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Abstract: Ovarian cancer is one of the most important malignancies, and the origin, detection, 

and pathogenesis of epithelial ovarian cancer remain elusive. Although many cancer drugs have 

been developed to dramatically reduce the size of tumors, most cancers eventually relapse, 

posing a critical problem to overcome. Hence, it is necessary to identify possible alternative 

therapeutic approaches to reduce the mortality rate of this devastating disease. To identify 

alternative approaches, we first synthesized silver nanoparticles (AgNPs) using a novel bacte-

rium called Bacillus clausii. The synthesized AgNPs were homogenous and spherical in shape, 

with an average size of 16–20 nm, which are known to cause cytotoxicity in various types of 

human cancer cells, whereas salinomycin (Sal) is able to kill cancer stem cells. Therefore, 

we selected both Sal and AgNPs to study their combined effect on apoptosis and autophagy 

in ovarian cancer cells. The cells treated with either Sal or AgNPs showed a dose-dependent 

effect with inhibitory concentration (IC)-50 values of 6.0 µM and 8 µg/mL for Sal and AgNPs, 

respectively. To determine the combination effect, we measured the IC
25

 values of both Sal and 

AgNPs (3.0 µM and 4 µg/mL), which showed a more dramatic inhibitory effect on cell viability 

and cell morphology than either Sal or AgNPs alone. The combination of Sal and AgNPs had 

more pronounced effect on cytotoxicity and expression of apoptotic genes and also significantly 

induced the accumulation of autophagolysosomes, which was associated with mitochondrial 

dysfunction and loss of cell viability. Our data show a strong synergistic interaction between 

Sal and AgNPs in tested cancer cells. The combination treatment increased the therapeutic 

potential and demonstrated the relevant targeted therapy for the treatment of ovarian cancer. 

Furthermore, we provide, for the first time, a mode of action for Sal and AgNPs in ovarian 

cancer cells: enhanced apoptosis and autophagy.

Keywords: apoptosis, autophagy, cell viability, caspase activity, ovarian cancer, salinomycin, 

silver nanoparticles

Introduction
Ovarian cancer is diagnosed almost in a quarter of a million women globally each year. 

It remains a leading cause of death from a gynecological malignancy with .140,000 

deaths each year, and it shows the highest mortality rate of all gynecological cancers 

(http://globocan.iarc.fr).1 In the US, ∼20,000 women get ovarian cancer per year, and 

it is the eighth most common cancer and the fifth leading cause of cancer death (United 

States Cancer Statistics: 1999–2012 Incidence and Mortality Web-based Report).2 

The high mortality rate of ovarian cancer is due to the lack of early detection and 
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chemoresistance during treatment.3,4 The successful treatment 

of cancer is a tedious process due to multidrug resistance 

(MDR) and/or apoptosis resistance to chemotherapy, which 

are frequently obtained by various mechanisms.5 Recent 

studies suggest that a small subset of distinct cells termed 

cancer stem cells (CSCs) are responsible for tumor initiation 

and propagation. CSCs are capable of self-renewal, tumor ini-

tiation, invasion, metastasis, and therapeutic resistance.6–9

Recently, ovarian cancer seems to have high mortality 

rates, and therapeutic approaches for ovarian cancer are found 

to be ineffective in the treatment of solid tumors due to the 

increased resistance of CSCs.10,11 Therefore, it is necessary 

to develop novel therapeutic modalities to eliminate CSCs 

for successful treatment. One possible approach is targeting 

of tumor-initiating CSCs.11 Recently, salinomycin (Sal) has 

been identified as a highly effective chemical in the elimi-

nation of CSCs in a high-throughput screen.12 Among the 

16,000 small-molecule chemicals studied, Sal was 100 times 

more effective than paclitaxel.12

Sal is one of the monocarboxylic ionophores isolated 

from Streptomyces albus;13 it is used as an antibacterial and 

anticoccidial drug.14,15 Sal acts as an ionophore and promotes 

the transfer of cations across biological membranes via an 

exchange diffusion mechanism.16,17 Recently, Sal has been 

used to inhibit the growth of tumor stem cells and chemore-

sistant cancer cells.12,18–20 Sal functions as an efflux pump 

P-glycoprotein inhibitor and is considered to be a potential 

anticancer drug for cancer chemoprevention.21–23 Several 

studies reported that Sal potentially induces the toxicity of 

CSCs from many cancers, including gastrointestinal sarcoma, 

osteosarcoma, colorectal, and breast.19,24–26 Sal has been 

reported to selectively deplete human breast CSCs from 

tumorspheres and to inhibit the mammary tumor growth and 

metastasis in vivo.12 The activation of apoptotic pathways by 

Sal is independent of p53 and caspase activation, and it has 

been shown that Sal can sensitize cancer cells by reducing 

p21 levels.18,27 Sal induces apoptosis in various cancer cell 

lines through cell cycle arrest and reactive oxygen species 

(ROS)-mediated mitochondrial pathways. It also induces cell 

death by overcoming ABC transporter-mediated multidrug 

and apoptosis resistance in MDR cancer cells.21,27,28 Sal causes 

concentration- and time-dependent reduction in the viability 

of LNM35 and A549 cells through a caspase-3/7-associated 

cell death pathway. Similarly, Sal treatment at a concentration 

of 2.5–5 µM for 7 days significantly decreases the growth of 

human lung cancer cell lines, LNM35 and A549 colonies, in 

soft agar.29 Sal induces not only apoptosis but also autophagy 

in human cancer cells, via the generation of ROS and activa-

tion of endoplasmic reticulum stress.30,31

Silver nanoparticles (AgNPs) are one of the nanomaterials 

with the highest degree of commercialization.32,33 AgNPs have 

been extensively used as antibacterial agents in the health 

industry and biomedical applications, and also as antiangio-

genic34 and anticancer agents.35,36 AgNPs are known to induce 

cytotoxicity via apoptosis and necrosis in different cell lines, 

and they are important for cytotoxicity, inflammation, and 

genotoxicity.37 Previously, several studies reported the inhibi-

tory effects of AgNPs on human glioblastoma cells, human 

breast cancer cells, and NIH3T3 cells. These effects were 

mediated by enhanced generation of ROS, disruption of nor-

mal cellular function, perturbation of the membrane integrity, 

and induction of various apoptotic signaling pathways.36,38–43 

AgNPs inhibit the growth and viability of HCT116 colon 

cancer cells by increasing the level of p53, p21, and caspases 

3, 8, and 9 and by decreasing the levels of AKT and NF-κB.44 

Therefore, AgNPs could be bona fide anticancer agents. Based 

on the literature, Sal targets cancer-initiating cells (CSCs) that 

are resistant to conventional therapies.45 The mode of entry 

and the mechanism of action of AgNPs are well known in 

cancer cells compared to other metal nanoparticles. Based on 

the abovementioned evidence, we selected AgNPs as another 

active substitute molecule to test the effect of anticancer activ-

ity in the combined treatment with Sal. To overcome drug 

resistance and reduce drug toxicity and sensitivity, this study 

was designed with the following objectives: 1) to evaluate the 

biological effect of Sal alone or in combination with AgNPs 

in human ovarian cancer cell line A2780 and 2) to investigate 

the mechanism of action of Sal alone or in combination with 

AgNPs in human ovarian cancer cell line A2780.

Materials and methods
Materials
Penicillin–streptomycin solution, trypsin-EDTA solution, 

Dulbecco’s Modified Eagle’s Medium (DMEM), RPMI 

1640 medium, and 1% antibiotic–antimycotic solution were 

obtained from Thermo Fisher Scientific (Waltham, MA, 

USA). Sal, silver nitrate, fetal bovine serum, and the In Vitro 

Toxicology Assay Kit were purchased from Sigma-Aldrich 

Co. (St Louis, MO, USA). Antibodies against pro-caspase-3 

were purchased from Cell Signaling Technology (Beverly, 

MA, USA). All other chemicals were purchased from Sigma-

Aldrich Co., unless otherwise stated.

synthesis and characterization of agNPs
AgNPs were synthesized and characterized according to 

Gurunathan et al.42,46 The culture supernatant of Bacillus 

clausii was incubated with AgNO
3
 solution at a concentration 

of 5 mM for 6 hours. AgNPs were characterized as described 
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earlier.46 The synthesized AgNPs were dissolved in double 

distilled water and stored at room temperature.

cell viability assay
The water soluble tetrazolium salts (WST)-8 assay was 

performed as described earlier.42 Typically, 2×105 cells were 

seeded in a 96-well plate and cultured in standard DMEM 

supplemented with 10% fetal bovine serum at 37°C under 

5% CO
2
. After 24 hours, the cells were washed twice with 

100 µL of serum-free DMEM and incubated with 100 µL of 

media containing Sal (0–20 µM) or AgNPs (0–20 µg/mL) for 

24 hours. The cells that were not exposed to Sal or AgNPs 

served as controls. After 24 hours of exposure, the cells were 

washed twice with serum-free DMEM, and 15 µL of WST-8 

solution was added to each well containing 100 µL of serum-

free DMEM. After 1 hour of incubation at 37°C under 5% 

CO
2
, 80 µL of the mixture was transferred to another 96-well 

plate. The absorbance of the mixture solutions was measured 

at 450 nm using a microplate reader.

cell morphology
Ovarian cancer cells were plated in six-well plates 

(2×105 cells/well) and incubated with 3 µM Sal or 4 µg/

mL AgNPs for 24 hours. Cells cultured in medium without 

the addition of Sal or AgNPs were used as the control. The 

cell morphology was analyzed using an optical microscope 

at 24 hours posttreatment. The morphology of the cells was 

examined with an OLYMPUS IX71 microscope (Olympus 

Corporation, Tokyo, Japan) using the appropriate filter sets.

cytotoxicity assay
The cell membrane integrity of the human ovarian cancer 

cells was evaluated by determining the release of lactate 

dehydrogenase (LDH) from the cells, according to the 

manufacturer’s instructions (In Vitro Toxicology Assay Kit, 

TOX7) and as described earlier.36,43 Briefly, the cells were 

exposed to the respective concentrations of Sal (3 µΜ) or 

AgNPs (4 µg/mL) or the combination of Sal and AgNPs for 

24 hours, and then LDH was measured.

ROS were estimated according to a method described 

earlier.36,43 The cells were seeded in 24-well plates at a density 

of 5×104 cells/well and cultured for 24 hours. After washing 

twice with phosphate-buffered saline (PBS), fresh media 

containing respective concentrations of Sal (3 µΜ), AgNPs 

(4 µg/mL), or both Sal and AgNPs were added and incubated 

for 24 hours. The cells were then supplemented with 20 µM 

DCFH-DA, and the incubation continued for 30 minutes 

at 37°C. The cells were rinsed with PBS, where 2 mL of 

PBS was added to each well, and the fluorescence intensity 

was determined using a spectrofluorometer (Gemini EM, 

Molecular devices, Sunnyvale, CA, USA) with excitation 

at 485 nm and emission at 530 nm.

Measurement of oxidative stress markers
For oxidative stress markers, such as malondialdehyde 

(MDA), glutathione (GSH), superoxide dismutase (SOD), 

and catalase (CAT), the assays were performed according to 

the manufacturer’s instructions for the reagent kits (Sigma-

Aldrich Co.). Briefly, the cells were cultured in 75 cm2 culture 

flasks and exposed to Sal (3 µΜ), AgNPs (4 µg/mL), or Sal 

and AgNPs for 24 hours, and then the cells were harvested in 

chilled PBS by scraping and washed twice with 1× PBS at 4°C 

for 6 minutes at 1,500 rpm. The cell pellet was sonicated at 

15 W for 10 seconds (three cycles) to obtain the cell lysate, and 

the resulting supernatant was stored at 70°C until analyzed.

Mitochondrial membrane potential
The mitochondrial membrane potential (MMP) was measured 

as described earlier47–49 using a cationic fluorescent indicator 

JC-1 (Molecular Probes, Eugene, OR, USA). JC-1 is a lipo-

philic cation, which, in a reaction driven by ΔΨ
m
 in normal 

polarized mitochondria, assembles into a red fluorescence-

emitting dimer forming JC-1 aggregates. Cells were incubated 

with 10 µM JC-1 at 37°C for 15 minutes, washed with PBS, 

and resuspended in PBS, and then the fluorescence intensity 

was measured. MMP was expressed as the ratio of the fluo-

rescence intensity of the JC-1 aggregates to monomers.

Extraction and amplification of mRNA
Total RNA was extracted from cells treated with Sal (6 µΜ), 

AgNPs (6 µg/mL), or Sal and AgNPs for 24 hours using 

the Arcturus Picopure RNA Isolation Kit (eBioscience, San 

Diego, CA, USA), and samples were prepared according to the 

manufacturer’s instructions. Real-time reverse transcription 

polymerase chain reaction (RT-PCR) was conducted using 

a Vill7 (Thermo Fisher Scientific) and SYBR Green as the 

double-stranded DNA-specific fluorescent dye (Thermo Fisher 

Scientific). Target gene expression levels were normalized to 

GAPDH expression, which was unaffected by the treatment. 

The RT-PCR primer sets are shown in Table 1. Real-time 

RT-PCR was performed independently in triplicate for each 

of the different samples; the data are presented as mean values 

of gene expression measured in treated sample vs control.

Measurement of caspase-3 activity and 
TUNel assay
The measurement of caspase-3 and TUNEL assay were 

performed according to the method described earlier.35,36,42 
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The cells were treated with Sal (3 µΜ), AgNPs (4 µg/mL), or 

both Sal and AgNPs with the addition of caspase-3 inhibitor 

for 24 hours. The activity of caspase-3 was measured in the 

cancer cells using a kit from Sigma-Aldrich Co. according 

to the manufacturer’s instructions.

Apoptotic cells were assayed using a DNA Fragmentation 

Imaging Kit (Hoffman-La Roche Ltd., Basel, Switzerland) 

following the manufacturer’s instruction. After the incubation 

period, the culture medium was aspirated, and the cell layers 

were trypsinized. The trypsinized cells were reattached on 

0.01% polylysine-coated slides, fixed with 4% methanol-free 

formaldehyde solution, and stained according to the manu-

facturer’s instructions for the TUNEL protocol.

statistical analyses
All assays were conducted in triplicate, and each experiment 

was repeated at least three times. The results are presented as 

mean ± standard deviation. All the experimental data were 

compared using the Student’s t-test. A P-value ,0.05 was 

considered statistically significant.

Results and discussion
synthesis and characterization of agNPs
AgNPs were prepared according to a method described 

earlier.46 Particularly to produce smaller AgNPs, 5 mM AgNO
3
 

was added to culture supernatant of B. clausii and incubated 

for 6 hours at 60°C, pH 8.0. Synthesis was confirmed by 

visual observation of the culture supernatant and AgNO
3
.50 

The appearance of a brown color suggested the formation of 

AgNPs.46 The characterization of synthesized nanoparticles is 

an important aspect for nanoparticle applications. Therefore, 

we used several analytical techniques. The ultraviolet–visible 

spectra showed maximum absorbance between 400 nm and 

420 nm (Figure 1A), and the peaks were observed at 410 nm, 

corresponding to the surface plasmon resonance of AgNPs.46,51 

We also examined the crystal nature of the prepared AgNPs 

using X-ray diffraction. The sharp X-ray diffraction peaks at 

2θ of 38.2, 44.3, 64.8, and 77.4 are attributed to the (111), 

(200), (220), and (311) crystallographic planes, respectively 

(Figure 1B). The two main and sharp diffraction peaks could be 

indexed as (111) and (200) planes of face-centered cubic silver 

(Joint Committee on Powder Diffraction Standards, file no 

04-0783). The assigned peaks at 2θ values of 29.5°, (amorphous 

organic phase), may be related to the crystalline and amorphous 

organic phase.36,52 We performed Fourier transform infrared 

spectroscopy (FTIR) analysis to identify potential biomolecules 

involved in the reduction in the Ag+ ions and to serve as cap-

ping agents of AgNPs.43 Figure 1C shows FTIR spectra of the 

AgNPs prepared from culture supernatant; it shows typical 

peaks at 3,380 cm−1 and 1,650 cm−1, which are characteristic 

of the O–H and C=O stretching modes for the OH and C=O 

groups, possibly functional groups of culture supernatant. The 

presence of bonds due to O–H stretching (∼3,380 cm−1), C=O 

group (∼1,650 cm−1), and the peak at 1,650 cm−1 could be attrib-

uted to the vibrations due to amide I. Particle size distribution 

was performed by dynamic light scattering, which shows an 

average size between 4 nm and 20 nm (Figure 1D).

Ultimately, observation of AgNPs using transmission 

electron microscopy (TEM) is the most essential tool to 

directly analyze the structural information, such as the size 

and morphology of the nanoparticles.43 TEM micrographs 

of the AgNPs showed distinct, uniformly spherical shapes 

that were well separated from each other (Figure 1E). The 

average particle sizes were between 8 nm and 60 nm with an 

average size of 18 nm from measuring .200 particles from 

TEM images (Figure 1F). The characterization of biologi-

cally derived AgNPs is consistent with the previous work 

Table 1 Primers used for quantitative real-time Pcr for the analysis 
of apoptotic, antiapoptotic, and autophagy gene expression

S no Gene Direction Primers (5′-3′)

1 Bax F gag agg TcT TTT Tcc gag Tgg
r gga gga agT cca aTg Tcc ag

2 p53 F agg aaa TTT gcg TgT gga gTa T
r Tcc gTc cca gTa gaT Tac cac T

3 Bak F cTc aga gTT cca gac caT gTT g
r caT gcT ggT aga cgT gTa ggg

4 CaS3 F caT acT cca cag cac cTg gTT a
r acT caa aTT cTg TTg cca ccT T

5 CaS6 F TTg gac acc aac aTa acT gag g
r TTc cca aca TcT cac aca aaT c

6 CAS9 F acT TTc cca ggT TTT gTT Tcc T
r gaa aTT aaa gca acc agg caT c

7 Bcl-2 F cTg agT acc Tga acc ggc a
r gag aaa Tca aac aga ggc cg

8 p21 F aTg Tgg acc TgT cac TgT cTT g
r cTT ccT cTT gga gaa gaT cag c

9 Atg3 F gTT gga aac aga Tga ggc Tac c
r Tag cca aac aac caT aaT cgT g

10 Atg5 F acc agT TTT ggg cca Tca aT
r gTg TgT gca acT gTc caT cTg

11 Atg7 F aag caa gag aaa gcT ggT caT c
r agT agc agc caa gcT TgT aac c

12 Atg17 F Tga agg aag cag aaa cTg aTg a
r Tgc Taa gcc cac cTg aTa aTT T

13 Atg6 F gag caa aTg aaT gag gaT gac a
r cac TcT Tca gcT caT caT cca g

14 Atg12 F gca gcT Tcc Tac TTc aaT Tgc T
r cca gca ggT Tcc TcT gTT cc

15 Atg10 F cTg aag gac aTa Tgg gaa gga g
r gag gTa gaT Tca gcc caa caa c

16 GAPDH F gag Tca acg gaT TTg gTc gT
r TTg aTT TTg gag gga TgT cg

Abbreviations: F, forward; Pcr, polymerase chain reaction; r, reverse.
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reported by multiple laboratories that used plant extracts, 

including Azadirachta indica leaf extract,53 Olax scandens,54 

Allophylus cobbe,55 and Artemisia princeps,50 and bacteria-

derived AgNPs from Bacillus funiculus,56 Bacillus cereus,57 

Bacillus tequilensis, and Calocybe indica.42

effect of sal and agNPs in human breast 
cancer and ovarian cancer cell lines
To determine the effect of Sal and AgNPs on cell viability, 

initially we selected two types of cancer cells: human breast 

cancer cell line MDA-MB-231 (Figure 2A) and human 

Figure 1 synthesis and characterization of agNPs using Bacillus clausii.
Notes: (A) The absorption spectrum of agNPs synthesized by the culture supernatant of Bacillus clausii. (B) X-ray diffraction spectra of agNPs. (C) Fourier transform 
infrared spectra of agNPs. (D) Measurement of size distribution of agNPs by Dls. (E) TeM images of agNPs. (F) Several fields were used to measure the AgNP particle size; 
micrograph shows size distributions based on TEM images of AgNPs ranging from 8 nm to 20 nm. *Indicate the nonspecific peaks due to organic compounds.
Abbreviations: agNPs, silver nanoparticles; Dls, dynamic light scattering; TeM, transmission electron microscopy.

θ °
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ovarian cancer cell line A2780 (Figure 2B). The cells were 

treated with various concentrations of Sal (0–20 µM) or 

AgNPs (0–20 µg/mL) for 24 hours, and cell viability was 

measured by WST-8 assay. The results from the cell viability 

assay showed a concentration-dependent pattern in both cell 

types. The Sal and AgNPs cause significant cell death in 

ovarian cancer cells than breast cancer cells at tested concen-

trations (Figure 2A and B). Sal was more potent in ovarian 

cancer cells (A2780); thus, it could be a suitable model for 

the development of novel therapeutic approaches to combat 

ovarian cancer. Therefore, in further experiments, we focused 

on ovarian cancer cells. With increasing concentration, the 

survival rate of A2780 cells treated with Sal decreased more 

sharply than that of cells treated with AgNPs, whereas the 

cytotoxic effect of AgNPs was slightly less than that of Sal. 

This finding demonstrated that Sal was slightly more potent 

than AgNPs in A2780 cells. However, both Sal and AgNPs 

caused dose-dependent toxicity effects. Furthermore, these 

data could support the previous postulation that Sal was likely 

to preferentially target CSCs, whereas gemcitabine could 

further eliminate differentiated cancer cells.58 Zhang et al59 

reported the growth-inhibitory effect of Sal or cisplatin in 

Figure 2 Dose-dependent effect of sal and agNPs on cell viability of human breast cancer cells.
Notes: (A) The human breast cancer cells (MDa-MB-231) were incubated with various concentrations of sal (0–20 µM) or agNPs (0–20 µg/ml) for 24 hours, and the cell 
viability was measured using WsT-8 assay. (B) The human ovarian cancer cells (a2780) were incubated with various concentrations of sal (0–20 µM) or agNPs (0–20 µg/ml) 
for 24 hours, and the cell viability was measured using WsT-8 assay. The results are expressed as mean ± standard deviation of three independent experiments. The treated 
groups showed statistically significant differences from the control group by the Student’s t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; MDa, malondialdehyde; sal, salinomycin.
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various cell lines, including OV2008, C13, A2780, A/CP, 

SKOV3, and OVCAR3. They concluded that Sal was slightly 

more potent in A2780 than in the other cell lines tested. The 

effect of Sal on cytotoxicity was investigated using an MTT 

assay on the doxorubicin-sensitive MCF-7 or doxorubicin-

resistant MCF-7/MDR cells. Sal significantly inhibited cell 

viability in the MCF-7 cells60 and significantly enhanced 

the cytotoxicity of doxorubicin on the MCF-7/MDR cells 

in a dose-dependent manner.60 It was able to increase the 

apoptotic rate of Cisp-resistant SW620 cells via accumulated 

ROS and upregulation of some apoptosis-related genes or 

proteins.61 Human uterine leiomyoma cells treated with Sal 

showed decreased cell growth in a dose-dependent manner. 

The results drawn from this study are consistent with previ-

ously published data. To test the combinatory effect of Sal 

and AgNPs at low concentrations, we measured the inhibitory 

concentration 25 (IC
25

) values of Sal and AgNPs, which were 

3 µΜ and 4 µg/mL, respectively. The following experiments 

were conducted using the IC
25

 values of Sal and AgNPs until 

unless specified.

combined effect of sal and agNPs  
on cell viability
Based on the cell viability assay, we chose Sal (3 µM) and 

AgNPs (4 µg/mL) for subsequent experiments to test the 

combined cytotoxic effects of this drug combination. Cell 

growth inhibition was determined by WST-8 assay in the 

A2780 cell line. As shown in Figure 3A, the combined treat-

ment with Sal and AgNPs enhanced the cell death (81%) 

by decreasing the cell viability more efficiently than either 

Sal (25%) or AgNPs alone (25%). Further, we examined 

the simultaneous addition of AgNPs (6 µg/mL, 9 µg/mL, 

12 µg/mL, or 15 µg/mL) with a fixed concentration of Sal 

(3 µM) in the A2780 cell line. The results show that higher 

concentrations of AgNPs reduce the cell viability more than 

lower concentrations, but it is not a remarkable effect. This 

indicates that a lower concentration of AgNPs is enough to 

strongly synergize with Sal to induce cell death in ovarian 

cancer cells (Figure 3B). Our results are consistent with 

an earlier study by Zhang et al,58 which reported that the 

combined treatment with Sal and gemcitabine inhibited cell 

growth more in SW1990 and AsPC-1, side population and 

non-side population cells. Similarly, the combination of Sal 

and AgNPs demonstrated the most efficient cytotoxic effect 

in A2780 cells. Wang et al62 analyzed the effect of combina-

tion therapy with Sal and 5-fluorouracil on human hepato-

cellular carcinoma cell lines Huh7, LM3, and SMMC-7721 

and nude mice. The combination of Sal and 5-fluorouracil 

shows an effective synergistic antitumor effect against liver 

tumors. Treatment with low doses of Sal in combination with 

Figure 3 combination effect of sal and agNPs on cell viability of human ovarian cancer cells.
Notes: (A) The human ovarian cancer cells were incubated with sal (3 µM), agNPs (4 µg/ml), or a (B) combination of sal (3 µM) and different doses of agNPs (4–16 µg/ml) 
for 24 hours. The results are expressed as mean ± standard deviation of three independent experiments. The treated groups showed statistically significant differences from 
the control group by the student’s t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; con, control; sal, salinomycin.
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TNF-related apoptosis-inducing ligand (TRAIL) augmented 

the activation of caspase-3 and increased TRAIL-R2 cell 

surface expression.63 Kim et al64 demonstrated that a lower 

concentration of Sal (0.5 µM) increases apoptosis in Hs578T 

breast cancer cells through detachment. The combined use 

of 2-fluoro 2-deoxy d-glucose or 2-deoxy d-glucose with 

Sal is lethal in cancer cells, whereas the use of oxamate 

does not improve the cell-death-inducing properties of Sal. 

Interestingly, cancer cells treated with Sal under starvation 

conditions have not only greater apoptotic caspase activity 

but also diminishment of the protective autophagy normally 

triggered by treatment with Sal alone.45 Considering studies 

from other groups, our findings suggest that the low con-

centration of Sal and AgNPs could enhance the cell death 

significantly in human ovarian cancer cells.

sal and agNPs alter cell morphology
To determine whether Sal, AgNPs, or the combination of Sal 

and AgNPs could influence cell morphology, we evaluated 

A2780 cells treated with Sal (3 µM), AgNPs (4 µg/mL), or 

both Sal and AgNPs (3 µM plus 4 µg/mL). Treatment with 

either Sal or AgNPs alone caused marginal cell morphologi-

cal changes, such as a round shape, whereas the combination 

of Sal and AgNPs caused severe morphological changes, 

such as rounder cells and lower cell density than in either 

single treatment group (Figure 4). Similarly, a reduction 

in cell growth was observed when the OVCAR-8 ovarian 

cancer cell line and its derivatives, the multidrug-resistant 

NCI/ADR-RES and DXR cell lines, were exposed to Sal 

(4 µM and 8 µM) for 24 hours. Sal altered the morphological 

appearance of the cells in the human CC cell line Mz-ChA.65 

Primary cultured mouse astrocytes treated with 5–10 µM 

Sal showed a slight inhibition of cell survival and morpho-

logical changes.66 AgNPs are known to cause toxicity by 

morphological changes that appeared in various cells.50 Loss 

of normal morphology was evident in cells treated with Sal 

or AgNPs alone after 24 hours of exposure. Cells became 

spherical in shape, forming clusters and eventually detaching 

Figure 4 effect of sal or agNPs alone or combination effect of sal and agNPs on cell morphology of human ovarian cancer cells.
Notes: The human ovarian cancer cells were incubated with sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) and agNPs (4 µg/ml) for 24 hours. Treated cells were 
photographed under a light microscope (200 µm).
Abbreviations: agNPs, silver nanoparticles; con, control; sal, salinomycin.
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from the surface. Previous studies suggest that human hepa-

toma cells exposed to AgNPs display abnormal morphology, 

cellular shrinkage, detachment, decreased mitochondrial 

function, and significantly increased LDH after 24 hours 

of exposure.19,67 Cell shrinkage is a characteristic feature of 

apoptosis and is caused by disruption of the maintenance 

of the normal physiological concentrations of K+ and Na+ 

and intracellular ion homeostasis.68 Overall, the preliminary 

data that Sal and AgNPs alter cellular morphology provide 

evidence for their toxicity.

sal and agNPs enhance cytotoxicity
Cytotoxicity can be assessed by measuring the release of 

LDH into the media, which is a good indicator of cellular 

damage in many cell lines, especially during shear stress, 

sonication, or from other external toxic agents.36,50,69,70 To 

investigate the combined effect of Sal and AgNPs on cell 

membrane integrity, we treated human ovarian cancer cells 

with Sal (3 µM), AgNPs (4 µg/mL), or a combination of 

Sal and AgNPs (3 µM plus 4 µg/mL). The release of LDH 

was significantly higher in the cells treated with Sal and 

AgNPs than in cells treated with either Sal or AgNPs alone 

(Figure 5A). This demonstrated that Sal and AgNPs can 

greatly affect the plasma membrane structure of A2780 cells 

and can induce cell death. Similarly, Sal increased LDH 

release and MDA levels and downregulated SOD and 

GSH-PX activities in Cisp-resistant SW620 cells.71 We 

found a significant correlation between the cell viability 

test and LDH activity measurements in the supernatant of 

A2780 cells. Therefore, the LDH assay is a potential marker 

of cell injury and death.

ROS can cause apoptosis via multiple pathways, includ-

ing cell survival, cell death, proliferation, and metabolic 

regulation pathways, as well as pathways that regulate the 

activation of antioxidant systems, the control of iron metabo-

lism, and calcium signaling.72 Increased generation of ROS 

in turn creates oxidative stress, and it leads to dysfunction of 

antioxidant systems in the cell.72 Physiological levels of ROS 

mediate crucial intracellular signaling pathways involved in 

cell survival, but an excess of ROS induces cell damage and 

death.73 To investigate the mechanisms of cell death caused 

by both Sal and AgNPs, we examined the combined effect of 

Sal and AgNPs on ROS production. Sal could generate ROS 

in prostate cancer cells;20,74 however, Sal caused growth inhi-

bition but not apoptosis in vertebral cancer of the prostate and 

LNCaP prostate cancer cells.20 Figure 5B shows the produc-

tion of ROS after treatment with Sal, AgNPs, or both Sal and 

AgNPs. Our results are consistent with other studies stating 

that Sal induced apoptosis in human prostate cancer cells.74 

Verdoodt et al30 demonstrated that Sal induces autophagy in 

Figure 5 effect of sal, agNPs, or both sal and agNPs on cytotoxicity in human ovarian cancer cells.
Notes: (A) The cells were treated with sal (3 µM), agNPs (4 µg/ml), or the combination of sal (3 µM) and agNPs (4 µg/ml) for 24 hours. lDh activity was measured 
at 490 nm using the lDh cytotoxicity Kit. (B) ROS were measured with relative fluorescence of 2′,7′-dichlorofluorescein using a spectrofluorometer. The results are 
expressed as mean ± standard deviation of three independent experiments. The treated groups showed statistically significant differences from the control group by the 
student’s t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; con, control; lDh, lactate dehydrogenase; rOs, reactive oxygen species; sal, salinomycin.
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colon and breast cancer cells with concomitant generation 

of ROS, and the dysregulation of apoptosis-related genes or 

proteins might ultimately lead to apoptosis in Cisp-resistant 

SW620 cells.71 The cytotoxicity experiments suggest that the 

combination of Sal and AgNPs causes dramatic effect on the 

generation of ROS, which eventually causes cell death.

effect of sal and agNPs on oxidative 
stress markers
Nanomaterials are known to produce free radicals, which is 

one of the primary mechanisms causing cell toxicity.75 The 

produced free radicals can cause oxidative stress that dam-

ages membranes, increases levels of oxidative markers, and 

induces DNA damage.43,50,76 Lipids are susceptible targets of 

oxidation.77 MDA is one of the most well-studied markers 

of lipid peroxidation. We investigated the combined effect 

of Sal and AgNPs on oxidative stress markers such as MDA 

by measuring the levels. The levels of MDA in control, 

Sal-treated, AgNPs-treated, and Sal plus AgNPs-treated 

cells were 0.31 nmol/mg, 1.21 nmol/mg, 0.81 nmol/mg, and 

2.4 nmol/mg of protein, respectively. The level of MDA was 

significantly higher in Sal or AgNPs or combined treatment of 

both Sal and AgNPs than control. Interestingly, the combined 

treatment with Sal and AgNPs significantly increases the 

MDA level (Figure 6A). Previous findings also suggest that 

Sal treatment could result in an abundance of lipid peroxides 

with increased LDH release and MDA levels in Cisp-resistant 

SW620 cells. Sal also downregulated SOD and GSH-PX 

activities in Cisp-resistant SW620 cells.71

Next, we investigated the levels of GSH, SOD, and CAT 

in the cells exposed to Sal and AgNPs (Figure 6B–D). GSH 

plays an important role in various cellular processes, such as 

cell differentiation, proliferation, and apoptosis.73 An imbal-

ance in GSH homeostasis is responsible for the etiology and 

progression of many human diseases, including cancer.73 

Antioxidant defense system controls the level of ROS includ-

ing SOD, CAT, and GSH peroxidase. Therefore, in the cells, 

the balance between ROS generation and ROS scavenging 

is essential for cell proliferation or death.68 We analyzed the 

level of GSH, SOD, and CAT. As expected, GSH, SOD, and 

CAT levels were significantly lower in cells treated with Sal 

(3 µM), AgNPs (4 µg/mL), or the combination of Sal and 

AgNPs (3 µM plus 4 µg/mL) for 24 hours than in controls 

(Figure 6B–D). These results suggest that Sal and AgNPs 

lead to a condition of oxidative stress in cells, which may 

arise due to the imbalance of oxidant and antioxidant levels in 

cells.78 Overall, oxidative stress was induced by the treatment 

of Sal and AgNPs as confirmed by the significant decrease 

in GSH, SOD, and CAT levels in the treated groups.

sal and agNPs induce loss of MMP
Mitochondria have key roles in the early stages of apoptosis, 

including loss of MMP, intracellular energy, mitochondrial 

swelling, and release of mitochondrial proteins, such as cyto-

chrome c and AIF, to the cytosol and/or nucleus.79–82 Loss 

of MMP is a crucial step in triggering apoptosis through the 

release of mitochondrial proteins. To determine the com-

bined effect of Sal and AgNPs in mitochondrial function and 

their role in induced cell death, the JC-1 assay was used to 

analyze MMP as described earlier.83,84 We measured the loss 

of MMP in cells treated with Sal, AgNPs, or a combination 

of Sal and AgNPs. As shown in Figure 7, cells treated with 

Sal (3 µM) and AgNPs (4 µg/mL) exhibited an imbalance 

ratio between green fluorescence and red fluorescence; 

interestingly, the combination of both Sal and AgNPs exhib-

ited remarkable difference from the control as well as the 

single treatments. The results from this study suggest that 

the red–green fluorescence intensity (aggregate/monomer) 

ratio was decreased to 42%, 37%, and 82% in Sal-treated, 

AgNPs-treated, and Sal plus AgNPs-treated cells, respec-

tively (Figure 7). The JC-1 red–green fluorescence intensity 

ratio was higher in control cells than the treated groups. 

Interestingly, cells treated with Sal, AgNPs, or a combination 

of both clearly show a lower JC-1 red–green fluorescence 

intensity ratio, indicating a loss of mitochondrial membrane 

integrity. This analysis provided clear evidence that Sal or 

AgNPs alone were able to induce a significant increase in 

the proportion of cells exhibiting a loss of MMP, and this 

effect was potentially enhanced by the combination of Sal 

with AgNPs. Jangamreddy et al84 observed an increase in 

both JC-1 green and red fluorescence in breast cancer cell 

lines (SKBR3 and MDAMB468) at 24 hours. The pros-

tate cancer PC3 cell line shows a strong increase in green 

fluorescence. Jangamreddy et al84 observed that Sal triggers 

mitochondrial swelling, mitophagy, and disruption of mito-

chondrial architecture and mitochondrial hyperpolarization 

in cancer cells. Previously, we observed a loss of MMP in 

AgNPs-treated lung carcinoma (A549) cells50 and MDA-

MB-231 human breast cancer cells.42 Similarly, Calzolari 

et al63 found pronounced loss of MMP in TRAIL-sensitive 

T98G cells treated with both Sal and TRAIL. Sal was able 

to induce mitochondrial membrane depolarization and lead 

to cytochrome c release, activation of CASP3, and cleavage 

of its substrate PARP1, eventually leading to apoptosis.74 

Similarly, AgNPs also reduce mitochondrial function and 

increase membrane leakage in mammalian germline stem 

cells via ROS generation in rat liver cells.85,86 Overall, 

previous studies and our data suggest that the combination 

of Sal and AgNPs results in a loss of MMP.
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Figure 6 effect of sal, agNPs, or both sal and agNPs on oxidative stress markers in human ovarian cancer cells.
Notes: (A) The cells were treated with sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) and agNPs (4 µg/ml) for 24 hours. after incubation, the cells were harvested and 
washed twice with an ice-cold PBs solution. The cells were collected and disrupted by ultrasonication for 5 minutes on ice. The concentration of MDa was expressed as 
nanomole per milligram of protein. (B) The concentration of gsh was expressed as milligram per gram of protein. (C) The specific activity of SOD was expressed as unit 
per milligram of protein. (D) The specific activity of CAT was expressed as unit per milligram of protein. The results are expressed as mean ± standard deviation of three 
independent experiments. There was a significant difference in the treated cells compared to that of the untreated cells by the Student’s t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; caT, catalase; con, control; gsh, glutathione; MDa, malondialdehyde; PBs, phosphate-buffered saline; sal, salinomycin; 
sOD, superoxide dismutase.

combination of sal and agNPs 
enhances apoptosis by upregulation 
of proapoptotic genes
The tumor suppressor p53 is a potent transcription factor, 

which induces cell cycle arrest, apoptosis, or senescence.87,88 

Although p21 is a transcriptional target of p53 and can 

act as a cell cycle inhibitor, it functions independently in 

response to a variety of stresses, including DNA damage.89 

In addition, p21 regulates p53 function either negatively 

or positively for the induction of apoptosis.90 Therefore, 

we chose to investigate the p53-mediated proapoptotic 

effect of Sal, AgNPs, or the combination of both. p53 

mRNA levels were analyzed at 24 hours posttreatment by 

quantitative RT-PCR (Figure 8). AgNPs are known to induce 

p53-mediated apoptosis in human breast cancer cells.42 p53 

levels were slightly increased in cells treated with AgNPs 
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or Sal than in the control group, whereas the combined 

treatment with Sal and AgNPs led to a 1.5-fold increase. To 

test if the elevated p53 expression correlates with the tran-

scription of p53 target genes, we examined the expression of 

the canonical p53 target p21. The data suggest that p21 was 

upregulated by 15- and fivefold in Sal- and AgNPs-treated 

cells, respectively. Interestingly, the combination of Sal and 

AgNPs shows a 25-fold (Figure 8).

Bcl-2 family proteins, including Bax and Bak and 

antiapoptotic proteins (Bcl-2), have a crucial role in 

mitochondrial-mediated apoptosis. First, to understand 

whether the treatment of Sal and AgNPs upregulates 

proapoptotic Bax and Bak and downregulates antiapoptotic 

gene Bcl-2, we treated human ovarian cancer cells with Sal, 

AgNPs, or combination of both Sal and AgNPs, and gene 

expression analysis was performed for these genes. We 

observed that Bax and Bak genes were significantly upregu-

lated in cells treated with both Sal and AgNPs (Figure 8). 

To determine whether the cell death is caspase-mediated 

apoptosis, we examined the effect of combined treatment 

with Sal and AgNPs on caspase-9 and caspase-3 in human 

ovarian cells. The expression of initiator caspase-9 or execu-

tioner caspase-3 was determined in cells that were treated 

with AgNPs, Sal, or the combination of Sal and AgNPs. 

The combined treatment (ie, Sal and AgNPs) resulted in a 

significant increase in caspase-9/3 activity, which is respon-

sible for maintaining homeostasis by regulating cell death 

Figure 7 effect of sal or agNPs alone or combination effect of sal and agNPs 
on MMP.
Notes: The cells were treated with sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) 
and agNPs (4 µg/ml) for 24 hours. MMP (ratio of Jc-1 aggregate to monomer) in 
ovarian cancer cells was determined after treatment. The results are expressed as 
mean ± standard deviation of three independent experiments. The treated groups 
showed statistically significant differences from the control group by the Student’s 
t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; con, control; MMP, mitochondrial 
membrane potential; sal, salinomycin.

Figure 8 Impact of sal or agNPs alone or combination effect of sal and agNPs on the expression of apoptotic and antiapoptotic gene expression.
Notes: relative mrNa expression was analyzed by qrT-Pcr in human ovarian cancer cells after the treatment with sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) and 
agNPs (4 µg/ml) for 24 hours. The results are expressed as mean ± standard deviation of three independent experiments. The treated groups showed statistically significant 
differences from the control group by the student’s t-test (*P,0.05). cells were treated with the sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) and agNPs (4 µg/ml) for 
24 hours. cell lysates were harvested and subjected to Western blot analysis using antibodies against pro-caspase-3. β-actin was used as a loading control.
Abbreviations: agNPs, silver nanoparticles; con, control; qrT-Pcr, quantitative reverse transcription polymerase chain reaction; sal, salinomycin.
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and inflammation.91 Further to confirm the role of major 

apoptotic player, caspase-3, we measured the level of pro-

caspase-3, in cell lysates derived from cells treated with Sal, 

AgNPs, and the combination of both Sal and AgNPs. In the 

presence of Sal, AgNPs, and the combination of both Sal 

and AgNPs, the pro-forms of caspase-3 were significantly 

reduced. The combination of both Sal- and AgNPs-treated 

cells showed a remarkable reduction in procaspase-3 forms 

than single treatment. All these assays clearly indicate that 

AgNPs, Sal, or a combination of Sal and AgNPs induces 

apoptosis through the upregulation of apoptotic genes by 

increasing the ROS level and changing the proapoptotic/

antiapoptotic gene ratio.

sal and agNPs induce caspase-3-
dependent cell death
Several studies indicate that multiple pathways are involved 

in the induction of apoptosis, originating from a variety of cell 

surface receptor-triggered or other events.92–94 Caspase-3 is 

a crucial mediator of programmed cell death. Therefore, we 

investigated whether Sal and AgNPs could induce cell death 

through caspase-3-dependent or independent pathways. To 

determine the combined effect of Sal and AgNPs, we evalu-

ated the effect of Sal and AgNPs on caspase-3 activation 

by spectrophotometric analysis using a caspase-3 inhibitor. 

When compared to control, Sal alone induced caspase-3 

activation in A2780 cells; however, the effect was lower than 

that of AgNPs alone. Treatment with both Sal and AgNPs 

resulted in significant caspase-3 activation. Next, we tried 

to inhibit Sal- or AgNPs-induced cytotoxicity using the 

caspase-3 inhibitor. The addition of inhibitor rescued the Sal 

or AgNPs or Sal- or AgNPs-induced caspase-3 activation. 

This indicates that Sal, AgNPs, or both Sal and AgNPs 

induce cell death through caspase-3 activation in A2780 cells 

(Figure 9). Calzolari et al63 reported that Sal alone failed to 

induce any significant caspase-3 activation in both T98G and 

U251 cells; however, clear caspase-3 activation was observed 

in combining Sal with TRAIL.63 Sal inhibited cell prolifera-

tion and induced cell death through activation of caspase-3, 

caspase-8, and caspase-9 in uterine leiomyoma cells.95 Sal 

induces both caspase-mediated apoptosis and necrosis/

necroptosis as evident by the release of high mobility group 

box 1; it also caused strong and time-dependent adenosine 

triphosphate depletion in cancer cells, but not in human 

normal dermal fibroblasts.84 The cell lysates obtained from 

Dalton’s lymphoma ascites cell lines treated with 50 nM of 

AgNPs at 500 nM concentrations show caspase-3 activation, 

suggesting that AgNPs caused cell death through apoptosis. 

In vivo studies report that AgNPs can induce caspase-3 

activation, inhibiting tumor formation,35 and cause cytotoxic-

ity in several cell lines, including human breast cancer cells36 

and ovarian cancer cells,96 via caspase-3-mediated cell death. 

Overall, caspase-3 can complete the apoptotic process in cells 

treated with Sal and AgNPs.

sal and agNPs enhance apoptosis
DNA fragmentation is a typical feature of apoptosis.97 Apop-

tosis can be confirmed when there is an abnormal reduction 

in the size of cells and DNA fragmentation.36 Apoptosis 

is a fundamental, complex biological process involved in 

various signaling pathways to regulate development, normal 

homeostasis, and disease.94,98–100 Cell death is characterized 

by distinctive morphological and biochemical changes.101 

These cellular changes are largely mediated by caspases, 

which are important indicators of apoptotic cell death.98,102,103 

To determine whether caspase-3 activation in cells treated 

with Sal and AgNPs leads to apoptosis, we measured apop-

tosis after a 24-hour treatment of cells with Sal, AgNPs, 

or both using DNA fragmentation assay. AgNPs alone 

induced apoptosis significantly compared to Sal. However, 

the results of the combination of Sal and AgNPs signifi-

cantly enhanced apoptosis than that of a single treatment 

(Figure 10). Uterine leiomyoma cells showed a significant 

increase in histone-associated DNA fragments after a 24-hour 

exposure to Sal.9 Mroz et al104 proposed that nanoparticles 

induce DNA damage by activating p53 and also mimicking 

Figure 9 effect of sal, agNPs, or both sal and agNPs on caspase-3 activity.
Notes: The cells were treated with sal (3 µM), agNPs (4 µg/ml), or both sal 
(3 µM) and agNPs (4 µg/ml) with or without the caspase-3 inhibitor ac-DeVD-
chO for 24 hours. The concentration of p-nitroanilide released from the substrate 
was calculated from the absorbance at 405 nm. The results are expressed as 
mean ± standard deviation of three independent experiments. The treated groups 
showed statistically significant differences from the control group by the Student’s 
t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; con, control; sal, salinomycin.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3668

Zhang and gurunathan

irradiation-related carcinogenesis. Whether the cells undergo 

apoptosis or senescence depends upon the magnitude of DNA 

damage caused to cancer cells.105 Several studies confirmed 

that Sal could potentiate anticancer activity with several DNA 

damage-causing chemotherapeutic drugs.27 In line with previ-

ous studies, our results show that Sal enhances the cytotoxic 

effect of AgNPs in human ovarian cancer cells. AgNPs have 

been shown to induce DNA fragmentation in AgNPs-treated 

Dalton’s lymphoma ascites cells.35 The mechanisms of cyto-

toxicity of silver are the results of the active physicochemi-

cal interaction of silver atoms with the functional groups 

of intracellular proteins, as well as with the nitrogen bases 

and phosphate groups in DNA.35 AgNPs-induced toxicity 

depends on the balances between anti-ROS responses and 

DNA damage, chromosome instability, and inhibition of 

mitosis.106 Foldbjerg et al107 observed that AgNPs lead to an 

increase in ROS associated with DNA damage, apoptosis, 

and necrosis. Chinese hamster ovary cells exposed to various 

concentrations of AgNPs induced oxidative stress, which 

in turn damaged the DNA, leading to apoptosis.108 AgNPs 

significantly enhanced DNA fragmentation dose depend-

ently, and treatment with p53 siRNA or pifithrin-α prevented 

DNA fragmentation.42,109 Our results are in line with previous 

studies indicating that Sal and AgNPs could induce oxidative 

stress, dysfunction of mitochondria, and DNA fragmentation, 

eventually leading to apoptosis.

combination of sal and agNPs induces 
upregulation of autophagy genes
Autophagy is a unique intracellular trafficking pathway 

activated in response to extracellular signals.110–112 It is ini-

tiated by activation of the Atg1 complex, which includes 

Atg1/13/17 and other necessary components. Autophagy 

is responsible for the formation of autophagosomes, which 

are regulated by a set of evolutionarily conserved ATG 

proteins.113–116 Although all of these proteins were identified, 

Figure 10 effect of sal or agNPs alone or the combination effect of sal and agNPs on apoptosis in human ovarian cancer cells. 
Notes: The cells were treated with sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) and agNPs (4 µg/ml) for 24 hours. apoptosis of human ovarian cancer cells after a 
24-hour treatment was assessed by the TUNel assay; the nuclei were counterstained with DaPI. representative images show apoptotic (fragmented) DNa (red staining) 
and the corresponding cell nuclei (blue staining). scale bar 200 µm.
Abbreviations: agNPs, silver nanoparticles; con, control; sal, salinomycin.
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the signaling pathway involved in autophagy is complex and 

not fully resolved.110–112

Several studies have shown the importance of autophagy 

in cancer; however, the mechanisms of autophagy, such as 

whether it increases the tumor progression or suppression, 

are not clear. Inhibition of autophagy allows the continuous 

growth of precancerous cells,117–119 and defects in autophagy 

are associated with increased tumorigenesis,120,121 suggesting 

that autophagy can act as a cancer suppressor. However, 

the molecular bases of autophagy gene regulation by Sal 

or AgNPs or a combination of both AgNPs and Sal are not 

known. To address this issue, the cells were treated with 

Sal, AgNPs, or both, and we examined the expression of 

various autophagy genes, including Atg3, Atg5, Atg6, Atg7, 

Atg10, Atg12, and Atg17. The results suggest that AgNPs 

alone have no significant effect on the expression of Atg3, 

Atg5, Atg6, Atg7, Atg10, Atg12, and Atg17, except Atg5, 

and Atg7, whereas Sal clearly upregulated all the tested 

genes including Atg3, Atg5, Atg7, Atg12, and Atg17, except 

Atg6 and Atg10. This indicates that AgNPs and Sal have a 

clear role in autophagy induction (Figure 11). Interestingly, 

the combination of both Sal and AgNPs shows remarkable 

difference when compared to untreated or single treatment 

cells. These data suggest that the combination treatment 

significantly upregulates autophagy genes that are involved 

in autophagosome formation. In some cases, the induction of 

autophagy could lead to apoptosis. These data are consistent 

with findings made by others that Atg3 and other mediators 

of autophagy, such as Atg5, Atg6, Atg7, Atg10, Atg12, and 

Atg17, can trigger apoptosis via mechanisms unrelated to 

their ability to promote autophagosome formation.122,123

Yoo et al124 reported that upregulation of Atg3 promotes 

autophagy-independent apoptosis of the attached cells. Atg5 

is a central regulator necessary for autophagy due to its 

involvement in autophagosome elongation.125 Atg5 also con-

stitutes a point of crosstalk between autophagy and apoptotic 

pathways.126,127 Interferon γ-induced cell death and vacuole 

formation were suppressed by downregulation of Atg5 in 

HeLa cells. Conversely, ectopic expression of Atg5 using 

adenoviral delivery induces autophagy cell death, indicating 

that Atg5 contributes to autophagy cell death.128 Overall, our 

results indicate that Atg5 promotes autophagy, eventually 

leading to apoptosis. Using pharmacological inhibitors or 

specific siRNA knockdown of Beclin1/Atg6 and Atg7 pro-

foundly inhibits apoptosis in CD4+ T-cells.129 This indicates 

that Atg6 and Atg7 are critically involved in autophagy-

induced apoptosis. Atg10 can interact with LC3 and facilitate 

LC3 conjugation with phosphatidylethanolamine.130 Atg7, 

an E1-like enzyme, activates Atg12, which is facilitating 

oligomerization of various autophagy gene products.131,132 

Figure 11 Impact of sal or agNPs or combination effect of sal and agNPs on the expression of autophagy regulated genes.
Notes: relative mrNa expression was analyzed by qrT-Pcr in human ovarian cancer cells after the treatment with sal (3 µM), agNPs (4 µg/ml), or both sal (3 µM) and 
agNPs (4 µg/ml) for 24 hours. The results are expressed as mean ± standard deviation of three independent experiments. The treated groups showed statistically significant 
differences from the control group by the student’s t-test (*P,0.05).
Abbreviations: agNPs, silver nanoparticles; con, control; qrT-Pcr, quantitative reverse transcription polymerase chain reaction; sal, salinomycin.
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Figure 12 (Continued)

The Atg12–Atg5–Atg16 complex is essential for the forma-

tion of the pre-autophagosomes, which are released to the 

cytosol, whereas LC3-II is essential for the formation of the 

autophagosomes.131–133 Eventually, the completed autopha-

gosome fuses with lysosomes, where the autophagosome 

contents are degraded.133

combination of sal and agNPs induces 
accumulation of autophagolysosomes 
along with autophagosomes and 
lysosomes
Autophagy compartments represent intermediate com-

ponents of a dynamic degradation process.134 It is known 

that Sal can induce the formation of autophagosomes;84 

however, to further validate the induction of autophagy 

after treatment with a combination of Sal and AgNPs, we 

performed TEM analysis. Interestingly, AgNPs induce strong 

vacuolization and autophagosome formation similar to Sal. 

Surprisingly, the combination of Sal and AgNPs induces a 

remarkable accumulation of autophagolysosomes. Activa-

tion of autophagy leads to dysfunction of mitochondria;84 

Sal-treated cells showed various mitochondrial abnormali-

ties and mitotic changes. Jangamreddy et al84 suggested that 

mitochondria are the sources of membranes for the formation 

of autophagosomes. The combination of Sal and AgNPs 

induces autophagy very strongly as shown by the number 

of lysosomes and formation of autophagolysosomes in the 

treated cells (Figure 12A). The autophagy induced by Sal 

was much stronger than that induced by AgNPs. The inset in 

Figure 12B shows lysosomes, phagosomes, autophagosomes, 

and autophagolysosomes. These observations suggest that 

autophagy could protect the cell initially; although it may 

kill cells at a later time.135,136 Overall, the combination of Sal 

and AgNPs enhances cell death via apoptosis by increasing 

the expression levels of p53, p21, Bax, and Bak and activa-

tion of caspases. Cell death could also occur by autophagy 

via enhanced expression of Atg3, Atg5, Atg6, Atg7, Atg12, 

and Atg17, which are responsible for the formation of 

autophagolysosomes.
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Conclusion
Sal is widely used as an anticoccidial agent. AgNPs are 

known to induce cytotoxicity in several types of cancer 

cells by generation of ROS and mitochondrial dysfunction. 

Therefore, we hypothesized that Sal together with AgNPs 

may effectively inhibit cell viability. To investigate this, 

human ovarian cancer cells (A2780) were treated with Sal or 

AgNPs alone or with both Sal and AgNPs and assessed via 

a series of biochemical assays. The results demonstrated the 

enhancement of Sal-mediated cytotoxicity in the A2780 cells. 

Treatment of Sal and AgNPs induced exacerbated apoptosis 

in the human ovarian cancer cells, which may correlate with 

alteration of cell morphology, enhanced LDH release, ROS 

generation, oxidative stress, mitochondrial dysfunction, 

activation of caspase-3, and DNA fragmentation. Further-

more, the combination treatment shows enhanced caspase-3 

activity, which can complete the apoptotic process in cells 

treated with Sal and AgNPs. Interestingly, both Sal and 

AgNPs induce massive autophagy, which in turn leads to 

mitochondrial dysfunction and cell death. This finding sug-

gests that Sal plus AgNPs-treated cells experienced signifi-

cantly higher toxicity than cells treated with Sal or AgNPs 

alone. Our data suggest a strong synergistic interaction 

between Sal and AgNPs in A2780 human ovarian cancer 

cells. The best strategy for cancer treatment is to eliminate 

both the differentiated cancer cells and the CSC population. 

Thus, the combination of Sal and AgNPs may be a suitable 

therapy, because together they have specific toxicity for CSCs 

and specifically target non-CSC populations within tumors. 

These characteristics of Sal make it a potential candidate to 

increasingly sensitize cells. These findings provide evidence 

that the combination treatment with Sal and AgNPs might 

Figure 12 combination of sal and agNPs induces accumulation of autophagolysosomes along with lysosomes, phagosomes, and autophagosomes.
Notes: (A) The cells were treated with and without sal (3 µM) or agNPs (4 µg/ml) or both sal (3 µM) and agNPs (4 µg/ml) for 24 hours and then processed for TeM. 
sal-treated, agNPs-treated, or sal plus agNPs-treated cells show an increased number of autophagolysosomes formed along with lysosomes, phagosomes, and autophagosomes. 
(B) Individual portraits of lysosomes, phagosomes, autophagosomes, and autophagolysosomes. scale bar 1 µm.
Abbreviations: agNPs, silver nanoparticles; c, cytoplasm; con, control; lY, lysosomes; M, mitochondria; N, nucleus; sal, salinomycin; TeM, transmission electron microscopy.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3672

Zhang and gurunathan

be an effective therapeutic strategy for eliminating CSCs 

and cancer cells.
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