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Abstract: Chondrocyte exposure to inflammatory stimuli in  several arthritic conditions, including 

osteoarthritis, results in the well-characterized induction of extracellular matrix degrading pro-

teinases, notably members of a disintegrin and metalloproteinase (ADAM) with thrombospondin 

domains and matrix metalloproteinase families. Here we briefly review the less-studied ADAM 

family of proteinases in chondrocyte and cartilage biology. Following damage, cartilage is exposed 

to neurovascular peptides, and in this study we hypothesized that substance P and bradykinin, 

alongside inflammatory cytokines, may modulate chondrocyte steady-state messenger RNA 

levels for the proteolytic ADAM family members as well as for key cytokines and neuropeptides. 

We compared chondrocytes cultured in both two-dimensional and three-dimensional (3D) envi-

ronments and found that 3D culture generally resulted in repression of expression of the genes 

under investigation, with the exception of anti-inflammatory interleukin 10 which was markedly 

upregulated in a 3D environment. Substance P and bradykinin had little effect on ADAM family 

expression, but further investigation revealed that a combination of bradykinin and cytokines led 

to enhanced expression of ADAM28 and a synergistic upregulation of interleukin 6, also observed 

under hypoxic conditions. Overall these data reveal wider chondrocyte responses to neurovascular 

peptides which may have an impact in an osteoarthritis context.
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Introduction
The cartilage environment
Chondrocytes are surrounded by an extensive extracellular matrix comprising type II 

collagen and aggrecan as well as a large number of other collagens, proteoglycans, and 

proteins together providing a remarkable, unique environment. Chondrocytes lack the 

capacity to drive efficient repair and thus in osteoarthritis (OA) articular cartilage is 

irreversibly damaged. While earlier studies viewed OA as a wear-and-tear condition, 

there is now a consensus, reviewed by Konitten et al,1 that chondrocytes both respond 

to and may themselves produce proinflammatory cytokines which can result in carti-

lage breakdown through modulating the expression of metalloproteinases including a 

disintegrin and metalloproteinase with thrombospondin domains (ADAMTS) enzymes, 

matrix metalloproteinases (MMPs), and serine proteinases.2

Interplay of pain-related neurovascular peptides with 
cartilage biology
OA is increasingly viewed as a disease of the whole joint, including cartilage, synovium, 

bone, and, in knee OA, the infrapatellar fat pad.3,4 Adult cartilage is avascular and the 
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resulting hypoxic environment promotes chondrocyte dif-

ferentiation,5–7 in addition to maintaining the chondrocyte 

phenotype.8 Cartilage is also aneural, but damaged carti-

lage is recognized as a potentially permissive environment 

for neurovascular infiltration.9–11 Sensory nerve fibers thus 

accompany new blood microvessels that grow into damaged 

cartilage in OA. 

While effects of several cytokines and chemokines on 

neuronal excitation have been explored,12 as yet the effects 

of neurovascular factors on chondrocyte gene expression and 

function remain less studied. Several neuropeptides, which 

play key roles in transmission of pain signals from the periph-

ery to the central nervous system, are upregulated in joint 

disease. For example, substance P is elevated in the synovial 

fluid in both OA and rheumatoid arthritis (RA) joints, and 

the expression of substance P is particularly associated with 

more active OA.13 Im et al13 also  demonstrated that substance 

P and its receptor NK1-R are expressed at higher levels in 

human articular cartilage from OA patients than controls. 

Substance P is produced in nerve fibers of the intracellular 

fat pad where a role in inflammation and cartilage destruction 

has been suggested.4 

Kinins, including bradykinin, are often associated with 

acute and chronic inflammation, and, more recently, attention 

has turned to potential roles in OA. Bradykinin is a vasodi-

lator with established roles in inflammation and a number 

of studies show that it is elevated in OA synovial fluid.14 

An antagonist of bradykinin has been shown to reduce pain 

levels in a small study of patients with very painful OA.15 

Functional bradykinin receptors are expressed in human 

chondrocytes with evidence of release of inflammatory 

cytokines interleukin (IL)6 and IL8 following bradykinin 

stimulation.16 The synovial compartment, which is itself 

innervated, may also respond to neuropeptide release and 

bradykinin is important in synovitis in OA.17 A more recent 

study showed that an antagonist of bradykinin receptor B 

(BDKRB)1 provides protection against joint injury in the rat 

anterior cruciate ligament model.18 In addition, a polymor-

phism in BDKRB2 is associated with both higher risk and 

higher severity of OA in one study.19 

As well as roles in regulation of gene expression, neu-

ropeptides may also modify aspects of chondrocyte biology 

including cell proliferation and migration. Chondrocytes can 

migrate in vitro and in vivo in development and possibly in 

OA.20 Opolka et al21 demonstrated that substance P can induce 

proliferation of murine newborn costal chondrocytes and 

elevate cell adhesion and focal contact formation, indicating 

novel roles in cell-matrix interactions. 

ADAMs in chondrocytes and cartilage
A disintegrin and metalloproteinase (ADAM) family mem-

bers with proteolytic activity may play roles in chondrocyte 

biology and OA. While regulation of both MMPs and 

ADAMTS proteinases has been studied extensively in chon-

drocytes, less attention has been given to the ADAM family. 

Several ADAMTS proteinases can degrade proteoglycans22 

and ADAMTS4 and 5 are known to play key roles in pro-

teoglycan degradation in cartilage with human ADAMTS5 

showing 1,000-fold greater aggrecan degradative capacity 

than ADAMTS4 in biochemical analyses.23 Both enzymes 

can degrade aggrecan in human cartilage explants22 and 

recently developed antibodies specifically block ADAMTS5 

aggrecan fragment release,24 in one case to a far greater 

extent than possible through blockade of ADAMTS4.25 In 

addition adamts5 (but not adamts4) null mice are protected 

from experimentally induced OA.26,27 

ADAMs have a structure comprising a propeptide, 

catalytic, disintegrin, cysteine-rich, transmembrane, and 

cytoplasmic domains and are furin-activated (furin cleav-

age site located between pro- and catalytic domains).28 

As transmembrane enzymes, ADAMs are well placed for 

their extensive shedding functions, where cell adhesion 

molecules, growth factors, and their receptors among 

many other proteins are cleaved and thus shed from the cell 

surface.29 Certain MMPs share shedding functions (includ-

ing, for example, MMP9), but this seems to be a function 

mainly restricted to ADAMs. Through their disintegrin 

domains, several ADAMs can bind to integrins, a function 

also observed with certain MMPs (even though in MMPs 

disintegrin domains are absent),30 but ADAMTS enzymes, 

despite the presence of a disintegrin domain, seem to lack 

this function.28 Several proteolytic ADAMs are expressed 

in chondrocytes or OA cartilage.31,32 Here, we briefly review 

findings regarding ADAMs with proteolytic activity where 

expression and/or function relating to chondrocyte biology 

and/or OA have been reported.

ADAM8
Expression of ADAM8 has been observed in cartilage during 

mouse development,33 and expression of an inactive ADAM8 

mutant results in protection against murine experimental 

inflammatory arthritis.34 In addition, ADAM8 is expressed 

in OA cartilage, and when isolated from chondrocyte culture 

medium, this protease is able to cleave fibronectin.35 This is 

an important finding, since fibronectin fragments are found 

in damaged joint tissues and are able to induce MMP gene 

expression and aggrecan degradation in cartilage.36
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ADAM9
Flannery et al37 showed the downregulation of ADAM9 expres-

sion in IL1-treated porcine chondrocytes in three-dimensional 

(3D) compared to two-dimensional (2D) culture,37 and this 

proteinase is expressed during human mesenchymal cell dif-

ferentiation along the chondrocyte lineage.38 ADAM9 expres-

sion is upregulated in end-stage OA cartilage.23

ADAM10
Earlier studies revealed increased ADAM10 mRNA levels in 

IL1-treated bovine chondrocytes,37 and enhanced ADAM10 

protein levels were observed in OA compared to healthy 

cartilage and in IL1-stimulated bovine nasal cartilage.39 

More recent observations indicate that ADAM10 cleavage 

of the cell adhesion molecule, N-cadherin, has an important 

role in chondroprogenitor cell–cell interactions leading to 

condensation and differentiation.40 

ADAM12
This ADAM has been associated with OA in genetic 

studies,41,42 and ADAM12 mRNA and protein (by immu-

nocytochemistry) levels are upregulated in end-stage OA 

cartilage.22,23 ADAM12 plays a role in chondrocyte prolifera-

tion through cleavage of insulin-like growth factor binding 

protein (IGFBP)-5,22 which may be important in attempted 

repair by chondrocytes in OA. 

ADAM15
IL1 was shown to enhance the expression of ADAM15 in 

monolayer cultures of porcine chondrocytes37 and ADAM15 

(also known as metargidin) is upregulated in end-stage OA 

cartilage.43 Interestingly, ADAM15 null mice developed a 

more accelerated OA,44 suggesting that ADAM15 is protec-

tive against the development of OA. Later studies revealed 

that ADAM15 is anti-apoptotic in OA chondrocytes and pro-

motes cell adhesion to type II collagen when overexpressed 

in chondrocytes.45 The anti-apoptotic mechanism involves 

ADAM15 cytoplasmic tail interaction with focal adhesion 

kinase (FAK) resulting in enhanced FAK phosphorylation 

and promotion of cell survival under genotoxic conditions.46 

ADAM17
Due to its role in shedding of tumor necrosis factor alpha 

(TNFα), along with cleavage of other relevant molecules, 

ADAM17 has been highly associated with RA.47 Soluble IL6-

receptor (sIL6-R) is often generated through ADAM17 cell 

surface cleavage, enabling sIL6-R to increase  IL6-mediated 

cartilage damage. A very recent study has shown that 

ADAM17-mediated shedding of IL6-R is blocked by secreted 

frizzled-related protein 3 (sFRP3) and the rare OA double-

mutant variant of sFRP3 loses this inhibitory capacity.48 This 

could result in greater release of sIL6-R and hence enhanced 

IL6 signaling leading to further cartilage destruction. 

ADAM19
Expression of this ADAM is elevated during in vitro dif-

ferentiation of human chondrocytes.38 ADAM19 can shed 

TNFα from the cell surface,49 though this has not as yet been 

demonstrated in chondrocytes.

ADAM28
ADAM28 is not observed in undamaged human cartilage; 

however, it is expressed in end-stage OA cartilage.23 More 

recently, a proteomic approach found ADAM28 in the peri-

cellular matrix of chondrocytes in articular cartilage.50 Since 

ADAM28 can degrade IGFBP-3,51 it is possible that this 

proteinase plays a role in chondrocyte proliferation, as has 

been demonstrated for breast cancer cells.52 Another function 

of ADAM28 appears to be in the shedding of TNFα from the 

cell surface, demonstrated in monocytes and which may be of 

relevance in arthritic conditions.53 ADAM28 can be regulated 

by 9-cis retinoic acid and peroxisome proliferator-activated 

receptor gamma ligands in differentiated monocytes,54 as 

well as by 9-cis retinoic acid in chondrocytes,55 indicating 

the involvement of potentially similar pathways across cell 

types. ADAM28 also degrades human chondrocyte proteo-

glycans,55 such that co-culture of bovine nasal cartilage discs 

with ADAM28-expressing COS-7 cells results in greater 

proteoglycan release.55

Neurovascular peptides and 
metalloproteinase expression
Studies on neurovascular peptides substance P and bradyki-

nin in an arthritic context have to date focused on MMP or 

ADAMTS expression. Miller et al12 showed that  treatment 

of cartilage fragments with substance P in combination with 

fibroblast growth factor 2 results in cartilage degradation. 

In addition, exposure of human chondrocytes to increasing 

concentrations of substance P leads to enhanced expression 

of several MMPs.13 Taken together, these data suggest that 

substance P may be an important regulator of catabolism 

of articular cartilage in OA. Bradykinin levels correlate 

with  glycosoaminoglycan fragments in synovial fluid of OA 

patients,56 which could suggest a link to matrix degrada-

tion. Bradykinin is also known for its ability to induce the 

 activation of the ADAM17-EGFR transactivation pathway57 
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and to  indirectly enhance MMP production in a number of 

other cell types, but this has not been explored in chondrocytes.

The potential interplay between neurovascular peptides 

released in the OA joint and ADAM proteinase expression 

remains little explored. We hypothesized that a 3D culture 

environment may regulate chondrocyte responses to cytokines 

and neurovascular peptides. Specifically in the experiments 

reported here, we have surveyed the expression of genes 

encoding proteolytic ADAM family members, tissue inhibi-

tors of metalloproteinases (TIMPs) and selected cytokines/

neuropeptides and receptors in chondrocytes in response to 

the cytokines IL1α and oncostatin M (OSM), substance P, and 

bradykinin in both 2D and 3D culture environments.

Materials and methods 
Materials
Unless otherwise stated chemical reagents were purchased 

from Sigma Aldrich, Gillingham, UK, culture media from 

Gibco Thermo Fisher Scientific, UK, and tissue culture 

plastics from Nunc Thermo Scientific, UK.

Cell culture model
C28I/2 chondrocytes were cultured essentially as previously 

described58 in DMEM with 10% fetal calf serum (FCS) at a 

cell density of 190,000 cells/24 well in 2D monolayer culture 

or in a 3D model with culture of chondrocytes over poly-

HEMA,58 for a total of 96 hours. During the final 24 hours, 

the cells were stimulated with a combination of IL1α (10 ng/

mL) and OSM (5 ng/mL), bradykinin (1 µM), or substance 

P (100 µM) in DMEM with 1% FCS. Where indicated cells 

were also exposed to a hypoxic environment (1% oxygen in a 

Billins chamber) for 24 hours prior to and during treatments. 

RNA extraction, TaqMan low-density 
array, and qRT-PCR analysis
Following cell lysis, RNA was extracted using the RNeasy plus 

mini kit (Qiagen)  according to the manufacturer’s instructions. 

Total RNA (1 µg) was reverse transcribed with 1 µg random 

primer oligonucleotides (Invitrogen, Paisley, UK) and 200 units 

of M-MLV reverse transcriptase (Promega, Southampton, UK). 

cDNA samples were analyzed on custom-designed TaqMan 

low-density array (TLDA) plates (Applied Biosystems, War-

rington, UK) to detect the expression of the genes encoding 

ADAMs 8, 9, 10, 12, 15, 17, 19, 20, 21, 22, 28, 33, TIMPs 1–4, 

the cytokines IL6 and IL10, the neurotrophins nerve growth 

factor (NGF) and brain-derived neurotrophic factor (BDNF), 

neuropeptide Y (NPY), and bradykinin receptors and the house-

keeping  gene 18S. (ADAM22 was included in this initial TLDA 

screen as, while it lacks proteolytic  activity, ADAM22 expres-

sion is highly upregulated in OA cartilage compared to healthy 

cartilage, at least at the mRNA level23). Prior to TLDA analysis, 

samples were analyzed on geNorm (Primer Design; Qiagen, 

Manchester, UK) where 18S ribosomal RNA was found to be 

the least-regulated housekeeping gene (of the 12 explored) 

for all treatment regimens (data not shown). TLDA analysis 

was performed in triplicate for each condition. A total of 150 

ng of RNA was loaded into each port of the TLDA plates and 

analyzed in an ABI 7900HT Instrument (Applied Biosystems). 

QRT-PCR  using an ABI prism 7500 sequence detection 

system (Applied Biosystems) was performed as previously 

described59 with primer probe sets from Applied Biosystems. 

Genes were analyzed using predesigned Applied Biosystems 

inventorized primer probe sets (Table 1) or primer probe sets 

designed using Primer Express 1.0 Software (Applied Biosys-

tems; Table 1). Primers were designed spanning exon–intron 

boundaries to avoid amplification of genomic DNA and were 

tested for specificity by BLAST analysis. 18S ribosomal RNA 

was used as an endogenous control to normalize for  differences 

Table 1 Inventorized primer set codes for TLDA analysis and for 
further experimentation (ADAM28)

Gene ABI inventorized primer set

ADAM9 Hs00177638_m1
ADAM10 Hs00153853_m1
ADAM12 Hs01106101_m1
ADAM15 Hs00984794_m1
ADAM17 Hs01041915_m1
ADAM19 Hs00224960_m1
ADAM20 Hs01083178_s1
ADAM21 Hs01652548_s1
ADAM22 Hs00244640_m1
ADAM28 Hs00248020_m1
ADAM33 Hs00905552_m1
TIMP1 Hs00171558_m1
TIMP2 Hs00234278_m1
TIMP3 Hs00165949_m1
TIMP4 Hs00162784_m1
IL6 Hs00985639_m1
IL10 Hs00961622_m1
BDNF Hs00380947_m1
NGF Hs00171458_m1
NPY Hs00173470_m1
Tachykinin 3 Hs00203109_m1
BDKRB1 Hs00664201_s1
BDKRB2 Hs00176121_m1
ADAM28 Forward: 5´- GGGCCCACGATTTGCA-3´

Reverse: 
5´-TGAACCTTCCTGTCTTTCAATTTTACT-3´

Probe: 5´FAM-
AGAACATTGCCCTACCTGCCACCAAAC-
TAMRA-3

Abbreviations: ADAM, a disintegrin and metalloproteinase; TLDA, TaqMan low-
density array; TIMP, tissue inhibitors of metalloproteinase; IL, interleukin; BDNF, 
brain-derived neurotrophic factor; NGF, nerve growth factor; NPY, neuropeptide 
Y; BDKRB, bradykinin receptor B.
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in the amount of total RNA in each sample (18S rRNA primers 

and probe were purchased from Applied Bioscience).

Results
Effects of culture in 3D and of cytokine 
stimulation
Of the 12 ADAMs whose steady-state mRNA expression was 

determined, eleven showed modulation of expression in chon-

drocytes by TLDA analysis (Figure 1; Table 2). 3D culture 

resulted in the downregulation of steady-state mRNA levels 

of seven of the ADAMs expressed in chondrocytes, with 

ADAM9, ADAM20, and ADAM33 mRNAs showing at least 

a twofold suppression (Figure 1; Table 2). TIMP2 mRNA was 

also significantly repressed, but other TIMPs were unaffected 

by 3D culture. Cytokine stimulation resulted in the upregula-

tion of expression of several ADAM mRNAs in 2D, but in 

3D culture, this was restricted to ADAMs12 and 28 (Table 

2). Interestingly, ADAM10 and ADAM15 mRNAs were no 

longer modulated by cytokines when cells were cultured in 

3D and that of ADAM19 and ADAM21 was now repressed 

(Table 2). TIMP1 mRNA was increased by cytokines in both 

2D and 3D cultures, whereas that of TIMP3 was repressed by 

cytokines in both culture environments (Table 2). 

We surveyed a small number of receptors for neuropep-

tides as well as neurotrophins and cytokines. It is interest-

ing to note that cytokines upregulated the expression of 

bradykinin receptors 1 and 2 both in 2D and in 3D cultures 

of chondrocytes. In addition IL6 and IL10 mRNAs were 

strongly upregulated by cytokines in both 2D and 3D (Table 

2). In contrast, cytokines repressed the expression of BDNF, 

NPY, and tachykinin 3 in both culture environments. 

Effects of substance P and bradykinin
Substance P treatment slightly upregulated ADAM17 mRNA 

(1.4-fold) but bradykinin did not alter ADAM expression in 

2D culture. In chondrocytes in 3D culture, substance P and 

bradykinin both significantly repressed the gene expression 

of several ADAMs (Figure 1; Table 2). Substance P repressed 

TIMPs 2 and 3 whereas bradykinin repressed TIMPs 2 and 4, 

respectively (Figure 1; Table 2). Steady-state mRNA levels 

of few other genes were modulated by either substance P or 

bradykinin (Figure 1; Table 2).

Effects of co-stimulation with 
neurovascular peptides and cytokines 
under normoxic and hypoxic conditions
In general, little overlap of induction of gene expression 

was observed under different stimuli. The small number of 

genes regulated by substance P or bradykinin alone led us 

to explore the effects of co-stimulation with cytokines and 

these neurovascular peptides. We were particularly interested 

to explore further the regulation of ADAM28 since this pro-

teinase has recently been found in the pericellular matrix of 

chondrocytes.50 We pursued its expression alongside that of 

IL6, since this cytokine was upregulated by several stimuli. 

We exposed cells in 3D culture to cytokines or neuropeptides 

both alone and in combination with cytokines under normoxic 

and hypoxic conditions. 

In 3D culture under normoxic conditions, we confirmed 

the upregulation of expression of ADAM28 in the presence 

of cytokines. Interestingly expression was further enhanced 

by co-stimulation with bradykinin (Figure 2A). A further 

TLDA survey of the other proteolytic ADAMs did not reveal 

any effect of bradykinin on their expression in the presence 

of cytokines (results not shown). Preliminary investigations 

revealed that exposure of chondrocytes to hypoxic conditions 

significantly upregulated ADAM28 mRNA by 3.7-fold and 

in the presence of cytokines alone no further regulation was 

observed. However, under hypoxic conditions co-stimulation 

with bradykinin led to further upregulation of ADAM28 

mRNA (Figure 2A). Cytokine induction of IL6 mRNA was 

confirmed in 3D culture under normoxic conditions and an 

apparently synergistic induction with bradykinin co-stimula-

tion was observed (Figure 2B). In contrast to ADAM28, the 

cytokine-induced expression of IL6 mRNA was suppressed 

under hypoxic conditions (2.4-fold) but synergistic induction 

with co-stimulation with bradykinin was again observed 

(Figure 2B). Expression of TNFα was also explored but no 

synergy with bradykinin was observed (data not shown).

Discussion
Neurovascular mediators including substance P and brady-

kinin are released into the synovial fluid in both OA and RA 

and are involved in pain perception. Here we show that the 

cellular environment has profound effects on constitutive 

ADAM expression as well as on the modulating effects of 

soluble mediators, either cytokines or neurovascular peptides. 

3D suspension culture results in 
downregulation of mRNA levels for many 
genes studied
Overall, we observed that the culture of chondrocytes in 3D sig-

nificantly repressed steady-state mRNA levels of seven ADAMs 

including ADAM9, as well as IL6, TIMP2, BDNF, and NGF. 

Downregulation of ADAM9 mRNA in chondrocytes has been 

reported previously in 3D cultures.37 Collagen I downregulation 
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Table 2 Modulation of steady-state mRNA levels for ADAMs, TIMPs, cytokines, and neurovascular factors under the indicated 
conditions, determined by TLDA analysis

Gene 3D versus 2D IL1/OSM (2D) IL1/OSM (3D) SubP (2D) SubP (3D) BK (2D) BK (3D)

ADAM9 –2.1 ↔ –2.5 ↔ –1.5 ↔ –1.7
ADAM10 –1.7 2 ↔ ↔ ↔ ↔ ↔
ADAM12 –1.7 4 2 ↔ –1.7 ↔ –1.7 
ADAM15 –1.6 1.4 ↔ ↔ –1.4 –1.4
ADAM17 –1.4 ↔ ↔ 1.4 ↔ ↔ ↔
ADAM19 ↔ 1.7 –1.4 ↔ –1.7 ↔ ↔
ADAM20 –2.7 2 ↔ ↔ ↔ ↔ ↔
ADAM21 ↔ ↔ –2 ↔ ↔ ↔ ↔
ADAM22 ↔ ↔ ↔ ↔ –1.9 ↔ ↔
ADAM28 ↔ ↔ (2; P=0.09) ↔ ↔ ↔ ↔
ADAM33 –2 ↔ ↔ ↔ ↔ ↔ ↔
TIMP1 ↔ 2 2.5 ↔ ↔ ↔ ↔
TIMP2 –1.5 ↔ ↔ ↔ –1.5 ↔ –1.7
TIMP3 ↔ –2 –4 ↔ –1.6 ↔ ↔
TIMP4 ↔ ↔ ↔ ↔ ↔ ↔ –1.8
IL6 –2 77 55 2.7 ↔ ↔ ↔
IL10 5.9 65 13 ↔ ↔ ↔ ↔
BDNF –2.3 –2.2 –3.5 ↔ ↔ ↔ ↔
NGF –4 ↔ ↔ ↔ ↔ ↔ ↔
NPY ↔ –4.2 –3.5 ↔ –1.7 ↔ ↔
Tachykinin 3 ↔ –2.5 –2.1 ↔ ↔ ↔ ↔
BDKRB1 ↔ 5.3 4.1 1.7 ↔ ↔ ↔
BDKRB2 ↔ 2.2 2 ↔ ↔ ↔ ↔
Notes: Significant fold changes are indicated compared to unstimulated cells in either 2D or 3D culture (or comparison between 2D and 3D for unstimulated cells only). 
↔ indicates no change.
Abbreviations: IL1/OSM, interleukin 1/oncostatin M; subP, substance P; BK, bradykinin; ADAM, a disintegrin and metalloproteinase; TIMP, tissue inhibitor of 
metalloproteinase; IL6, interleukin 6; IL10, interleukin 10; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor; NPY, neuropeptide Y; BDKRB1, bradykinin 
receptor B1; BDKRB2, bradykinin receptor B2; TLDA, TaqMan low-density array.

was observed in primary chondrocytes in a 3D culture model 

similar to that used here 60 (indicative of chondrocyte redif-

ferentiation) and we observed similar results in our cultures 

(data not shown). Repression of IL6 mRNA in 3D collagen 

gel culture (compared to culture on a thin coating of collagen) 

was observed previously in ovarian tumor cells.61 Future stud-

ies will reveal whether similar mechanisms are involved in 

downregulation of steady-state mRNA levels for the 11 genes 

affected by 3D culture in our studies. Uniquely among the 

genes explored in our study, the anti-inflammatory cytokine, 

IL10, was upregulated in cells cultured in 3D. In relation to 

this finding, it is interesting to note that fibroblasts cultured in 

a 3D matrix of enhanced stiffness in a wound healing context 

express greater levels of IL10.62 Taken together, our data on 

IL6 and IL10 suggest that chondrocytes in a 3D environment 

have an overall anti-inflammatory phenotype. 

Effects of cytokines and neurovascular 
peptides
We exposed chondrocytes to a standard combination of IL1α 

and OSM since these cytokines have previously been shown to 

be present in synovial fluid of OA patients63 and have long been 

known to act synergistically to induce complete breakdown 

of both bovine nasal cartilage64 and human OA cartilage.65 

ADAMs
In 2D culture, cytokine treatment upregulated the steady-

state mRNA levels for six ADAMs, several of which were 

previously reported to be expressed in chondrocytes or 

OA cartilage.31,32 In our 3D cultures, we no longer saw 

cytokine-mediated upregulation of ADAM10, ADAM15, 

and ADAM19, and this could reflect the overall suppres-

sive nature of the 3D environment. ADAM12 mRNA was 

elevated by cytokines in both 2D and 3D culture, with 

overall expression levels approximately halved in 3D 

compared to monolayer culture. Recently an ADAM12 

SNP associated  with severity of knee OA was reported.42 

ADAM12 (among other ADAMs) can shed the cell surface 

receptor LRP-1  which mediates endocytosis of TIMP3 

and aggrecan-degrading ADAMTS5.66 Thus, alterations 

in ADAM12 levels could indirectly have consequences on 

cartilage degradation. 
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In our initial survey, ADAM28 showed a trend toward 

increased expression following cytokine treatment in 3D 

culture (confirmed in our later experiment) and overall 

expression levels were not repressed in 3D, in contrast to other 

ADAMs. Cytokines regulate ADAM28 in monocytic cells53 

and ADAM28 expression is elevated in peripheral blood 

mononuclear cells in Kashin–Beck disease, characterized 

by chondrocyte necrosis.67 We saw a trend toward increase 

in expression with bradykinin treatment alone, but this did 

not reach significance. 

TIMP3
TIMP3 expression was repressed following cytokine treat-

ment, an effect seen in synovial cells68 and observed in 

endothelial cells by us in previous studies.69 Substance P also 

repressed TIMP3 mRNA levels in 3D culture, suggesting a 

Figure 2 Confirmation of co-stimulatory effects of bradykinin and cytokines in chondrocytes cultured in 3D.
Notes: (A) ADAM28 steady-state mRNA levels are elevated by a combination of cytokines and bradykinin under normoxic conditions (red bars) and are maintained 
under hypoxic conditions (blue). (B) IL6 expression is synergistically enhanced by the combination of cytokines and bradykinin under normoxic conditions (red) and overall 
responses are reduced under hypoxic conditions (blue). Steady-state mRNA levels for ADAM28 and IL6 were determined by qRT-PCR. For this fold-change analysis, control 
(unstimulated) cells were set as 1. Each bar represents the mean ± SEM for triplicate samples following normalization to 18S RNA. *P<0.05; **P<0.02; ***P<0.01.
Abbreviations: ADAM, a disintegrin and metalloproteinase; IL, interleukin; OSM, oncostatin M
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potentially important role for this neuropeptide in cartilage 

homeostasis. TIMP3 deletion in mice results in the degrada-

tion of collagen and aggrecan over time and development of 

OA-like symptoms,70 and very recently, a TIMP3 polymor-

phism associated with the severity of knee OA was reported,71 

although any functional consequences remain unknown. As 

well as inhibiting many MPs  involved in cartilage degrada-

tion (for example, ADAMTS5 and MMP13), TIMP3 also 

inhibits ADAM17 and other sheddases. Thus the repression 

of TIMP3 mRNA observed here may also have profound 

consequences on the cell surface ecology of chondrocytes. 

Cytokines
The increase in steady-state mRNA levels for anti-inflam-

matory IL10 seen in response to cytokines in both 2D and 

3D may reflect an attempt to counteract the damaging effects 

of proinflammatory cytokine stimulation. Exogenous IL10 

can protect against cartilage damage72 and IL10 levels are 

upregulated in OA and postulated to be a prorepair response.73 

Cytokine upregulation of IL6 is in agreement with previous 

findings in OSM-treated mouse articular chondrocytes, for 

example, where a hierarchy of responses suggests that OSM 

may be a better therapeutic target than IL6.74 Cytokines 

repressed neurotrophin BDNF expression as well as that of 

NPY and tachykinin 3 (both in 2D and in 3D). Perhaps of 

relevance is the finding that levels of BDNF are enhanced 

after exercise in patients with knee OA and may have anti-

inflammatory benefits with corresponding improved pain 

scores.75

Bradykinin and cytokine co-stimulation: 
effects on ADAM28 and IL6 expression
Enhanced expression of ADAM28 in the presence of cyto-

kines and bradykinin may be due to the increased bradykinin 

receptor expression observed in the presence of cytokines 

alone. The synergistic increase in IL6 expression with cyto-

kine and bradykinin co-treatment in normoxia is reminiscent 

of that seen in an early study in gingival fibroblasts where 

IL6 protein production was elevated by stimulation with 

bradykinin and IL1 or TNFα.76 Similar synergistic effects of 

bradykinin and IL1β on the expression of COX-2 and PGE-2  
in synoviocytes have been observed.77 These authors dem-

onstrated that this effect was mediated by bradykinin recep-

tors, using the inhibitor fasitibant, and was dependent on the 

NFkB  pathway. Future studies will determine mechanisms 

underpinning the upregulation of steady-state mRNA levels 

for ADAM28 and IL6 seen with bradykinin and cytokine 

co-stimulation in chondrocytes.

In our preliminary study, hypoxia exerted a positive effect 

on both constitutive and cytokine-induced ADAM28 mRNA 

levels but was suppressive for IL6 (and for the expression 

of several other genes; data not shown). Several studies 

have explored IL6 gene expression and/or protein secretion 

under various levels of hypoxia with 3% oxygen resulting in 

upregulation of IL6 secretion in human synovial cells,78 but 

5% oxygen leading to downregulation in placental cells.79 

Previous work showed that hypoxia (1% oxygen as used 

in our study) promotes chondrocyte differentiation7 and 

perhaps the repression of IL6 under hypoxic conditions is 

anti-inflammatory and prorepair.

Overall our experiments demonstrate interesting 

and novel regulation of steady-state mRNA levels for 

ADAMs and cytokines in C28/I2 chondrocytes, a read-

ily available immortalized human culture model. Future 

experiments will reveal mechanisms underpinning our 

observations as well as any parallels in primary human 

chondrocytes and cartilage.

Limitations of the study
While we have demonstrated novel effects of neurovascular 

peptides and hypoxic conditions on ADAM and cytokine 

steady-state mRNA levels, we have not confirmed effects 

at the protein level nor have we explored functional con-

sequences of any changes in expression. Future studies 

following confirmation of protein levels would include 

functional assessment of enzyme activity with relevant 

substrates and gene silencing approaches to determine, for 

example, ADAM28’s role in proteoglycan degradation/cell 

proliferation in chondrocytes under bradykinin and cytokine 

stimulation.

Conclusion
This study reveals the novel regulation of ADAM proteinases 

at the mRNA level by a 3D culture environment which also 

modulates cytokine responses in chondrocytes. In addition, 

steady-state mRNA levels of ADAM28 and IL6 are elevated 

by bradykinin, in the presence of cytokines, which may rep-

resent an important modulator of the chondrocyte milieu. 

These findings pave the way for future studies of the impact 

of bradykinin and downstream pathways on cartilage function 

under inflammatory stress.
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