrant genomes associated with colon 

carcinogenesis. Aneuploidy is observed in most cancers, 

although it is not ordinarily found in colonic tumors that 

have a mismatch repair defi ciency and display microsatellite 

instability.50 A small subset of colorectal tumors display mic-

rosatellite instability, whereas the rest of colorectal tumors 

display numerical and/or structural chromosomal alterations 

as the most prominent outcome of genetic disruption.51

Loss of heterozygosity (LOH) of a portion of a 

chromosome or a whole chromosome is already evident at 

the adenoma stage of colon carcinogenesis52–65 and is promi-

nent at the colon cancer stage.59,60,62,63,66–68 A review of the 

literature indicates that at least 19 of the 22 human somatic 

chromosomes exhibit aneuploidy during the adenoma to 

colon cancer stage. The loss or gain of whole or portions 

of chromosomes involves thousands of genes.69 This chro-

mosomal imbalance could have dramatic effects on cellular 

homeostasis, including an increase in oxidative/redox state 

of the cell and the loss of key DNA repair and pro-apoptotic 

proteins. Approximately 11,000 genomic events were identi-

fi ed in sporadic colonic polyps using the technique of inter-

(simple sequence repeat) polymerase chain reaction (PCR), 

indicating that genomic destabilization is an early event in 

sporadic tumor development.31

Pre-neoplastic lesions smaller than adenomas are referred 

to as aberrant crypt foci (ACF).70,71 The ACF are not identifi ed 

during routine colonoscopies since vital stains are often not 

used and biopsies are not usually taken of the fl at colonic 

mucosa. However, human ACF have unequivocally been 

shown to exhibit genomic instability, including LOH.72–76 

Since numerous genetic alterations and aberrant mitotic 

changes are also observed in the nonneoplastic colon 

of mice77 and humans78–82 at high risk for colon cancer, 

biomarkers based on aberrant karyotypes have promise for 

identifying high-risk individuals. Figures 2 and 3 are based on 

data from our laboratory and those of others and emphasize 

the role of hydrophobic bile acids in the induction of multiple 

stresses and genomic instability. We have selected bile acids 

as a focus of this review since bile acids play a key role in 

colon carcinogenesis. We describe how bile acid-induced 

stresses cause cell death in susceptible cells, contribute to 
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genomic instability in surviving cells, impose Darwinian 

selection on survivors in a “war zone” and enhance initiation 

and progression to colon cancer. This review provides a 

mechanistic explanation for the important link between 

a Western-style diet and associated increased levels of 

colon cancer. However, other factors such as smoking, 

food-related carcinogens, long-chain fatty acids (eg, palmitic 

acid), excess iron, arsenic, viruses, bacteria, infl ammatory 

cells, low dietary micronutrients, low omega-3 fatty acids, 

etc., may also contribute to genomic instability-based 

carcinogenesis.

Bile acids cause membrane 
perturbation
It has been known for over thirty years that bile salts 

perturb plasma membranes, and that deoxycholate is more 

membrane-damaging than cholate and its conjugates.83 

Binding of bile acids with rat colon and the resultant 

perturbation of membrane organization was later measured 

using 31P nuclear resonance spectroscopy.84 Deoxycholate 

alters membrane composition, as evidenced by a signifi cant 

upregulation in membrane cholesterol and phospholipids.85 

Bile acids also induce the modifi cation and upregulation of 

caveolin-1 in a hydrophobicity-dependent manner, implying 

widespread receptor dysregulation.85 These fi ndings were 

mimicked by other hydrophobic molecules unrelated to 

bile acids, such as sodium lauryl sarcosine and cholesteryl 

hemisuccinate, strongly implicating hydrophobicity as an 

important determinant of bile acid effects on signaling.85 

Deoxycholate also perturbs membrane structure by alterating 

membrane microdomains.86 Depletion of membrane 

cholesterol by treating cells with methyl-β-cyclodextrin 

suppressed deoxycholate-induced apoptosis, and staining 

for cholesterol with fi lipin showed that deoxycholate caused 

a marked rearrangement of this lipid in the membrane.86 

Additionally, fluorescence anisotropy studies indicated 

that deoxycholate caused a decrease in membrane fl uidity 

consistent with the increase in membrane cholesterol content 

measured after deoxycholate treatment.86

Bile acids activate surface enzymes, such as phospholipase 

A
2
 (PLA

2
),87,88 epidermal growth factor receptor (EGFR),86,89–94 

Fas receptor,89 protein kinase C (PKC),90 bile acid receptor 

M-BAR/TGR5 (G-protein-coupled receptor),93 phospholi-

pase C (PLC),95 nicotinamide adenine dinucleotide phosphate 

(NAD(P)H) oxidase96,97 and the Na+/K+ -ATPase.97 We found 

that the surface enzymes, Na+/K+ -ATPase and NAD(P)H 

oxidase are involved in activating NF-κB,97 a redox-sensitive 

transcription factor upregulated during the development of 

apoptosis resistance in colon cancer cells,98 and associated 

with colon carcinogenesis. The activation of surface and 

other enzymes through membrane perturbation is, therefore, 

responsible for modulating signal-transduction pathways in 

colon cells.85,86,89,99

The fact that hydrophobic bile acids cause secretory 

diarrhea (diarrhea is the most common and debilitating 

symptom of patients with ulcerative colitis [a pre-neoplastic 

condition of the colon]), warrants a greater effort to 

understand how these bile acids induce changes in ion 

transport.100 Taurodeoxycholic acid, for example, increases 

electrogenic Cl− secretion into the proximal colonic lumen.101 

This stimulated secretion is believed to occur via an increase 

in intracellular Ca++ concentration. Deoxycholic acid reduces 

transepithelial Na+ absorption by inhibiting amiloride-

sensitive Na+ channels, and increasing secretion of Na+, K+, 

and Cl− ions in the distal colon.102 Hydrophobic bile acids 

have been reported to act as calcium ionophores,103,104 most 

probably by partitioning bile acid/Ca++ complexes into 

the hydrophobic core of the membrane bilayer104 and/or 

Ca++-transporting channels.105 We have recently reported 

that high cytosolic Ca++ levels are a major factor in the 

activation of NF-κB in HCT-116 colon cells by bile acids.97 

Two agents (EGTA and Ruthenium Red (RuR)) used in 

that study prevented NF-κB activation by bile acids through 

at least two different mechanisms. EGTA does not cross 

cell membranes and chelates Ca++ ions in the extracellular 

milieu, thereby preventing Ca++ entry into the cell. RuR is an 

inorganic polycationic dye that inhibits Ca++ infl ux through 

voltage-sensitive calcium channels and blocks the release 

of Ca++ from the ER.

Bile acids cause oxidative 
and nitrosative stress in colon cells
Bile acids induce production of ROS and RNS in colon epithelial 

cells.7,106–117 Bile acids generate ROS and RNS by several 

different pathways, as reviewed by Bernstein and colleagues15 

and summarized here. Bile acids damage mitochondria and 

damaged mitochondria can “leak” electrons from the electron 

transport chain to form superoxide (O
2
−). ROS can also be 

generated by bile acid activation of PLA
2
, which releases 

arachidonic acid from the cell membrane. Arachidonic acid may 

then be acted on by cyclooxygenase and lipooxygenase to release 

ROS through partial reduction of O
2
, during the conversion of 

arachidonic acid to prostaglandins and leukotrienes.

Deoxycholate activates the redox-sensitive transcription 

factor NF-κB in colon epithelial cells.97–99,110,118–124 

When NF-κB is activated it can induce an increase in nitric 
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oxide synthase 2 (NOS2), an enzyme that can generate 

micromolar quantities of NO. We have found that repeated 

exposure of HCT-116 colon epithelial cells to increasing 

concentrations of deoxycholate results in the consistent 

upregulation of S-nitrosylated proteins. Some of these 

post-translationally modifi ed proteins were identifi ed by 

mass fi ngerprinting analysis and found to include cytoskeletal 

proteins, metabolic enzymes, signaling proteins, chaperones, 

redox-related proteins and differentiation-related proteins.114 

We also found that feeding mice deoxycholate can induce 

infl ammation in a mouse model,115 and that the infl ammation 

is mediated in large part by RNS, since colitis is markedly 

attenuated in NOS2 knockout mice.116

DNA repair proteins can be 
modulated by oxidative stress 
and deoxycholate
The promoting and mutagenic effects of bile acids can be 

explained, in part, by a decrease in DNA repair proteins. 

Since oxidative stress is known to reduce expression of 

DNA repair proteins, bile acid-induced decreases in DNA 

repair proteins may also be through an oxidative mecha-

nism. The cell types and experimental conditions in which 

oxidative stress decreases DNA repair proteins, and bile 

acids decrease proteins involved in 6 different DNA repair 

pathways are described below. Since DNA repair proteins 

often have multiple functions in the cell in addition to DNA 

repair, such as participation in apoptosis125 and regulation 

of mitosis126,127 and checkpoint pathways,128 a deleterious 

effect of bile acids on DNA repair protein expression can 

have important and varied implications for inducing genomic 

instability.

Oxidative stress causes a decrease 
in DNA repair proteins
Langie and colleagues,129 working with human pulmonary 

epithelial cells A549, showed that oxidative stress caused 

a reduction in mRNA for the nucleotide excision repair 

(NER) enzyme ERCC1 as well as a reduction in NER 

capacity that correlated with level of ERCC1 mRNA. 

Feng and colleagues,130 using the human colon epithelial 

cell line HCT-116 and the human hepatic fetal epithelial 

line CL-48, showed by in vitro DNA repair synthesis and 

host cell reactivation assays, that ROS also inhibit NER 

through production of malondialdehyde. This effect is 

likely mediated by malondialdehye-induced inactivation of 

DNA repair proteins. Furthermore, as shown in the human 

erythroleukemia HEL cell line, oxidative stress inactivates 

the mismatch DNA repair proteins MSH6 and Pms2 (but not 

MSH2 or MLH1).131 In HeLa cells and the human Boleth 

lymphoblastoid cell line, the base excision repair enzyme 

OGG1 is degraded or reversibly inactivated following 

oxidative stress.132,133

In mitochondria, DNA polymerase γ is responsible for 

both mtDNA replication and repair. In an SV40-transformed 

human fi broblast cell line, the functional ability of the 

catalytic p140 subunit of DNA polymerase γ is reduced by 

oxidative stress.134

Bile acids decrease DNA repair proteins
Short term exposure to deoxycholate decreases 
the expresson of the DNA repair proteins
p53 and BRCA1
The enzyme p53 has multiple roles in the cell. In particular, it 

has roles in 6 different DNA repair pathways: (1) homologous 

recombinational repair, (2) nonhomologous end joining, 

(3) base excision repair, (4) nucleotide excision repair, 

(5) mismatch repair, and (6) transactivation of expression 

of O6-methyl-guanine-DNA-methyl-transferase for direct 

repair of alkyl adducts at the O6-methyl-guanine position.125,135 

While treatment of colon HCT-116 cells with non-cytotoxic 

(200 μM) deoxycholate concentrations increases mRNA 

expression of the p53 gene, the level of p53 protein 

is decreased by 40% through proteasome-mediated 

degradation.136 Although mutations in p53 are a late event 

in colon carcinogenesis, the persistent decrease in p53 

function by deoxycholate may have similar consequences 

as that of a mutation. Work from our group has also shown 

that deoxycholate decreases BRCA1 at the protein and 

mRNA levels.137 BRCA1 has a key role in recombinational 

repair of DNA damages, and also regulates the function 

of the centrosomes which carry out mitotic chromosome 

segregation through spindle organization.127 Failure to 

adequately repair DNA damages can lead to replication errors 

and thus mutation; and failure of mitotic segregation can lead 

to aneuploidy. Since BRCA1 expression is also reduced in 

colon adenocarcinomas,137 it is possible that the modulation 

of expression of DNA repair enzymes by dietary-related 

factors may, in part, be responsible.

Long term exposure of colon cells to deoxycholate 
selects for decreased protein or mRNA expression 
of DNA repair proteins
Three HCT-116 colon cell lines were developed in our 

laboratory for stable resistance to bile acids by repeated 
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exposure to increasing concentrations of deoxycholate 

over a period of approximately 40 weeks.98 These cell 

lines were found to have constitutively decreased protein 

expression of the DNA repair enzymes MSH3 (mismatch 

repair), Ku80 (non-homologous end joining), P36/MAT1 

(nucleotide excision repair) and XPA (nucleotide excision 

repair).138 These cell lines were also found to have decreased 

expression at the mRNA level for ATM (homologous 

recombinational repair), MSH3 (mismatch repair) and 

XRCC4 (non-homologous end joining).98

Exposure of cholangiocytes 
to glycochenodeoxycholate (GCDA)
decreases DNA repair enzymes
Komichi and colleagues139 exposed immortalized mouse 

cholangiocytes to 200 μM glycochenodeoxycholate (GCDC) 

for 4 weeks and then performed a microarray gene expression 

analysis. mRNA expression of OGG1 and MUTYH was 

downregulated 0.8-fold after exposure to CGDC compared 

to control cells.

Bile acids cause DNA damage 
in colon cells
Bile acids induce DNA damage in cells of the colon.41,90,99,10

8,109,115,118,140–143 One type of induced damage in colon cells is 

oxidative DNA damage,90,108,115,143 suggesting that oxidative 

stress is a signifi cant cause of the overall bile acid-induced 

DNA damage in the colon. Exposure of rat colon ex vivo 

with high physiologic concentrations of bile acids resulted 

in the activation of poly(ADP-ribose) polymerase (PARP).99 

PARP is activated by DNA strand breaks and attaches a 

polymer of ADP-ribose units to proteins which modulates 

their functional activity and assists in the opening up of the 

chromatin to allow for more effi cient DNA repair.144 It is 

probable that the increase in DNA strand breaks is mediated, 

in part, through the bile acid-induced increase in ROS and/or 

RNS. Treatment of human colonic biopsies ex vivo with 

deoxycholate also resulted in the activation of phosphorylated 

H2AX,41 implying the generation of double-strand breaks 

in DNA.145 Double-strand breaks can cause chromosome 

breakage with the generation of micronuclei upon exit from 

mitosis.16,17 Increased DNA damage may be caused by the 

bile acid-induced decrease in DNA repair enzymes (see Bile 

acids decrease DNA repair proteins, above).

Bile acids cause mutation
The repeated observation that bile acids cause DNA damage 

in colon cells suggests that bile acids also increase the 

incidence of mutation, since replication of a damaged DNA 

template strand frequently results in a replication mistake, 

and thus a mutation. Bile acids have been shown to induce 

mutation in esophageal cells in culture and in vivo in rat 

esophageal cells. When cultured esophageal cells were 

treated with deoxycholate, an increase in the frequency of 

GC to AT mutations in the p53 gene was observed.16 In 

other experiments, Big Blue F1lacI transgenic rats were 

subjected to esophagoduodenostomy, a surgical procedure 

that increases duodenogastroesophageal refl ux.146 In these 

surgically altered rats, the frequency of mutant lacI cells 

of the esophageal mucosa was signifi cantly greater than in 

the control rats that were not subjected to surgery. Thus, 

components of refl uxate, such as bile acids, appear to cause 

mutation. Forty-six percent of the mutant esophageal cells 

were altered at CpG dinucleotide sites, and most of these 

mutations (61%) were C to T or G to A transitions. This 

pattern of mutation seen in the surgical model approximates 

that seen in human esophageal adenocarcinoma, suggesting 

that duodenogastroesophageal refl ux is carcinogenic. In 

surgically treated Big Blue mice (rather than rats) that 

were altered to increase duodenogastroesophageal refl ux, 

increased mutagenesis was also observed.147 In another rat 

model of colon carcinogenesis based on exposure to azoxy-

methane, deoxycholate increased both the incidence of colon 

tumors and the incidence of tumors with K-ras mutations.148 

This fi nding suggests that deoxycholate may induce K-ras 

mutations. In a sensitive bacterial fl ucturation test based on 

the Ames Salmonella test system, bile acids were also found 

to be mutagenic.149

Hydrophobic bile acids induce 
aneuploidy and micronuclei formation
The induction of aneuploidy by deoxycholate was fi rst 

reported 26 years ago by Assinder and Uphall150 in a 

heterozygous diploid strain of Aspergillus nidulans. The 

detection of aneuploidy was made possible by the unique 

orientation of mutations on the chromosomes. Each pair 

of homologues carried mutations, in repulsion, in at least 

2 gene loci, those in linkage groups I, III, IV, and V being 

on opposite sides of the centromere. This orientation allowed 

a distinction between cross-over and nondisjunctional seg-

regants (aneuploids). It was suggested that aneuploidy was 

a result of interference with the normal functioning of the 

mitotic apparatus through disruption of the nuclear membrane. 

Ferguson and Parry151 confi rmed that bile acids, including 

deoxycholate, were potent inducers of aneuploidy using the 

diploid yeast, Saccharomyces cerevisiae. The assay used 
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to detect mitotic chromosome aneuploidy involved scoring 

of white cycloheximide resistant monosomic colonies. 

Albertini and colleagues152 determined that lithocholic acid 

induces mitotic chromosome loss in the diploid yeast strain, 

S. cerevisiae D61.M. The assay to detect mitotic chromosome 

loss involved scoring of segregants expressing three linked 

recessive markers, two of which were located close to the 

centromere on opposite arms of chromosome VII.

The evaluation of the induction of aneuploidy by bile 

salts in eukaryotic cells of higher organisms was neglected 

for almost 20 years, even though a role of bile acids in colon 

carcinogenesis was established in animal models in the 1970s. 

The fi rst study of bile acid-induced aneuploidy in cells of 

multicellular organisms in vitro was reported by Jenkins and 

colleagues16 using human esophageal cell lines. In this elegant 

study, the frequency of deoxycholate-induced kinetocore-

positive and -negative micronuclei was assessed as a measure 

of the level of aneuploidy, using the cytokinesis-block micro-

nucleus assay.153,154 The rationale for this assay is based on 

data which indicate that aneuploid cells and cells with broken 

chromosomes will often produce micronuclei after exit from 

mitosis. The presence of kinetochore-negative micronuclei 

indicated that chromosome fragmentation occurred, 

probably as a result of deoxycholate-induced double strand 

breaks. The deoxycholate-induced increase in micronuclei 

was signifi cantly reduced by the antioxidant, vitamin C, 

indicating the importance of diet in the possible prevention 

of genotoxicity. Unpublished data from our laboratory also 

indicate that deoxycholate can induce micronuclei in colon 

epithelial cells in vitro in addition to inducing aberrant 

mitoses (implying perturbation of the mitotic machinery). 

These unpublished results are consistent with published 

data from our laboratory that persistent exposure of cells to 

deoxycholate in vitro98,138 or in vivo in an animal model,115 

overall, results in the modulation of genes/proteins involved 

in chromosome maintenance and cell cycle progression (see 

Persistent exposure of colon cells to deoxycholate results in 

the modulation of expression of chromosomal maintenance/

mitosis-related genes, below). These findings indicate 

that deoxycholate is a true carcinogen,15 with important 

implications for dietary intervention strategies to prevent the 

initiation and/or progression of GI cancer.

A major stress induced by hydrophobic bile acids is 

the generation of ROS/RNS. Chronic exposure of cells to 

oxidative stress has been reported to result in increased 

genomic instability.155,156 An important source of ROS 

is damaged/mutated mitochondria.40,157 The mechanisms 

by which oxidative stress can lead to genomic instability 

are probably multifactorial, and include induction of 

double-strand breaks (resulting in broken chromosomes) 

and overriding the spindle checkpoint during cell cycle 

progression,158 which can result in aneuploidy.

Persistent exposure of colon
cells to deoxycholate results
in the modulation of expression
of chromosomal maintenance/
mitosis-related genes
The induction of aneuploidy with the formation of micronuclei 

after cells exit mitosis may be caused by a number of 

defects during cell division. Defects such as insuffi cient 

or excessive sister chromatid cohesion,159,160 kinetochore-

microtubule attachment defects,161,162 failure of DNA 

damage checkpoints,163 failure of spindle checkpoints,164–166 

telomere defects167,168 and aberrant centrosomal organization 

and multiplicity169,170 may result in an incorrect number of 

chromosomes in daughter cells after mitosis. These defects 

coupled with chromosome breaks can produce an aberrant 

karyotype that may be carcinogenic. We, therefore, searched 

for the aberrant expression of mitosis-related genes in colon 

epithelial cells and colonic tissues that were modulated by 

deoxycholate. cDNA microarray (Table 1) and proteomic 

analyses (Table 2) of HCT-116 cell lines persistently 

exposed to increasing concentrations of deoxycholate 

in vitro98,138 and cDNA microarray analysis of colonic tissue 

of wild-type mice receiving dietary supplementation with 

deoxycholate in vivo115 (Table 3) indicate that deoxycholate 

modulates the expression of numerous genes associated with 

mitosis and chromosome maintenance. The list includes 

71 genes/proteins associated with cohesion and segregation 

of chromosomes, telomeres, kinetochore structure, spindle 

assemby and function, centrosome regulation, various aspects 

of the cell cycle (metaphase, anaphase), cell cycle progression 

(kinases, phosphatases, ubiquitin-conjugating enzymes), cell 

cycle checkpoints and cytokinesis (Tables 1–3).

Since the microarray study was published six years ago,98 

recently identifi ed gene sequences related to mitosis and 

chromosome maintenance have been added to Table 1 to 

bring the 2002 study up to date.

In summary, persistent upregulation and/or downregulation 

of key proteins of the division process by deoxycholate, 

coupled with decreased DNA repair and increased DNA 

damage, may lead to genomic instability, including mutator 

phenotypes. Recent studies have indicated that 1) the spindle 

proteins, Aurora A and BUB1B, are aberrantly expressed in 
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Table 1 Fold reduction/induction of mRNA levels of chromosomal maintenance/mitosis related genes in HCT-116 colon cancer cells 
persistently exposed to deoxycholate

Systematic 
gene notation

Fold reduction/
induction

Gene and function

AA479781 0.32 Radixin (highly concentrated in the cleavage furrow during the late stages of mitosis)

H24707 0.35 DLG1 (Discs, large (Drosophila) homolog 1 found in the midzone during mitosis); 
multidomain scaffolding protein; interacts through its guanylate kinase-like domain with 
KIF13B (kinesin family member 13B)

N69204 0.36 CSE1L (chromosome segregation 1 (yeast homolog)-like); microtubule-associated protein 
that functions in the mitotic spindle checkpoint; also associates with chromatin and increases 
the transcription of select p53 target genes, including the PIG3 gene; Ran-binding protein 
implicated in the nuclear to cytoplasmic reshuffl ing of importin α, which is necessary for the 
nuclear transport of several proliferation activating proteins, transcription factors, oncogene 
and tumor suppressor genes

H23021 0.50 RBBP6 (retinoblastoma binding protein 6); phosphorylated upon DNA damage; co-localizes 
with mitotic chromosomes and localizes to nucleoli in interpase cells; binds p53 and Rb1; 
overexpression restricts mitotic progression at prometaphase and promotes mitotic 
apoptosis

H84048 0.50 RBL1 (retinoblastoma-like 1 (p107); key regulator of entry into cell division; directly 
involved in heterochromatin formation by maintaining overall chromatin structure; controls 
histone H4 ‘lys-20’ trimethylation; interacts with transcription factor E2F-4 and with cyclin 
E/A-CDK2; inhibits cell cycle progression in response to DNA damage in S phase cells; inhibits 
G1 to S phase progression by downregulating expression of the F-box protein SKp2; reduced 
expression in colorectal tumors may indicate a poor prognosis

AA490213 0.51 TOB1 (Transducer of p185ERBB2 1 receptor tyrosine kinase); antiproliferative protein; acts 
as a transcriptional corepressor and suppresses the promoter activity of the cyclin D1 gene 
through an interaction with histone deacetylase; mice lacking TOB are predisposed to cancer 
indicating that TOB is a tumor suppressor

R02820 0.52 PDS5A [regulator of cohesion maintenance, homolog A (S. cerevisiae)]; component of the 
molecular glue along with cohesin that maintains sister chromatid cohesion during S phase 
and maintains it during metaphase; sumoylated at anaphase to promote chromatid separation

R92435 0.54 NUF2R (NDC80 subunit of the outer kinetochore complex component, homolog); 
localizes to kinetochores from late prophase to anaphase; the NDC80 complex is 
required for chromosome segregation, spindle checkpoint activity, kinetochore integrity 
and the organization of stable microtubule binding sites in the outer plate of the 
kinetochore

AA428749 0.56 PPP1R2 [protein phosphatase 1, regulatory (inhibitor) subunit 2]; alias: PNUTS; serine/
threonine phosphatase involved in exit from mitosis and targeted to the reforming nuclei 
in telophase following the assembly of nuclear membranes and enhances chromosome 
decondensation as cells re-enter interphase

AA448676 0.59 UBE2V2 (Ubiquitin-conjugating enzyme E2 variant 2; facilitates progress through the cell cycle 
but has no ubiquitin ligase activity on its own); plays a role in error-free DNA repair pathway 
and contributes to the survival of cells after DNA damage

R66447 0.60 MYCN (V-myc avian myelocytomatosis viral related oncogene, neuroblastoma-derived); 
involved in centrosome amplifi cation

N54344 0.60 NCAPH (non-SMC condensin 1 complex, subunit H); regulatory subunit of the condensin 
complex which is required for the conversion of interphase chromatin into mitotic-like 
condensed chromosomes; the condensin complex introduces positive supercoils into relaxed 
DNA in the presence of type 1 topoisomerases and converts nicked DNA into positive 
knotted forms in the presence of type II topoisomerases; the condensin 1 complex is 
required not only to promote sister chromatid resolution but also to maintain the structural 
integrity of centromeric heterochromatin during mitosis; in NCAPH-depleted cells the 
pericentromeric and centromeric heterochromatin cannot withstand the forces exerted by 
the mitotic spindle and undergoes irreversible distortion; highest expression occurs during 
the G2 phase of the cell cycle

(continued)
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Table 1 (Continued)

Systematic 
gene notation

Fold reduction/
induction

Gene and function

AA489007 0.60 Aurora borealis (BORA) (binding partner to Aurora A); in interphase cells, Bora is located 
in the nucleus, but upon entry into mitosis, bora translocates to the cytoplasm (in a 
cdc2-dependent manner) where it binds to and activates the protein kinase Aurora A. 
The activation of Aurora A is necessary for centrosome maturation, spindle assembly, and 
asymmetric protein localization during mitosis

AA608568 0.61 CCNA2 (Cyclin A2); major regulator of cell cycle progression; its synthesis is required for 
progression to S phase; regulates nuclear envelope breakdown and the nuclear accumulation 
of cyclin B1; also synthesized during G2/M transition; associated with cyclin-dependent protein 
kinases 1 and 2; cyclin A2 levels decrease as a result of p53-dependent G2 arrest

AA262211 0.63 DLG7 discs, large homolog 7; HURP (Hepatoma Up-Regulated Protein); mitotic 
phosphoprotein mediates Ran-GTP-dependent assembly of the bipolar spindle, allows for 
effi cient kinetochore capture at prometaphase, promotes chromosome congression to the 
metaphase plate, chromosome alignment at the metaphase plate and proper interkinetochore 
tension for anaphase initiation during mitosis; binds to microtubules through its N-terminal 
domain which hyperstabilizes spindle microtubules in the vicinity of chromosomes by forming 
specialized tubulin confi gurations to form a sheet that wraps microtubule ends; interacts with 
CDC2 which localizes to the spindle poles in mitotic cells; co-localizes with CDH1 at sites 
of cell-cell contact in intestinal epithelial cells; phosphorylated by Aurora A which provides a 
regulatory mechanism for the control of spindle assembly and function; increased expression 
in the G2/M phase of the cell cycle

R88741 0.67 RBBP8 (retinoblastoma-binding protein 8); tumor suppressor that interacts with CTBP, with 
the terminal (BRCT) domain of BRCA1, and with the retinoblastoma protein to regulate the 
G1/S-phase transition of the cell cycle; confers resistance to double-strand break-inducing 
agents and is recruited to double strand breaks exclusively in S and G2 cell cycle phases

AA448194 1.25 SMN2 (Survival of motor neuron 2, centromeric); function not known at the present time

T90375 1.26 KIF3B (microtubule plus end-directed kinesin motor family member 3B); forms a heterodimer 
with KIF3A which interacts with SMC3 subunit of the cohesin complex; involved in tethering 
the chromosomes to the spindle pole and in chromosome movement through plus end-
directed microtubule sliding activity in vitro; prevents aneuploidy and abnormal spindle formation

AA598887 1.27 SMC1L1 [SMC1 (structural maintenance of chromosomes 1, yeast)-like 1]; a cohesin subunit 
that is a central component of the cohesin complex required for the cohesion of sister 
chromatids after DNA replication; forms a heterodimer with SMC3 in cohesin complexes 
consisting of CDCA5, RAD21, PDS5A/APRIN and PDS5B/SCC-112; before prophase it 
is scattered along chromosome arms; during prophase, most of the cohesin complexes 
dissociate from chromosomes except at centromeres where cohesin complexes remain 
forming part of the kinetochore; phosphorylation of Ser-957 and Ser-966 activates it and 
is required for S-phase checkpoint activation; role in spindle pole assembly during mitosis; 
SMC1L1 localizes to centrosomes throughout the cell cycle where it is involved in the 
organization of dynamic arrays of microtubules

R74078 1.27 TNKS1BP1 [182 kDa tankyrase 1 binding protein 1 that binds to the ankyrin domain 
(comprises 24 ankyrin repeats) of TNKS1]; serves as an acceptor of poly(ADP-ribosylation) 
by tankyrase 1 (telomeric PARP); tankyrase 1-mediated polymerization of poly(ADP-ribose) is 
required for spindle structure and function; TNKS1BP1 co-localizes with chromosomes during 
mitosis, is phosphorylated upon DNA damage and binds to cytosolic actin in interphase

N68492 1.29 Anaphase-promoting complex (APC) 1; alias is MCPR (meiotic checkpoint regulator); one of 
the 12 subunits that make up the APC/C, a 20S ubiquitin-ligase complex that targets proteins 
for proteasomal destruction, an essential step in chromatid separation that is necessary for 
the metaphase to anaphase transition; phosphorylation of Ser-355 occurs specifi cally during 
mitosis;

T75522 1.32 PPP1R10 (Protein Phosphatase 1, regulatory subunit 10); serine/threonine – protein 
phosphatase involved in chromosome decondensation in a PP1-dependent manner; alias 
PNUTS; inhibits PPP1CA and PPP1CC phosphatase activities; phosphorylated on Ser-398 and 
Thr-400 by PKA within the region necessary for interaction with PPP1CA; found in discrete 
nucleoplasmic bodies and within nucleoli

(continued)
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Systematic 
gene notation

Fold reduction/
induction

Gene and function

W95346 1.34 SAC3D1 (Saccharomyces cerevisiae 3 domain-containing 1 protein); involved in centrosome 
duplication and mitotic progression (by similarity); localizes to centrosomes in interphase 
cells and at spindle poles and mitotic spindles at M phase, similar to α-tubulin; functions in 
the spindle assembly checkpoint; RNA interference suppression of endogenous SAC3D1 
causes defects in centrosome duplication and spindle formation resulting in cells with a single 
centrosome and downregulated Mad2 expression, generating increased micronuclei; increased 
expression of SAC3D1 by DNA transfection resulted in cells with multiple centrosomes and 
deregulated spindle assembly with upregulated Mad2 expression until anaphase, generating 
polyploid cells

AA486312 1.34 CDK4 (cyclin-dependent kinase 4); forms a stable complex with D-type G1 cyclins involved 
in regulating G1 to S transition; inhibition of CDK4 results in a mitotic delay associated 
with elevated Wee1 (mitotic delay results from failure of chromosomes to migrate to the 
metaphase plate; however, cells eventually exit from mitosis, resulting in an increase in cells 
with multiple or micronuclei); shows aberrant cytological localization in colorectal epithelia in 
the usual adenoma carcinoma sequence

H18838 1.34 MAB21l1 [Mab-21 (C. elegans)-like 1]; meiotic instability associated with the CAGR1 
trinucleotide repeat at 13q13

W02403 1.36 CLSPN (Claspin homolog of Xenopus laevis); required for checkpoint-mediated cell cycle 
arrest in response to inhibition of DNA relication or to DNA damage; acts as a sensor which 
monitors the integrity of DNA relication forks; expression peaks at S and G2 phases of 
the cell cycle; phosphorylated in response to replication stress and this phosphorylation is 
required for its association with Chk1

R21614 1.36 SUPT5H [Suppressor of Ty (S. cerevisiae) 5 homolog]; DS1F large subunit; human chromatin 
structural protein that is reversibly phosphorylated in mitosis

H45967 1.37 CDK9 (Cyclin-Dependent Kinase 9); cell division cycle 2-like protein kinase 4 which regulates 
progression through the cell cycle; serine/threonine protein kinase PITALRE; member of the 
cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription 
elongation factor b (TERb), which facilitates the transition from abortive to productive 
elongation by phosphorylating the C-terminal domain of the large subunit of RNA polymerase 
II and SUPT5H and RDBP, thereby increasing gene expression; forms a CDK9/cyclin-K 
complex which has kinase activity toward RNA polymerase II; phosphorylates retinoblastoma 
protein in vitro; phosphorylates p53 on serine 392 independently of CKII; also phosphorylates 
p53 on serine residues 33, 315 and 392 in a feedback loop between p53 and CDK9, 
pinpointing a novel mechanism by which p53 regulates the basal transcriptional machinery; 
upregulated upon exposure to various stresses

R06313 1.38 CROCCL1 (ciliary rootlet coiled-coiled, rootletin-like 1); a major structural component 
of the ciliary rootlet; recombinant rootletin forms detergent-insoluble fi laments radiating 
from the centrioles; the homopolymeric rootletin protofi laments bundle into variably 
shaped thick fi laments; interacts with C-Nap1 and may function in centrosome cohesion 
by acting as a physical linker between the pair of centrioles/basal bodies; ciliary rootlet 
interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos; 
rootletin is phosphorylated by Nek2 kinase and is displaced from the centrosomes at the 
onset of mitosis; overexpression of rootletin in cells results in the formation of extensive 
fi bers resulting in multinucleation, micronucleation and irregularity of nuclear shape and size, 
indicative of defects in chromosome separation

AA479771 1.40 CUL7 (Cullin 7); an E3 ubiquitin ligase and a member of the Cullin Ring Ligase family 
involved in post-translational modifi cations that are important in the regulation of cell cycle 
progression; induced by DNA damage and promotes cell growth by antagonizing p53 function; 
functions as a novel antiapoptotic oncogene

AA455786 1.40 MCM3 [minichromosome maintenance defi cient (S. cerevisiae) 3]; required for cell 
proliferation; acts as a replication licensing factor that acts in early S phase and allows the 
DNA to undergo a single round of replication per cell cycle; ATM phosphorylates MCM3 on 
S535 in response to ionizing radiation; overexpressed in various cancers including those of the 
colon

(Countinued)
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Systematic 
gene notation

Fold reduction/
induction

Gene and function

AA032090 1.41 DDX11 [(DEAD/H (Asp-Glu-Ala-Asp/His)] box polypeptide 11); S. cerevisiae CHL1-like DNA 
helicase involved in proliferation; required for sister chromatid cohesion and maintaining 
chromosome segregation; functions during S, G2, or M phase of cell cycle and is essential for 
prevention of aneuploidy

N76587 1.41 CDC42BPB (Cell Division Cycle 42 Binding Protein Kinase beta [DMPK-like (dystrophy 
myotonic protein kinase)]; serine/threonine protein kinase involved in cytoskeletal 
organization and biogenesis in cell division by acting as a Cdc42 effector

H77797 1.41 KIF12 (Kinesin Family Member 12) contains one kinesin-motor domain involved in 
microtubule motor activity during cell division

N91750 1.41 E2F2 (E2F transcription factor 2); transcription activator that binds DNA cooperatively with 
DP proteins through the E2 recognition site, 5’-TTTC[CG]CGC-3’, found in the promoter 
region of a number of genes whose products are involved in cell cycle regulation or in 
DNA recognition; phosphorylated by CDK2 and Cyclin A-CDK2 in the S-phase of the cell 
cycle; component of the DRTF1/E2F transcription factor complex that functions in the 
control of cell cycle progression from G1 to S phase; the E2F-2 complex binds specifi cally 
hypophosphorylated retinoblastoma protein RB1; during the cell cycle, RB1 becomes 
phosphorylated in mid-to-late G1 phase, detaches from the DRTF1/E2F complex, thereby 
rendering the E2F transcriptionally active

AA488526 1.41 NOLC1 (Nucleolar and coiled-body phosphoprotein 1); shuttles between nucleus, nucleolus 
and cytoplasm at telophase; begins to assemble into granular-like pre-nucleolar bodies which 
are subsequently relocated to nucleoli at early G1 phase

T77840 1.42 DLG5 [Discs, large (Drosophila) homolog 5]; peripheral membrane protein involved in the negative 
regulation of cell proliferation; genetic variation associated with infl ammatory bowel disease

R70925 1.44 MKS1 (Meckel syndrome, type 1); FABB proteome-like protein required for primary cilium 
formation; function in mitosis not known at the present time

T67474 1.45 APC7 (anaphase-promoting complex, subunit 7); one of 12 subunits that comprise the anaphase 
promoting complex, a ubiquitin ligase that controls progression through mitosis and the 
G1 phase of the cell cycle; The APC7 protein is located in the nucleus during interphase and the 
centrosome during metaphase/anaphase; functions with other members of the APC complex 
to regulate sister chromatid separation by degrading securins and targets cyclin B and other 
destruction box containing proteins for proteolysis; may recruit Cdh1 into the APC complex

AA489602 1.45 TRAP1 (heat shock protein 75); refolds denatured retinoblastoma protein 1 into its native 
conformation during mitosis; mitochondrial Hsp90 analog; antagonizes ROS generation; 
protects mitochondria against damaging stimuli; protects cells from granzyme M-mediated 
apoptosis

AA026709 1.51 DOCK6 (Dedicator of Cytokinesis 6); a Dock-C subfamily guanine nucleotide exchanger, has 
dual specifi city for Rac1 and Cdc42 and regulates changes in the actin cytoskeleton during cell 
proliferation

H79234 1.51 ACD [Adrenocortical dysplasia homolog (Drosophila)]; telomeric regulator and component 
of the TRF1 complex controlling telomere length; controls POT1 telomeric recruitment and 
telomere elongation by inhibition of telomerase activity

AA448755 1.54 CDC25B (cell division cycle 25B ); tyrosine phosphatase 2 that acts as a M-phase inducer; 
directly dephosphorylates CDC2 and stimulates its kinase activity; activates centrosomal 
Cdk1 in late prophase; activity controlled by centrosome-associated Chk1 which 
phosphorylates CDC25B in the absence of DNA damage; cooperates with Cdc25A to induce 
mitosis, but has a unique role in activating cyclin B1-Cdk1 at the centrosome resulting in 
centrosome separation

R93686 1.61 MPHOSPH9 (M-phase phosphoprotein 9); involved in regulation of progression through the 
cell cycle

R93719 1.65 GSPT1 (G1 to S Phase Transition 1 protein); GTP-binding protein 1 essential for G1 to S tran-
sition of the cell cycle; alias is eRF3 (eukaryotic release factor 3), which is a GTPase associated 
with eRF1 in a complex that mediates translation termination

(Continued)
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gene notation

Fold reduction/
induction

Gene and function

AA459292 1.67 CKS1B (CDC28 protein kinase regulatory subunit 1B); binds to and activates 
cyclin-dependent kinases and also interacts with SKP2 to promote the ubiquitination and 
proteasomal degradation of p27(Kip1); cyclin D1 regulates CKS1B-mediated degradation
of p27(Kip1); exhibits altered expression in colorectal carcinoma

AA076063 1.71 CALD1 (Caldesmon 1); actin-binding protein; during mitosis caldesmon dissociates from 
microfi laments

R40850 1.74 ARP1 [Actin-Related Protein 1, yeast homolog A (centractin alpha)]; ACTR1A; major subunit 
of dynactin, a multiprotein complex known to contain 8 or 9 Arp1 monomers in a 37 nm 
fi lament involved in microtubule-based vesicle motility; attachment site for cargo directed
to the dynein/dynactin complex; centrosome-associated actin homolog; overexpression results 
in cell cycle delay at prometaphase with appearance of supernumerary microtubule asters

AA488221 1.83 DCTN1 [Dynactin 1 (p150, Glued) Drosophila homolog]; largest subunit of the
10 components that make up the large macromolecular dynactin complex that is involved 
in “search-and-capture” mechanisms that include the attachment of microtubules to 
kinetochores during mitosis, the maintenance of the spindle, formation of astral microtubules, 
chromosome motion and chromosome segregation; requires Aurora kinase B activity to 
be maintained at kinetochores; binds directly to microtubules and to cytoplasmic dynein; 
co-localizes with Arp1 to spindle microtubules; depletion in cells results in a metaphase delay 
and the poor connection of the centrosomes to the mitotic spindle poles; p150(Glued)
is cleaved during apoptosis

T99336 1.88 CEP164 (centrosomal protein of 164 kDa localized to the outer appendage); mediator protein 
required for the maintenance of genomic stability through the modulation of MDC1, RPA 
and CHK1; key player in the DNA damage-activated signaling cascade; phosphorylated upon 
replication stress; DNA damage-induced phosphorylation of CHK1 and activation of the 
G2/M checkpoint requires Cep164; plays a role in chromosome segregation, in addition to its 
function in checkpoint signaling; persists at centrioles throughout mitosis

R31831 2.00 SHROOM3 (F-actin binding protein); induces cell elongation by redistributing γ-tubulin 
(associated with centrosomes) and directing microtubule arrays

Notes: Fold reduction/induction is the ratio of mRNA levels in the deoxycholate-treated cells to the level in the untreated control cells.  All fold reduction/induction ratios 
are the mean of all resistant cell lines HCT-116RB, HCT-116RC, and HCT-116RD compared to long-passage untreated cells and were statistically signifi cant at the 95% prob-
ability level (p � 0.05).

dysplastic mucosa of patients with longstanding ulcerative 

colitis,171 a pre-neoplastic condition), 2) both Aurora A and 

BUB1B undergo a shift in subcellular localization during 

malignant transformation,172 3) a reduced level of the spindle 

checkpoint protein, BUB1B, is associated with aneuploidy 

in colorectal cancers,173 and 4) chromatid cohesion defects 

may underlie chromosome instability in human colorectal 

cancers.174 It is an intriguing possibility that these defects 

occur very early during colon carcinogenesis, and may be 

caused, in part, by dietary-related factors, such as high levels 

of endogenous bile acids, coupled with polymorphisms in 

mitotic checkpoint genes.175

Oxidative stress as an important 
cause of genomic instability
The induction of kinetochore-positive and -negative 

micronuclei by bile acids may result from aneuploidy 

(involving the loss and gain of whole chromosomes) 

or portions of chromosomes, resulting from unrepaired 

double-strand breaks. This bile acid-induced induction of 

genomic instability is most probably caused by oxidative 

stress directed at parts of the mitotic machinery, checkpoint 

proteins and/or direct oxidative damage to DNA that results 

in double-strand breaks. The only studies that addressed 

this issue in the gastrointestinal tract are those of Jenkins 

and colleagues,16,17 who evaluated several antioxidants 

(eg, vitamin C, resveratrol, EGCG) to determine their 

effectiveness at reducing deoxycholate-induced micronuclei 

formation in esophageal cells. Of the antioxidants tested, only 

vitamin C had a signifi cant effect on reducing micronuclei 

formation. Since bile acids damage mitochondria, resulting 

in an increase in mitochondrial ROS, and ROS derived 

from damaged mitochondria are known to induce genomic 

instability,157 various antioxidants specifi cally directed at 

mitochondria should be tested for their effectiveness at 

reducing bile acid-induced genomic instability.
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Table 2 Statistically signifi cant increases/decreases in protein levels of chromosomal maintenance/mitosis related genes in HCT-116R 
colon cancer cells persistently exposed to deoxycholate

Change in expression(1) in resistant cell lines Gene and function

B C D

↓ ↓ ↓ KIF1A (Kinesin Family Member 1A); transports membrane-bound organelles toward 
the plus end of microtubules and important in cell division; functions in monomeric 
and dimeric states as a kinesin motor

↓ ↓ ↓ Cyclin A (required during S phase and passage through G2); activates Cdk2 near the 
start of S phase and is necessary for the initiation of DNA replication; also binds to 
cdc2 (Cdk1); mutation or disruption of normal Cyclin A in cells results in a G2 arrest

↓ ↓ ↓ EB1 [strong binding to the C-terminal domain of APC (adenomatous polyposis coli)]; 
interacts with the plus end of microtubules and targets APC to microtubule tips]; 
also required for the plus-end localization of CLIP-170 which is then required to 
localize p150(Glued) to plus-ends; targeted disruption of the interaction between EB1 
and p150(Glued) suppresses anaphase astral microtubule elongation and a delay of 
cytokinesis

↓ O ↓ SGT1 (G1/S and G2/M cell cycle transitions); important component in association 
with Skp1, Cul-I, F-box protein and CDC34/Ubc3 of the SCF ubiquitination ligase 
complex responsible for cell cycle transitions

↓ O ↓ Chk1 (checkpoint kinase 1); activated after DNA damage; leads to G2/M arrest; 
regulates the S phase checkpoint by increasing the proteolysis of Cdc25A; cooperates 
with p21 to prevent apoptosis during DNA replication fork stress; inhibition causes 
increased initiation of DNA replication, phosphorylation of ATR targets, and DNA 
breakage

O ↓ ↓ MAD2 (mitotic arrest-defi cient 2); required for spindle assembly during mitosis and 
mitotic checkpoint control; localizes to the kinetochore of condensed chromosomes 
during mitosis; participates in checkpoint inhibition of the APC/C through a complex 
of BUBR1, BUB3 and CDC20; prevents premature proteolysis of cyclin B and 
securin; reduced cellular levels result in defective mitotic checkpoint control; averts 
aneuploidy by delaying anaphase onset until chromosomes align; functions as a tumor 
suppressor

O ↓ ↓ Eg5 (member 11 of the kinesin-5 family of microtubule-based motor proteins 
involved in mitosis and cytokinesis); phosphorylated exclusively on serine during 
S phase, but on both serine and Thr-926 during mitosis, thereby controlling the 
association of Eg5 with the spindle apparatus (probably during early prophase); 
important for bipolar spindle assembly and spindle function during mitosis; the rate 
of bipolar spindle assembly depends on the microtubule-gliding velocity of Eg5; Eg5 
is also phosphorylated during mitosis at Thr-297, an evolutionarily conserved cdc2 
phosphorylation site, by p34[cdc2]/cyclin B; phosphorylation by p34cdc2 regulates 
binding of Eg5 to the dynactin subunit 150(Glued); inhibition of phosphorylation 
blocks the interaction of Eg5 with centrosomes arresting cells in mitosis with 
monoastral microtubule arrays

O ↓ ↓ P140mDia (protein of 140mkDa); mammalian homolog of Drosophila’s diaphanous 
essential for cytokinesis

↑ ↓ ↑ PTP1D/SHP2 (cytosolic Protein Tyrosine Phosphatase 1D/Src homology-2 
(SH2) domain-containing phosphatase 2); helps maintain intracellular protein 
phosphotyrosine homeostasis and cell cycle progression

↑ ↑ ↑ hRad9 (phosphorylated by ATM in response to DNA damage); checkpoint control; 
required for phosphorylation of Chk1; plays a role in cell cycle arrest during the G2 
phase before entry into mitosis; phosphorylated hRad9 is found in the nucleus after 
DNA damage, and forms DNA damage-responsive complexes with other putative 
checkpoint control proteins, such as hRAD1 and hHUS1; binds the anti-apoptotic 
proteins Bcl-2 and Bcl-xL

↑ ↑ ↑ Ran (Ras-related nuclear protein); highly conserved GTPase implicated in DNA 
replication and entry and exit from mitosis; at steady-state, 
80%–90% of cellular Ran is located in the nucleus, with the remainder in the 
cytoplasm

(Continued)
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Table 2 (Continued)

Change in expression in resistant cell lines Gene and function

B C D

O ↑ ↑ Cyclin D3 (regulatory subunit for cyclin-dependent kinase Cdk5); interacts with Cdk4 which 
is required for G2 phase cell cycle progression; regulator of progression through G1 phase 
during the cell cycle; promoter of cyclin D3 is regulated by E2F1; interacts with p58(PITSLRE), 
a G2/M-specifi c protein kinase; overexpression is associated with the accumulation of 
p27(kip1); interaction partner of lamin A/C; downregulated by rapamycin; when bound to 
cdks, the D-type cyclins also associate with the polymerase-delta subunit, PCNA; also binds 
pRb in vitro, suggesting that pRb may be an in vivo substrate of D-type cyclins; activates caspase 
2, connecting cell proliferation with cell death; involved in liver metastasis of colorectal cancer

O ↑ ↑ Lap2 (Lamina-associated polypeptide 2); integral protein of the inner nuclear 
membrane; binding to lamins contributes to the attachment of the nuclear lamina to 
the inner nuclear membrane; organization of the nuclear envelope during cell cycle 
progression; also binds to chromatin, implying its role in chromosomal organization 
during mitosis; mitotic phosphorylation of LAP2 regulates its binding to lamins and 
chromosomes during the disassembly and reassembly of mitosis

Notes: Increase (↑), Decrease (↓), No Change (O).

Since this area of bile acid research is just beginning 

to be explored, we have reviewed the literature involving 

other cell types (beyond those of the GI tract) and found 

that oxidative stress plays a defi nite role in the induction 

of genomic instability.40,156,157,176–178 Aneuploidy may often 

refl ect defects in mitotic segregation in cancer cells.50 The 

faithful cohesion and separation of chromosomes are con-

trolled by a large number of proteins, some of which have 

a checkpoint function.180–185 Increased production of ROS 

has been reported to induce aneuploidy by impairing the 

spindle check-point function.158 The spindle checkpoint is 

the safeguard mechanism that halts anaphase onset until the 

mitotic spindle has been assembled and metaphase chro-

mosomes properly attached. At the metaphase-anaphase 

transition, the APC (anaphase-promoting complex) initiates 

the separation of sister chromatids by catalyzing the ubiq-

uitination of securin, a protein that prevents the proteolysis 

of the cohesin complex and the subsequent segregation of 

the chromosomes, in the securin-separase complex.186 The 

APC11 subunit functions as the catalytic core of the APC 

complex and contains a RING-H2-fi nger domain, which 

includes one histidine and seven cysteines residues that 

coordinate two Zn2+ ions. The RING-H2-fi nger domain is a 

target of hydrogen peroxide, which induces the release of of 

bound zinc as a result of the oxidation of cysteine residues.187 

The oxidation of APC11 reduces the normal functions of 

the unoxidized APC11 protein, resulting in the inhibition of 

ubiquitination and degradation of cyclin B1, and the degra-

dation of securin. Other chromosomal aberrations, such as 

translocations and dicentric chromosomes, may be caused by 

accumulation of double-strand breaks induced by oxidative 

damage, as in Werner syndrome cells.188 Based on the data 

from our laboratory that shows the modulation of 71 genes 

involved in chromosome maintenance, chromatid cohesion, 

kinetochore-microtubule attachments, chromatid separation, 

cytokinesis, etc. by deoxycholate (see Tables 1–3), some of 

these proteins may be oxidatively damaged and/or targeted 

for destruction by deoxycholate. However, no studies have 

yet addressed this important mechanism of bile acid-induced 

damage to dividing cells. Thus, in colon carcinogenesis, 

the persistent increase in oxidative stress in epithelial cells 

caused by excessive exposure to bile acids may induce mitotic 

defects very early in the sequence of events that lead to 

colon cancer. Hydrophobic bile acids damage mitochondria, 

and increased levels of oxidative stress caused by defective 

mitochondria have been proposed as a possible mechanism 

by which a “mutator phenotype” could arise.40

Bile acids induce ER stress
The induction of ER stress by hydrophobic bile acids 

is evidenced by an increase in Gadd153/CHOP,142,189,190 

a pro-apoptotic transcription factor,191–197 and an increase 

in GRP78,98,190 a molecular chaperone that protects 

against ER stress.197,198 Furthermore, hydrophobic bile 

acids dilate the cisternae of the endoplasmic reticulum 

(identifi ed using transmission electron microscopy199). 

The mechanisms by which bile acids cause ER stress 

probably include the generation of ROS that may damage 

the ER membrane and/or cause protein unfolding, and 

the release of Ca++ from the ER through the activation of 

inositol triphosphate and ryanodine receptors.200 Excessive 

ER stress may lead to cell death in the form of apoptosis 
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Table 3 Fold reduction/induction of mRNA Levels of mitosis-related genes in colon of mice fed a diet supplemented with 
deoxycholate

Fold reduction/induction Gene and function

0.50 Wee1 homolog (Schizosaccharomyces pombe); protein kinase that inhibits Cdc2 activity, thereby pre-
venting cells from proceeding through mitosis; causes G2 arrest

0.55 APC (adenomatous polyposis coli); tumor suppressor protein that regulates free β-catenin levels 
and participates in Wnt signaling; binds to microtubules and increases microtubule ability; APC binds 
to microtubule plus ends and promotes microtubule net growth with or without EB1; haploinsuf-
fi ciency accounts for a fraction of FAP patients without APC truncating mutations; decrease in APC 
expression after one week of supplemental deoxycholate feeding is dependent on the presence of 
NOS2 (inducible nitric oxide synthase) (unpublished data from the Bernstein et al 2006 study115)

1.24 CDC2L5 (cell division cycle 2-like 5); serine/threonine kinase; controller of the mitotic cell cycle;

1.32 Ubiquitin protein ligase E3C; E3 ubiquitin ligases degrade proteins via the ubiquitin-proteasomal 
pathway during mitosis

1.33 Cdc34 (cell division cycle 34); homolog of S. cerevisiae; Ubc3 ubiquitin-conjugating enzyme that con-
trols proliferation through the regulation of p27 kip1 protein levels; mediates the degradation
of wee1; inhibits the association of CENP-E with kinetochores and blocks the metaphase alignment 
of chromosomes

1.34 Tsg101 (Tumor susceptibility gene 101); necessary for cell proliferation and cell survival; may function 
as a dominant-negative inhibitor of ubiquination in pathways where protein expression is tightly 
regulated; interferes with MDM2 ubiquination leading to a decrease in MDM2 decay and downregula-
tion of p53 protein

2.10 CDK5 (cell division protein kinase 5); involved in control of G1 to S phase transition of the cell cycle; 
one of the two main tau-kinases, complexing with cyclin D (D1, D2, D3); hyperphosphorylation of 
tau reduces tau’s ability to associate with microtubules; phosphorylates the tubulin-binding protein, 
stathmin; phosphorylates p53 and regulates its activity

and/or necrosis. Since deoxycholate induces the formation 

of nitrotyrosine residues in proteins of colon cells,112 ER 

stress may also be mediated through the generation of 

RNS.195,201 Persistent ER stress may then select for cells 

that exhibit activated ER stress-responsive survival path-

ways important in colon carcinogenesis. We have shown 

that ER stress-related survival proteins are consitutively 

upregulated in colon cancer cells that are resistant to 

deoxycholate-induced apoptosis, and include Grp78,98 

S-nitrosylated Grp78114 and S-nitrosylated ORP150,114 

another inducible ER stress-related chaperone protein.202 

The observed constitutive increase in autophagic proteins98 

observed in these resistant cells may also serve to protect 

against ER stress, although this area of research has not 

been fully explored.

Consequences of bile acid-induced 
mitochondrial damage: metabolic 
stress, autophagy, apoptosis,
and necrosis
Bile acid-induced DNA damage, ER stress, mitotic stress, 

and mitochondrial damage may all lead to cell death through 

various processes including apoptosis, necrosis, autophagic 

cell death and/or mitotic catastrophe, depending on the level 

of combined stresses. Of all organelles, mitochondria are 

most central to the three main cell death pathways, apoptosis, 

necrosis, and autophagic cell death.203 Apoptosis as a mecha-

nism of mitochondrially-mediated bile acid-induced cell 

death has been studied the most in cells of the GI tract, as 

discussed below.

Mitochondria generate most of the ATP used for energy-

consuming processes within the cell. Moreover, mitochondria 

play an important role in the regulation of other cellular 

processes such as autophagy and apoptosis. Autophagy is a 

catabolic process involving the degradation of a cell’s own 

components through the activation of lysosomes. In response 

to stresses induced by hydrophobic bile acids, autophagy is 

initiated (unpublished data from our laboratory) as the fi rst 

mechanism to cope with damage when mitochondrial injury 

is limited. The damaged mitochondria are sequestered within 

lysosomes, thereby preventing the release of apoptosis-

inducing factors, such as cytochrome c, apoptosis-inducing 

factor (AIF), and Smac/DIABLO. As more mitochondria are 

damaged and undergo the mitochondrial membrane perme-

ability transition in response to bile acids, the pro-apoptotic 
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proteins are released from the mitochondria.204 These releases 

result in the formation of the apoptosome, caspase activation, 

degradation of vital proteins in the cell and, fi nally, apoptosis. 

Apoptosis can be triggered by two distinct signaling cascades, 

the extrinsic and intrinsic pathways. The extrinsic pathway 

involves the activation of specifi c cell surface receptors such 

as Fas/CD95 and the tumor necrosis factor receptor (TNFR), 

while the intrinsic pathway is primarily regulated by mito-

chondria. Importantly, in contrast to hepatocytes and hepatic 

cancer cell lines, in which hydrophobic bile acids induce 

apoptosis by an extrinsic pathway, deoxycholate induces 

apoptosis in colonic epithelial cells in a CD95-independent 

pathway.205 Bile acid-induced mitochondrial damage may ini-

tially increase autophagy to rid cells of damaged organelles. 

As stress continues, apoptosis or autophagic cell death may 

follow. If, however, the stresses on mitochondria are initially 

severe, oxidative phosphorylation fails, NAD+ levels drop, 

ATP levels are rapidly depleted, resulting in loss of ionic 

control,206 followed by cell swelling and lysis, characteristic 

features of necrosis.207–211 Apoptotic cell death induced by 

deoxycholate has been frequently reported in colon epithelial 

cells.41,44,45,98,99,110,112,118,199,205,212–224 Therefore, an understanding 

of bile acid-induced alterations in mitochondrial function 

are of great interest. At least two major alterations occur 

during bile acid-induced mitochondrial dysfunction. These 

are (1) disruption of electron transport leading to generation 

of ROS, loss of mitochondrial membrane potential (MMP), 

decrease in oxidative phosphorylation, and decrease in ATP 

production, and (2) release of mitochondrial proteins that 

trigger activation of caspases. Bile acids were shown to be 

involved in all three processes.

The exact mechanism by which bile acids disrupt electron 

transport and decrease oxidative phosphorylation has yet to 

be defi ned.225–227 Experiments performed with mitochondria 

isolated from hepatocytes clearly demonstrate that hydro-

phobic bile acids induced perturbations in mitochondrial 

bioenergetics.225,226 Specifi cally, complex I and complex III 

of the mitochondrial electron transport chain were inhibited 

by treatment with10 μM bile acid. Complex IV was inhibited 

at higher concentrations of bile acids.225 The authors specu-

lated that the inhibition of the electron transport complexes 

may be due to bile acid incorporation into the mitochondrial 

membranes resulting either in direct toxicity or alteration in 

lipid composition. When they tested this hypothesis, they 

found that, indeed, bile acids were incorporated into the 

mitochondrial membranes. Furthermore, they found that 

the hydrophobic bile acid, chenodeoxycholic acid, induces 

alteration in the lipid composition of the mitochondrial 

membrane, while no alterations were found after treatment 

with lithocholic acid.225 However, it is possible that the 

changes in lipid composition induced by lithocholic acid were 

below the limit of detection used in the study.225 Membrane 

structural changes observed using spin-labelling techniques 

and electron paramagnetic resonance (EPR) spectroscopy 

analysis also support the involvement of mitochondria in 

bile acid-induced apoptosis.228 These mitochondrial structural 

changes include modifi ed lipid polarity and fl uidity, altered 

protein order and increased oxidative injury.228

Hydrophobic bile acids cause mitochondrial oxidative 

stress97,110,117,228,229 leading to mitochondrial swelling199 and 

formation of megamitochondria.110 The excessive generation 

of ROS that overwhelms the cells’ antioxidant defenses is 

most probably responsible for the death of colonic epithelial 

cells,230 and is consistent with the role of oxidative stress in 

mediating apoptosis in many other types of cells.231 Impor-

tantly, bile acid-induced apoptosis in HT-29 colon cells is 

dramatically reduced if mitochondria are protected against 

ROS by inhibiting complexes I and II of the electron transport 

chain.110 Later studies indicated, moreover, that perturbation 

of the mitochondrial electron transport chain, in general, 

and uncoupling of oxidative phosphorylation, attenuates 

deoxycholate-induced apoptosis.199 The mechanism by 

which this perturbation of mitochondrial function results 

in apoptotis resistance is not clearly understood. Another 

effect of hydrophobic bile acids on mitochondria is rapid loss 

of mitochondrial membrane potential (MMP).110,199,205 For 

example, treatment of SW480 cancer cell line with 0.5 mM 

deoxycholic acid induced loss of MMP in 5 minutes.205 This 

loss of MMP correlates with the induction of ROS.

The second major effect of hydrophobic bile acids is to 

induce rapid release of pro-apoptotic proteins in colon cancer 

cells, such as cytochrome c, which leads to the activation of 

caspases.218 Incubation of HT-29 and HCT-116 colon cells 

with deoxycholate resulted in the cleavage of procaspases 

and the activation of effector caspases 2, 3, 7 and 8,110,222 

while caspase-1 proinfl ammatory caspase was not cleaved.222 

Caspases 9 and 3 are rapidly activated by deoxycholate, 

while caspase 8 activation is a later event.110,218,222 Caspase-6 

is of particular importance to deoxycholate-induced apop-

tosis of colon epithelial cells, since the antiapoptotic nitric 

oxide-targeted enzyme, guanylate cyclase-α1, is specifi cally 

cleaved by caspase-6, resulting in apoptosis.224 Apoptosis in 

HCT116 cells is not induced simply by a detergent effect, 

since sodium dodecyl sulfate (SDS), a detergent that is struc-

turally distinct from bile acids, does not induce apoptosis.218 

Although protein synthesis inhibitors have been shown to 
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protect against programmed cell death, de novo synthesis of 

proteins does not appear to be necessary for bile acid-induced 

apoptosis.218 Altogether, these data suggest that in contrast to 

the extrinsic induction of apoptosis, as seen in hepatocytes, 

hydrophobic bile acids primarily activate the intrinsic mito-

chondrial pathway of apoptosis in colon cancer cell lines.

How exactly do bile acids interact with mitochondria to 

perturb their function? Hydrophobic bile acids may directly 

affect mitochondria, leading to disruption of the electron 

transport chain and increased production of mitochondrial 

ROS. Alternatively, mitochondria can be damaged indirectly 

by extramitochondrial ROS produced by plasma membrane 

bound enzymes targeted by bile acids, such as NAD(P)H 

oxidase96 (Figure 2). The importance of NAD(P)H to 

deoxycholate-induced apoptosis was ascertained by the use 

of an inhibitor of NAD(P)H oxidase, diphenyleneiodonium 

(DPI).232 DPI attenuated overall ROS production and 

prevented the occurrence of deoxycholate-induced apoptosis, 

assessed using translocated membrane phospholipid and 

nuclei containing condensed chromatin.232 Interestingly, 

NADPH oxidase levels are elevated in colon cancer cell lines 

as well as in the tissues from patients with colon cancer.233–236 

Another extramitochondrial source of ROS occurs when 

molecular oxygen is partially reduced during the metabolism 

of arachidonic acid by the cyclooxygenase (COX) and lipoxy-

genase (LOX) pathways (Figure 2). Another indirect effect 

of bile acids on mitochondria is the release of arachidonic 

acid from phospholipids following activation of PLA
2
 by bile 

acids.87 Arachidonic acid induces inhibition of mitochondrial 

complex I and III and causes an increase in mitochondrial 

ROS production.237 Hydrophobic bile acids may also trigger 

the formation of ceramide,238 which can damage mitochondria 

and induce apoptosis. The ceramide-induced disruption of 

mitochondrial function and induction of apoptosis is caused, 

in part, by modulation of gene expression of members of the 

Bcl-2 family of apoptosis-related proteins.239

Persistent exposure to deoxycholate 
selects for apoptosis resistance
Repeated long-term exposure of colon epithelial cells to 

high physiologic concentrations of bile acids may allow 

preferential survival of cells that are resistant to induction 

of apoptosis by bile acids. Such apoptosis resistant cells 

could arise and proliferate by the processes of mutation and 

Darwinian selection (Figure 3). Apoptosis-resistance in the 

colon appears to arise in settings where the colonic mucosa is 

chronically exposed to high physiologic levels of bile acids. 

Magnuson and colleagues240 reported that chronic feeding of 

0.2% cholic acid (added to the AIN-76 diet) to azoxymethane 

(AOM)-treated Sprague-Dawley rats for 18 weeks resulted in 

a statistically signifi cant reduction in the number of apoptotic 

bodies in ACF after an acute low dose of AOM, compared 

with normal-appearing crypts. Both normal and ACF crypts 

had fewer apoptotic bodies per 100 cells than crypts from 

rats fed the control diet.

Work from our laboratory indicated that in vitro exposure 

of apoptosis-sensitive colon epithelial cells (HCT-116) for 

approximately 40 weeks resulted in the generation of stable 

apoptosis-resistant cell populations.98 We also evaluated the 

nonneoplastic fl at colonic mucosa of patients in different 

colon cancer risk groups for apoptosis competence using an 

ex vivo live cell bioassay.44,45,212,213,241 The apoptosis-inducing 

agent used in this bioassay was deoxycholate. The nonneo-

plastic colonic mucosa of patients with colon cancer had a 

signifi cantly reduced apoptotic index compared to that of 

low-risk and normal patients. The exact etiologic agents that 

were responsible for the development of apoptosis resistance 

are not known, but hydrophobic bile acids, other agents that 

generate ROS/RNS, and actual components of a high-fat diet 

may have been key players.

Bile acids, infl ammation 
and colon cancer
Numerous epidemiological studies have shown that fecal 

bile acid concentrations are increased in populations with 

a high incidence of colon cancer, suggesting an etiological 

linkage.242–251 We have shown that supplemental feeding of 

deoxycholate in a mouse model can cause colitis in associa-

tion with markers of oxidative stress.115 An important link 

between high bile acid concentrations and colon cancer may, 

therefore, be the induction of infl ammation, a condition that 

is associated with many cancers of the GI tract. Bile acids 

may induce inflammation through a disruption of tight 

junctions between colonic epithelial cells115 and increase in 

transepithelial permeability,88 providing a means for entry of 

pro-infl ammatory bacterial species.252 In addition, bile acids 

may cause dysregulation of cytokine expression through 

the constitutive activation of NF-κB,98 a redox-associated 

transcription factor, that contributes to apoptosis resistance 

and a persistent increase in pro-infl ammatory proteins.

Field defects in the colon
A “fi eld defect” or “fi eld of cancerization” is a region of 

tissue that precedes and predisposes to the development of 

cancer.253 Field defects are of interest because they provide 

insight into the early events of progression to cancer and 
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may lead to clinically useful biomarkers of cancer risk. 

It is generally considered that a solid tumor is initiated by 

a series of somatically inherited changes (ie, aneuploidy, 

mutations or transmissible epigenetic events (epimuta-

tions), such as methylation of CpG islands254). Aneuploidy, 

mutations and epimutations are considered to contribute to 

early progression, usually by causing a somatically inher-

ited proliferative advantage relative to surrounding cells. 

Furthermore, a mutator phenotype or genetic instability may 

accelerate the process of mutation followed by Darwinian 

selection.19–21 In a normal population of dividing cells within 

a tissue, a cell may acquire a proliferative advantage through 

aneuploidy, mutation or epimutation. Such a cell will tend 

to undergo clonal expansion and replace neighboring cells, 

thus giving rise to a patch of abnormal cells. Within this 

patch, a cell might acquire a second aneuploidy, mutation or 

epimutation that provides a proliferative advantage compared 

to other cells within the established patch. This cell may then 

expand clonally forming a secondary patch within the fi rst 

patch. Within this new patch, the process of mutation and 

Darwinian selection may be repeated several more times over 

a long period, perhaps decades, until a malignant cell arises 

that clonally expands into a cancer. If solid tumors generally 

arise by such a process, then tumors should ordinarily be 

accompanied by a fi eld defect in associated tissue that may 

appear histologically normal.

The most common type of colorectal cancer, sporadic 

adenocarcinoma, develops by a pathway that appears to 

proceed through the following stages: normal fl at mucosa, 

development of fi elds of defective fl at mucosa, aberrant crypt 

foci, microadenomatous fi elds, adenoma with low grade 

dysplasia, adenoma with high grade dysplasia, and adenocar-

cinoma. However, currently, it is unclear whether all sporadic 

adenocarcinomas progress through each of these stages.

The morphologically normal appearing colonic mucosa of 

patients with colorectal neoplasia has been found by proteomic 

analysis to have numerous changes in protein expression.255 

Alterations of gene expression that occur in the normal appear-

ing colonic mucosa of human colon cancer patients correspond 

to alterations observed in the normal appearing colonic 

mucosa of cancer prone APCmin mice.256 The promoter of the 

DNA repair gene O6-methylguanine-DNA methyltransferase 

(MGMT) is methylated in 46% of colonic tumors. Within 

this group of tumors with MGMT methylation, 94% of tis-

sue samples from apparently normal mucosa associated with 

these tumors also had MGMT promoter methylation.257 Often 

MGMT methylation was detected as far away as 10 cm from 

the tumor, indicating a fi eld defect. Also patients with resected 

adenomas of the colon or rectum had altered expression of O-

acetylated sialic acids in their “uninvolved” colon and rectal 

mucosa compared to sialic acids of colon or rectal mucosa of 

patients without colon tumors.258 These fi ndings indicate a fi eld 

defect of sialic acid expression in the patients with colorectal 

cancer. Since a decrease in the level of O-acetylated sialic acids 

on the surface of colon epithelial cells is found to be associated 

with the early stages of colorectal cancer,259 it is considered 

a risk factor. This decrease in the level of O-acetylated sialic 

acids may lead to an increase in the expression of sialyl Lew-

isX, a tumor-associated antigen related to the progression of 

colorectal cancer cells to metastasis.260

An imbalance of proliferation and apoptosis in the left 

colon and sigmoid/rectum was found in patients who had 

a resected large adenoma (�1.5 cm) compared to patients 

who never had a tumor.261 Several lines of evidence indicate 

that colorectal cancers often arise in a fi eld of apoptosis-

resistant cells. The Bcl-x
L
 protein inhibits apoptosis, in part, 

by inhibiting release of cytochrome c from the mitochondria. 

The expression of Bcl-x
L
 was found to be increased at 1 cm 

and 10 cm away from colorectal adenocarcinomas in the 

non-neoplastic colorectal mucosa, suggesting the presence of 

an apoptosis-resistant fi eld.262 The prototypic anti-apoptotic 

protein, Bcl-2, also behaves similarly.263 Expression of the 

antiapoptotic survivin mRNA in colon tumors predicts poor 

patient survival due to subsequently recurrent colorectal 

tumors.264 The normal appearing mucosa of about half of 

patients with survivin-positive tumors also express this 

mRNA. This fi nding suggests that survivin- positive tumors 

often develop in a normal appearing, but survivin- positive, 

apoptosis-resistant fi eld. When rats are fed a diet containing 

0.2% cholic acid, their colon crypt cells develop increased 

resistance to apoptosis.240 Apoptosis-resistant crypts may then 

spread through the fl at colonic mucosa by crypt fi ssion.265 

These various observations suggest that repeated exposure of 

the colon to high levels of bile acids as a result of a Western 

style diet cause Darwinian selection for cells resistant to 

induction of apoptosis, and give rise to fi elds of apoptosis-

resistant epithelium that may further evolve to malignancy.

Work from our laboratory on biomarkers associated with 

colon cancer risk indicate that, in addition to loss of apoptosis 

competence, lectin staining using DBA (Dolichos bifl orus 

agglutinin) (a measure of epithelial cell differentiation), 

cytochrome c oxidase subunit I (CcOI) (a mitochondrial 

DNA-encoded subunit of CcO) and Pms2 (a DNA repair 

protein) were all signifi cantly decreased in the normal-

appearing fl at mucosa of patients with colon cancer compared 

to that of control subjects.213,241,266
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Scalmati and Lipkin 267 reviewed numerous studies on cell 

proliferation pattern in patients with colon adenomas or cancer. 

Expansion of the proliferative compartment (a lumenward 

displacement of the zone of active cell proliferation in 

the crypts) occurred along the entire colon of individuals, 

indicating that there was increased risk throughout the colon, 

no matter where the actual lesion was located. We also 

determined that apoptosis resistance in the nonneoplastic fl at 

mucosa of patients with colon cancer was present in several 

regions of the colon far removed from the tumor site,45 

indicating a generalized fi eld defect of apoptosis resistance, 

albeit “patchy” in nature,213 throughout the colon.

A recent study indicated that the consumption of a 

Western style diet plays a crucial role in the progression 

of a fi eld defect to colon cancer.268 Among 1009 patients 

with resected stage III colon cancer, colon cancer recurred 

in 324 patients in a median of 5.3 years. This recurrence 

suggests the frequent presence of a fi eld defect. The patients 

had all undergone fl uorouracil-based adjuvant chemotherapy 

after surgery, and were evaluated for diet during and 6 months 

after adjuvant chemotherapy. The rate of cancer recurrence 

was almost threefold greater among patients in the highest 

quintile of Western style diet consumption compared to those 

in the lowest quintile of Western style diet consumption.

Prevention of bile acid-induced 
stresses and genomic instability: 
importance of butyrate
We have reviewed evidence that deoxycholate induces 

cellular stresses in epithelial cells of the GI tract and that 

bile acids play a role in colon carcinogenesis. Although 

hydrophobic bile acids were once believed to be mainly 

tumor promoters, the bile acid induction of DNA damage and 

aneuploidy indicates that they are also genotoxins relevant 

to the initiation and progression of the neoplastic process. 

It is well documented that phytosterols and other types of 

antioxidants, micronutrients and dietary fi ber have antineo-

plastic effects. An overall discussion of dietary-related colon 

cancer chemopreventive agents is beyond the scope of this 

review. However, we will focus on the short-chain fatty acid, 

butyrate, since previous studies have shown that butyrate 

interferes with many deleterious effects of hydrophobic 

bile acids such as increased proliferation,269–272 and has been 

shown to have anti-genotoxic effects on deoxycholate 143 

and H
2
O

2
-induced273,274 genotoxicity in colon epithelial cells. 

Furthermore, butyrate affects many signal-transduction 

pathways and histological parameters associated with colon 

carcinogenesis.272,275–286

Butyrate is a 4-carbon fatty acid that is an end product 

of bacterial fermentation of dietary fiber and occurs 

at concentrations of 2–10 mM in the colon.287 Certain 

intestinal bacterial species (eg, Eubacterium rectale, 

Faecalibacterium prausnitzii, Roseburia, Coprococcus) 

are butyrate producers288–290 and benefi cial to colon cancer 

prevention, whereas others, such as Enterococcus faecalis 

(extracellular superoxide and H
2
O

2
-producing bacterial 

species291,292) and Desulfovibrio (sulfate-reducing bacteria 

which produces hydrogen sulfi de) are deleterious in that they 

cause DNA damage and chromosomal instability.291–295 In a 

recent study that quantifi ed specifi c bacterial species using 

real-time PCR in the feces of healthy control volunteers and 

patients with colon cancer, it was found that the butyrate-

producing bacteria species were signifi cantly decreased and 

the superoxide-producing bacterial species were signifi cantly 

increased in the feces of colon cancer patients compared to 

control subjects.290 It is signifi cant that the feces of patients 

with ulcerative colitis, a pre-neoplastic infl ammatory condi-

tion of the colon, uniformly contain sulfate-reducing bacteria. 

Sulfi de substantially increases the proliferative index of the 

crypts in mucosal biopsies, and this increase is prevented 

by the presence of butyrate.296 A general consequence of the 

fermentation of fi ber is to reduce the pH of the gut lumen, 

thereby affecting bacterial metabolism and competition297 and 

reducing the bacteria-mediated formation of hydrophobic bile 

acids.298 These shifts in bacterial species may be important 

determinants of the risk of colon cancer.

It is signifi cant that butyrate can protect against oxidative 

DNA damage induced by deoxycholate ex vivo in colono-

cytes derived from human biopsies.143 The processes in the 

colon that are affected by butyrate include a suppression of 

proliferation,271,277,299 induction of apoptosis,214,215 induction 

of differentiation,275,276,278 a reduction in infl ammation,280,286 

suppression of NF-κB activation,300 increase in xenobiotic 

metabolizing enzymes301,302 and a decrease in DNA damage 

and genomic instability.143,273,274 All of these processes affect 

colon carcinogenesis in a profound way.280,303

In our studies of field defects in the human colon, 

we observed that in the nonneoplastic flat mucosa of 

patients with colon cancer there is an increase in apoptosis 

resistance,44,45,212,213 loss of differentiation,213 decrease in 

mitochondrial gene expression (eg, CcOI)266 and a decrease 

in PMS2, a mismatch repair protein.241 It is signifi cant that 

butyrate has opposite effects. It can increase differentiation, 

induce apoptosis, increase CcOI levels,276 and has more 

potent antineoplastic effects on colon cancer cells defective 

in mismatch repair.304
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Future directions
We have just begun to understand the role of hydrophobic 

bile acids in inducing DNA damage and genomic instability 

in colon epithelial cells, and potential strategies to reduce 

these deleterious effects. Some key areas that require further 

experimentation include: 1) the role of oxidative stress as 

mediators of the effect of bile acids on the reduction of 

DNA repair proteins (eg, Ku80, MSH3), tumor suppressors 

(eg, p53) and spindle checkpoint proteins (eg, Mad2); 2) the 

role of oxidative stress in the deoxycholate-induced induction 

of micronuclei and aberrant mitoses; 3) the ability of deoxy-

cholate to induce aberrant mitoses and aneuploidy in vivo 

using mouse models; 4) the possible synergistic effect of bile 

acids and environmental agents (eg, nicotine from tobacco 

smoking, arsenic, food carcinogens) in inducing DNA 

damage and genomic instability; and 5) the effectiveness 

of dietary-related nutrients and co-factors (eg, zinc, niacin, 

selenium compounds, plant polyphenols, butyrate) in pre-

venting the genotoxic effects of hydrophobic bile acids both 

in vitro using cell culture models and in vivo using mouse 

models. The results from these types of experiments will 

have relevance to other cancers of the GI tract (esophagus, 

stomach, liver, pancreas) in which hydrophobic bile acids 

have a potential etiologic role.

Summary
In this review, we have described the likely major mechanisms 

by which hydrophobic bile acids can induce stresses on cells, 

which can then result in colon carcinogenesis. Persistent 

exposure of colon epithelial cells to hydrophobic bile acids 

can result in the development of apoptosis resistance and 

the modulation of numerous genes/proteins associated with 

chromosome maintenance and mitosis. Hydrophobic bile 

acids also damage the genome through multiple mecha-

nisms, including oxidative DNA damage, p53 and other 

mutations, micronuclei formation and aneuploidy, all 

major components of genomic instability. These fi ndings 

link dietary-related factors to the development of genomic 

instability, extend our understanding of the underlying 

causes of colon cancer, and may open up new avenues for 

hypothesis-driven biomarker development to assess colon 

cancer risk.
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