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Abstract: Secondary hyperparathyroidism (sHPT) represents the adaptive and very often, 

finally, maladaptive response of the organism to control the disturbed homeostasis of calcium, 

phosphorus, and vitamin D metabolism caused by declining renal function in chronic kidney 

disease (CKD). sHPT leads to cardiovascular and extravascular calcifications and is directly 

linked to an increased risk of cardiovascular morbidity and mortality as well as excess all-cause 

mortality. Vitamin D plays an important role in the development of sHPT. CKD patients are 

characterized by a high prevalence of hypovitaminosis D. Supplementation with both vitamin D 

prohormones cholecalciferol and ergocalciferol enables the achievement and maintenance of 

a normal vitamin D status when given in adequate doses over an appropriate treatment period. 

In patients with earlier stages of CKD, sHPT is influenced by and can be successfully treated 

with vitamin D prohormone supplementation, whereas in patients with very late stages of CKD 

and those requiring dialysis, treatment with prohormones seems to be of limited efficacy. This 

review gives an overview of the pathogenesis of sHPT, summarizes vitamin D metabolism, and 

discusses the existing literature regarding the role of vitamin D prohormone in the treatment 

of sHPT in patients with CKD.

Keywords: cholecalciferol, CKD, CKD-MBD, dialysis, ergocalciferol, SHPT.

Pathogenesis of secondary hyperparathyroidism 
(sHPT) in chronic kidney disease (CKD)
sHPT represents the adaptive and very often, finally, maladaptive response of the 

organism to control the disturbed homeostasis of calcium, phosphorus, and vitamin 

D metabolism caused by declining renal function in CKD. These disturbances in 

mineral metabolism lead to vascular1,2 and valvular3 calcifications and are directly 

linked to an increased risk of cardiovascular morbidity and mortality as well as 

excess all-cause  mortality.4 Apart from extra-skeletal side effects, sHPT also leads 

to profound alterations in bone metabolism, which become obvious in the different 

forms of renal osteodystrophy.5 This clinical syndrome encompassing mineral, bone, 

and cardiovascular abnormalities has been termed “CKD-related mineral and bone 

disorder” (CKD-MBD).6 sHPT generally develops in CKD stage 3 with an estimated 

glomerular filtration rate (GFR) <60 mL/min/1.73 m2, and its prevalence increases 

as kidney function declines.7,8 Initially, it is characterized by normocalcemia with 

intermittent transient hypocalcemia, fasting normo- or hypophosphatemia, and 

reduced 1,25(OH)
2
D

3
 (calcitriol) concentration, together with increasing levels of 

fibroblast growth factor 23 (FGF23), a decrease in plasma soluble Klotho, and the 

 development of renal  osteodystrophy.8–11 These alterations result in increased  secretion 
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and  synthesis of parathyroid hormone (PTH) and parathyroid 

cell hyperplasia (Figure 1).12 The precise sequence of meta-

bolic alterations in early CKD leading to sHPT still remains 

a matter of debate. Traditionally, retention of phosphorus 

with accompanying reduction in ionized calcium due to 

decreasing GFR was considered to be the primary event 

in the pathogenesis of sHPT. These transient metabolic 

changes would induce an increase in PTH, which would 

rapidly correct these alterations due to a decreased tubular 

reabsorption of phosphorus and increased tubular calcium 

reabsorption. A new steady state is reached at the expense 

of the development of hyperparathyroidism. This concept 

was originally described with the “trade-off hypothesis” by 

Slatopolsky et al.13 The discovery of phosphatonin FGF23 

as a key player in the control of phosphorus metabolism 

changed and broadened the conceptual framework. This 

bone-derived protein decreases serum phosphorus con-

centration by reducing tubular phosphorus reabsorption 

independent of PTH. In contrast to PTH (which stimulates 

tubular 1α-hydroxylase activity), FGF23 decreases the syn-

thesis of calcitriol in the kidney. To activate its membrane-

bound receptors FGFR-1 and FGFR-3 on tubular cells, it 

requires the presence of its co-receptor Klotho.14 Clinical 

as well as animal model studies suggest that FGF23 levels 

increase earlier than PTH in CKD.9,15 More recent data 

found that vitamin D status critically determines the order 

of FGF23 or PTH elevation. Whereas in vitamin D-replete 

patients with CKD stage 3, FGF23 levels were elevated in a 

greater proportion of patients compared with PTH over all 

GFR strata, in vitamin D insufficient patients, the opposite 

pattern with an earlier increase in PTH was found.16 Reduced 

renal Klotho expression and synthesis might even precede 

the raise of FGF23.17,18 With progressive CKD renal Klotho 

expression and levels of soluble Klotho decrease. 19,20 PTH 

increases FGF23 synthesis directly through the activation of 

its receptor PTH-R1 and the orphan nuclear receptor Nurr1 

and indirectly through an increased calcitriol synthesis 

 stimulating renal tubular 1α-hydroxylase.21–23 In contrast, 

Figure 1 Pathogenesis of secondary hyperparathyroidism in chronic kidney disease. 
Notes: Dashed lines indicate counter-regulatory pathways. 
Abbreviations: CaSR, calcium-sensing receptor; FGF23, fibroblast growth factor 23; FGFR1, fibroblast growth factor receptor 1; GFR, glomerular filtration rate; VDR, 
vitamin D receptor; (s) Klotho, soluble Klotho; PTH, parathyroid hormone.
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FGF23 inhibits PTH synthesis and secretion, although this 

effect is diminished in CKD due to a reduced expression of 

Klotho and FGFR-1 on parathyroid cells.24–26 

Vitamin D deficiency
Vitamin D plays a key role in the regulation of mineral and 

bone metabolism. Vitamin D deficiency is an important 

component in the pathogenesis of sHPT, which is defined 

as a reduced serum level of 25(OH)D and is common in the 

general population with significantly higher prevalence in 

patients with CKD.27,28 Compared to patients with normal 

renal function, impaired kidney function was associated with 

a 32% higher risk for vitamin D deficiency.28 It develops early 

in the course of CKD and its prevalence increases with the 

progressive loss of renal function.29 In a study conducted 

by LaClair et al, only 29% and 17% of patients with CKD 

stage 3 and 4, respectively, had sufficient vitamin D levels, 

defined as a serum 25(OH)D concentration >30 ng/mL.30 In 

hemodialysis patients, 76%–94% were found to have 25(OH)

D <30 ng/mL.31–35 A high prevalence of vitamin D deficiency 

of 87% was also observed in a large cohort of peritoneal 

dialysis patients.36 Studies have shown that African–Ameri-

cans have lower 25(OH)D levels compared with whites. The 

reasons for this finding seem to be multifactorial and are not 

completely clarified yet.37

Vitamin D deficiency is associated with elevated PTH in 

the general population as well as in patients with CKD.30,32,38–40 

Gonzalez et al found a significant negative correlation 

between vitamin D levels and intact PTH (iPTH) in patients 

with CKD stage 1–5.40 These findings are consistent with 

those from a US cross-sectional study, which revealed an 

inverse relationship between 25(OH)D and iPTH levels in 

CKD 3 and 4.30 In a prospective cohort study, 25(OH)D levels 

correlated better with iPTH in patients with CKD 1–5, than 

did 1,25(OH)
2
D.29 Even in end-stage renal disease, vitamin 

D deficiency is associated with high PTH.32,41 

To date, there is no consensus on optimal serum levels 

of 25(OH)D in the general population as well as in CKD.38 

Since, in non-CKD patients, 25(OH)D levels <30 ng/mL 

are associated with an increase in PTH concentrations, most 

experts define 25(OH)D concentrations from 20 to 29 ng/

mL as vitamin D insufficiency and 25(OH)D <20 ng/mL as 

vitamin D deficiency.38 However, compared to the general 

population, sHPT in CKD is more distinct and the patho-

genesis is multifactorial, as described earlier. Therefore, 

whether optimal 25(OH)D levels for patients with CKD are 

the same as for the general population is a matter of debate. 

A recently published cross-sectional study conducted in 

>14,200 patients with CKD stage 1–5 revealed an inverse 

relationship between 25(OH)D and iPTH in all five CKD 

stages.42 Interestingly, 25(OH)D levels >42–48 ng/mL did 

not result in further PTH reduction, suggesting a higher 

threshold for optimal 25(OH)D levels in CKD patients than 

in the general population.42

Vitamin D terminology 
Technically, vitamin D is not a vitamin, since it is not an 

essential dietary factor and is synthesized endogenously in 

the skin. However, vitamin D also meets the criteria of a 

vitamin, since humans can derive their vitamin D require-

ment through the diet.38,43 Vitamin D itself has no signifi-

cant biological activity and has to be transformed into the 

active form 1,25(OH)
2
D to exert significant physiological 

actions. The characteristics of 1,25(OH)
2
D are those of a 

hormone, and consequently vitamin D could be considered 

a prohormone.44 The effect of 1,25(OH)
2
D depends on the 

adequate availability of 25(OH)D, which in turn depends on 

an appropriate vitamin D nutritional status. The terminology 

used to describe various forms of vitamin D is confusing 

and non-uniform. The nomenclature of the two major forms 

of vitamin D and their metabolites is presented in Table 1.

Vitamin D sources
Vitamin D is a group of fat-soluble secosterols with several 

existing forms. The major compounds in humans are vita-

min D
3
 (cholecalciferol) and vitamin D

2
 (ergocalciferol).38 

Sunlight-induced synthesis of vitamin D
3
 in the skin is the 

primary source of vitamin D in humans; ~90% of the require-

ment results from sunlight exposure.45 Vitamin D can also be 

obtained from dietary sources. However, these sources are 

limited, since only a few foods (eg oily fish, fish liver oils) 

naturally contain vitamin D. Food sources of vitamin D
2
, the 

plant-derived form of vitamin D, are very limited, and wild 

mushrooms are one of the significant sources. Further sources 

of dietary vitamin D are fortified foods and supplements.38,45 

Both vitamin D
2
 and D

3
 are used in fortification and as dietary 

supplements. Although vitamin D
2
 is the major compound 

used in the USA, vitamin D
3
 is mainly used in Europe.46

Vitamin D metabolism
The cutaneous synthesis of vitamin D

3
 is a non-enzymatic 

process. The absorption of UVB radiation (290–315 nm) 

results in the conversion of 7-dehydrocholesterol to pre-

vitamin D
3
 followed by thermal isomerization to vitamin 

D
3
.45 Dietary vitamin D and endogenously synthesized vita-

min D
3
 enter the circulation. Vitamin D can be stored in and 
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released from fat cells,38 whereby vitamin D
3
 is the major 

stored form of vitamin D in adipose tissue.47 In the circulation 

vitamin D is bound to vitamin D-binding protein (DBP), the 

main transporting protein of vitamin D metabolites.48 The 

process of activation of vitamin D involves two hydroxylation 

steps. The first step occurs primarily in liver, where native 

vitamin D undergoes hydroxylation of carbon 25 by cyto-

chrome P450 enzymes, resulting in the formation of 25(OH)

D. Several cytochrome P450 enzymes, including CYP2R1 and 

CYP27A1, have been shown to 25-hydroxylate vitamin D. 

However, CYP2R1 seems to be the key enzyme responsible 

for the formation of 25(OH)D.49,50 The  25-hydroxylation of 

vitamin D is not significantly regulated and depends on sub-

strate availability. 25(OH)D is the major circulating form of 

vitamin D.48 After its synthesis in liver, it is transported by 

DBP to kidneys. The DBP-25(OH)D complex is filtered by 

the glomerulus, followed by receptor-mediated re-uptake at 

the brush border of proximal renal tubular cells involving 

megalin and cubilin.51,52 There, 25(OH)D is then hydroxylated 

to 1,25(OH)
2
D. This second hydroxylation is catalyzed by the 

enzyme 1α-hydroxylase (also known as CYP27B1). In con-

trast to the hepatic 25-hydroxylases, the renal 1α-hydroxylase 

is substrate-independent under normal conditions.48 The 

production of 1,25(OH)
2
D in kidneys is tightly regulated 

by several factors, including serum phosphorus, calcium, 

PTH, FGF23, and 1,25(OH)
2
D itself.48,53 Low serum cal-

cium, low serum phosphorus, and high PTH levels stimulate 

this enzyme, whereas FGF23 and 1,25(OH)
2
D inhibit the 

expression.53 The 1α-hydroxylase gene is also expressed in 

several non-renal tissues. Extra-renally produced 1,25(OH)
2
D 

primarily exerts local autocrine and paracrine effects.53,54 The 

regulation of this extra-renal 1α-hydroxylase differs from that 

of the renal enzyme and is substrate-dependent.53 

Effects of 1,25(OH)
2
D are mediated via binding to the 

vitamin D receptor (VDR) that is expressed in a large variety 

of human cells and regulates ~3% of the human genome.55 

25(OH)D can also directly bind and activate the VDR. 

Although its affinity for the VDR is 100–200 times lower than 

that of 1,25(OH)
2
D, it circulates at concentrations 1000-fold 

higher than serum 1,25(OH)
2
D levels.54

The enzyme 24-hydroxylase (CYP24A1) is responsible 

for the catabolism of 25(OH)D and 1,25(OH)
2
D. Both the 

metabolites are 24-hydroxylated at carbon 24 by this enzyme, 

resulting in 24,25(OH)
2
D and 1,24,25(OH)

3
D, respectively. 

However, 1,25(OH)
2
D is the preferred substrate relative to 

25(OH)D. 1,24,25(OH)
3
D has substantial affinity for the 

VDR and biological activity.48,53 24-Hydroxylation is the first 

step in the catabolism of 25(OH)D and 1,25(OH)
2
D, followed 

by oxidation and further hydroxylation ending in the produc-

tion of the inactive metabolite calcitroic acid.48,53 The regula-

tion of 24-hydroxylase in kidney is also tightly controlled in 

a reciprocal manner to that of 1α-hydroxylase. It is induced 

by 1,25(OH)
2
D, FGF23 and inhibited by PTH.48,53 By inacti-

vating 25(OH)D and 1,25(OH)
2
D, this enzyme regulates the 

concentration of circulating 1,25(OH)
2
D in two ways: first, 

via decreasing the substrate availability of 25(OH)D and, 

second, via inactivation of 1,25(OH)
2
D itself. In addition to 

its expression in kidney, 24-hydroxylase is present in all cells 

expressing VDR; however, its specific purpose in extra-renal 

tissues remains to be elucidated.48

Impaired vitamin D metabolism  
in CKD
CKD affects all key steps of vitamin D metabolism, namely 

production, activation, and degradation of vitamin D and its 

metabolites. It is characterized by both low concentrations 

Table 1 Vitamin D terminology

Vitamin D2 and metabolites Vitamin D3 and metabolites Collective terminology

Prohormone 
(native vitamin)
Abbreviation D2 D3 D
Full term Vitamin D2 Vitamin D3 Vitamin D
Synonym Ergocalciferol Cholecalciferol
Prehormone 
(product of 1st hydroxylation)
Abbreviation 25(OH)D2 25(OH)D3 25(OH)D
Full term 25-Hydroxyvitamin D2 25-Hydroxyvitamin D3 25-Hydroxyvitamin D
Synonym Ercalcidiol Calcidiol
Hormone 
(product of 2nd hydroxylation)
Abbreviation 1,25(OH)2D2 1,25(OH)2D3 1,25(OH)2D
Full term 1,25-Dihydroxyvitamin D2 1,25-Dihydroxyvitamin D3 1,25-Dihydroxyvitamin D
Synonym Ercalcitriol Calcitriol
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of 25(OH)D and low levels of 1,25(OH)
2
D.28 There are 

various reasons for vitamin D deficiency in CKD, includ-

ing reduced availability of vitamin D for 25-hydroxylation 

due to insufficient sun exposure,45,56 low dietary vitamin D 

intake,57 impaired intestinal absorption,58 impaired hepatic 

25-hydroxylation,59 loss of 25(OH)D-DBP in case of severe 

proteinuria,60 reduced glomerular filtration of 25(OH)

D-DBP as a consequence of low GFR,61 impaired re-uptake 

of 25(OH)D due to reduced renal megalin expression,62 and 

increased degradation of 25(OH)D induced by high FGF23 

concentrations.63 

Low 25(OH)D levels have been assumed to be a calcitriol-

independent risk factor of hyperparathyroidism based on 

observational data in hemodialysis patients with insufficient 

sun exposure41 and experimental data showing a direct inhibi-

tion of PTH production and secretion in bovine parathyroid 

cells with calcidiol.64

Several mechanisms lead to reduced 1,25(OH)
2
D levels in 

CKD. In contrast to patients without kidney disease, in those 

with CKD, the production of 1,25(OH)
2
D is at least partially 

substrate-dependent as has been shown in hemodialysis 

patients with a significant increase in 1,25(OH)
2
D

3 
levels 

during a 4-week supplementation of calcidiol.65 Furthermore, 

the reduction of functional renal mass is accompanied by a 

progressive loss of renal 1α-hydroxylase and results in lower 

calcitriol production.66 Moreover, FGF23 reduces 1,25(OH)
2
D 

by down-regulating the renal 1α-hydroxylase and enhancing 

the catabolism of 1,25(OH)
2
D.63 The effect of CKD on the 

regulation of the extra-renal 1α-hydroxylase is unclear.67 

Supplementation with native vitamin D resulted in an increase 

in 1,25(OH)
2
D levels even in anephric subjects, suggesting a 

compensatory activity of the extra-renal system in CKD.67,68

sHPT treatment with vitamin D 
prohormone
From a pathophysiological aspect, avoidance of vitamin D 

deficiency early in the course of CKD to prevent or treat mild 

to moderate sHPT seems reasonable. With progressive CKD 

and loss of renal 1α-hydroxylase (mainly in stage 5 and 5D), 

the importance of the supplementation with vitamin D pro-

hormone for systemic effects declines. There have been sev-

eral studies with varying designs, investigating the response 

of cholecalciferol or ergocalciferol treatment on 25(OH)D 

concentration and its effect on PTH levels in patients with 

CKD summarized in two meta-analyses.69,70 However, studies 

are heterogeneous and differ significantly in supplementation 

compound, dosing, duration of supplementation, and patient 

characteristics. 

Differences between the two 
vitamin D prohormones  
vitamin D2 and D3
Vitamin D

2
 and D

3
 have long been considered equivalent 

in their clinical activity; however, the current body of lit-

erature strongly suggests the preference of vitamin D
3
 over 

D
2
. Several studies in humans have shown that vitamin D

3
 

is more effective than vitamin D
2
 in raising and maintaining 

serum 25(OH)D concentrations.47,71–74 Daily administration 

of 4000 IU vitamin D
3
 or D

2
 for 2 weeks revealed an 1.7-fold 

increase in serum 25(OH)D levels with vitamin D
3
.71 Armas 

et al showed that the administration of a single dose of 50,000 

IU vitamin D
2
 or D

3
 produced similar initial increases in 

25(OH)D serum concentrations in healthy men, indicating 

equivalent absorption. However, in the vitamin D
3
 group, 

25(OH)D levels continued to rise through day 14, whereas 

in the vitamin D
2
 group, levels decreased again resulting in 

concentrations indifferent from baseline. The comparison of 

the area under the curve revealed a >3-fold higher potency 

for vitamin D
3
.72 A meta-analysis including seven random-

ized controlled trials (RCTs) found that vitamin D
3
 is more 

effective in raising serum 25(OH)D levels than vitamin D
2
. 

Separate analyses comparing the dosage frequency (bolus 

vs daily administration) indicated that either administration 

resulted in higher 25(OH)D levels with vitamin D
3
 compared 

with vitamin D
2
.73 The same holds true for patients with 

CKD and end-stage renal disease.75,76 An RCT comparing 

supplementation with vitamin D
2
 and D

3
 (50,000 IU weekly 

for 12 weeks) in patients with CKD stage 3–5 revealed a 

higher increase in 25(OH)D levels in the vitamin D
3
 group.76 

Vitamin D
3
 was also found to be more effective than vitamin 

D
2
 in raising and providing adequate 25(OH)D levels over 

3 months in hemodialysis patients using equal-unit monthly 

doses of 200,000 IU.75 

Several mechanisms contribute to the greater capacity 

of vitamin D
3
 to increase and maintain 25(OH)D concen-

trations including higher affinity of vitamin D
3
 and its 

metabolites to 25-hydroxylase and DBP and differences 

in  24-hydroxylation.46,77 Due to the differences in the bio-

equivalence of vitamin D
2 
and D

3
, this study has summarized 

prospective observational studies and RCTs, stratified by 

vitamin D compound and CKD stages.

Vitamin D prohormone 
supplementation in CKD stages 3–5 
In light of the fact that vitamin D deficiency is highly prevalent 

in patients with CKD and is associated with sHPT as well 
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as with negative clinical outcomes in observational stud-

ies,29,32,33,78 current Kidney Disease: Improving Global Out-

comes (KDIGO) guidelines on CKD-MBD published in 2009 

(update awaited this year) suggest to measure 25(OH)D levels 

in patients with CKD stages 3–5D and to correct vitamin D 

deficiency and insufficiency by using treatment strategies for 

the general population. However, these guidelines provide 

neither a specific threshold for 25(OH)D levels to initiate 

vitamin D supplementation nor an optimal target value.79 

Regarding treatment of sHPT, KDIGO guidelines suggest 

that in CKD stages 3–5, patients with iPTH levels above 

the upper normal limit of the assay should be evaluated for 

vitamin D deficiency. It is suggested to correct vitamin D 

deficiency with the supplementation of native vitamin D. It 

is acknowledged that in CKD stages 3–5, optimal PTH levels 

are not known. In patients with CKD 5D, it is suggested to 

maintain iPTH levels in the range of 2–9 times the upper 

normal limit for the assay in use. No recommendations 

are made for native vitamin D in the treatment of sHPT in 

dialysis patients.79 

Current guidelines may be limited because they recom-

mend treatment of sHPT as opposed to prevention. A recent 

trial reported that ergocalciferol prevented sHPT in children 

with CKD stage ≥2.80 As PTH levels remain relatively stable 

with eGFR values >60 mL/min/1.73 m2, a longer supplemen-

tation phase and follow-up period might be necessary in the 

adult CKD population to see a preventive effect of vitamin D 

prohormone on the development of sHPT. 

Available data indicate a more pronounced decrease in 

PTH in patients with earlier stages of CKD. Several studies 

reported a decline of PTH in CKD stage 3, but not in stage 4.70 

Other studies on vitamin D prohormone supplementation 

found variable results, some reporting a decrease in PTH 

levels across different stages of CKD76,81–86 and some report-

ing no effect.87–93 Tables 2 and 3 provide a detailed overview 

of published prospective studies investigating the effect of 

either cholecalciferol or ergocalciferol on PTH levels in 

patients with CKD stages 3–5. 

The magnitude of response can vary considerably among 

individuals. One of the most important determinants of 

25(OH)D response to a given vitamin D dose is body weight, 

as with increasing fat mass more vitamin D is stored in the 

fat tissue and not available for 25-hydroxylation.94,95 Indeed, 

obesity is associated with hypovitaminosis D in normal 

and impaired kidney function96,97 and negatively affects the 

response to supplementation.98,99

Even high-dose and long-term supplementation of vita-

min D prohormones is characterized by an excellent safety 

profile. Throughout all studies, no increased risk of hyper-

calcemia or hyperphosphatemia, well known side-effects 

of active vitamin D compounds100 limiting their use, was 

observed. In addition, high-dose ergocalciferol supplementa-

tion with 50,000 IU weekly over a short term of 6 weeks in 

patients with CKD 4–5 had no influence on FGF23 concen-

trations, as shown recently.90

Aiming for the prevention and treatment of sHPT in 

vitamin D deficient or insufficient patients with CKD, the 

following approach is suggested: 1) evaluation for vitamin D 

deficiency or insufficiency measuring 25(OH)D levels; 2) 

cholecalciferol supplementation in case of a 25(OH)D level 

<30 ng/mL using a daily (3000–3900 IU or 2800–4000 IU, 

dependent on the available preparation, eg, 300 or 400 IU/drop) 

or weekly (20,000–30,000 IU) dosing regimen. These regimens 

may differ from one country to another due to the availability 

of pharmaceutical cholecalciferol dosages; 3) re-evaluation of 

25(OH)D level, PTH, serum calcium, and phosphorus after 

3 months. In case of vitamin D sufficiency, it is suggested 

to halve the cholecalciferol maintenance dose. Otherwise, it 

has been proposed to continue the initial dose under regular 

control with thrice-monthly re-evaluation. In the rare event of 

hypercalcemia or hyperphosphatemia, cholecalciferol supple-

mentation should be temporarily stopped.

In summary, an improvement in sHPT by vitamin D 

supplementation has been demonstrated in many but not all 

studies of CKD patients. Several reasons could account for 

these discrepancies: differences in patient characteristics, 

different baseline PTH levels prior to supplementation, dif-

ferences in vitamin D dosing and duration of supplementa-

tion, and finally achieved degree of vitamin D restoration. 

All these factors may contribute to the lack of congruent 

findings across studies.

Vitamin D prohormone 
supplementation in CKD stage 5D 
(dialyis patients)
Optimal ranges for 25(OH)D levels are not known in 

patients on hemodialysis. Observational studies have shown 

an association between low 25(OH)D levels and adverse 

clinical outcomes.32–34 Although data from clinical trials are 

missing to show a survival benefit after increasing 25(OH)

D levels in insufficient or deficient hemodialysis patients, 

current guidelines suggest to replete 25(OH)D stores in these 

patients on grounds of low costs and relative and potential 

therapeutic impact.79 The postulated suppression of PTH 

secretion with the supplementation of vitamin D may be 

found even in anuric or anephric patients on dialysis, as 
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1α-hydroxylase is present in parathyroid tissue.68 There are 

no convincing data regarding the choice of vitamin D product 

or the administration route. Altogether, oral repletion seems 

to be more favorable compared with the intramuscular route 

in hemodialysis patients. Different dosing regimens in con-

trolled and uncontrolled prospective studies have been used 

for both the vitamin D prohormones. Apart from fixed doses, 

also a body-weight-adapted dosing regimen has been recently 

shown to be safe and effective.101 Due to these methodological 

differences, the change of 25(OH)D levels and concurrent 

changes in PTH levels varied significantly. A detailed over-

view of published prospective studies investigating the effect 

of either cholecalciferol or ergocalciferol on PTH levels in 

dialysis patients is presented in Tables 4 and 5.

Although no significant changes were found in most 

studies, as shown in a very recent meta-analysis covering 

seven RCTs published during the last 5 years,69 two earlier 

prospective studies with larger sample size and a long treat-

ment period found a significant PTH reduction in patients 

with mild to moderate sHPT.102,103 Interestingly, in both the 

studies also 1,25(OH)
2
D

3
 increased significantly. Although in 

the study by Jean et al102 no patient received active vitamin 

D treatment, 44% of patients were treated with paricalcitol 

at baseline in the study by Matias et al.103 In the latter one, 

higher 1,25(OH)
2
D

3 
levels were only found in patients without 

concurrent paricalcitol. In other studies, despite an increase in 

1,25(OH)
2
D

3 
during the supplementation with cholecalciferol, 

PTH levels did not change. Obviously, the calcitriol levels, 

albeit higher but still far below the normal range, cannot 

sufficiently control sHPT. Pharmacological doses are neces-

sary for that purpose as given with active vitamin D therapy. 

Nevertheless, cholecalciferol supplementation with very 

high doses (100,000 IU monthly) over a long period of 15 

months without active vitamin D resulted in almost normal 

1,25(OH)
2
D

3
 levels and may have thereby caused an impres-

sive PTH reduction.102 Because of the significant increase in 

1,25(OH)
2
D seen with the supplementation of the prohormone 

even in dialysis-dependent patients, one might hypothesize 

whether a dual therapy with an active vitamin D (calcitriol, 

alfacalcidol, or analogs) and a vitamin D prohomone could 

help to reduce the dose of the active compound. By this means, 

such an approach could help to attenuate its toxicity and 

potentially lower the risk of vascular calcification with a lower 

hypercalcemic and hyperphosphatemic burden. On the other 

hand, metabolic interactions between both compounds might 

become important in this situation, as the active  vitamin D 

compound may downregulate 1,25(OH)
2
D production and 

the prohormone activate the catabolism of 1,25(OH)
2
D via 

the activation of 24-hydroxylase. T
ab
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The efficacy of vitamin D prohormone supplementation 

on bone-related outcomes (such as fractures and bone pain) 

in CKD has not been established in high-quality studies. But 

such evidence is absent for all forms of vitamin D therapy. 

Given the available evidence by RCTs, supplementation with 

vitamin D prohormone has no consistent effect on PTH in 

patients on dialysis.

Conclusion
Vitamin D plays an important role in the development of 

sHPT in patients with declining renal function. These patients 

are characterized by a high prevalence of vitamin D insuffi-

ciency and deficiency. Supplementation with both vitamin D 

prohormones enables the achievement and maintenance of a 

normal vitamin D status when given in adequate doses over 

an appropriate treatment period. Although sHPT is influenced 

and can be successfully treated in patients with earlier stages of 

CKD, vitamin D prohormone supplementation seems to be of 

limited efficacy in patients with very late stages of CKD and 

those requiring dialysis. Despite all available evidence, there 

is still a need for high-quality RCTs determining the effect 

of vitamin D supplementation on sHPT with emphasis on 1) 

adequate supplementation protocols enabling a high proportion 

of patients to reach target levels, 2) identifying the target range 

for 25(OH)D level in CKD, 3) evaluating the role of a sequen-

tial compared with a combined treatment with prohormone 

and active compounds, and 4) collecting detailed data about 

1,25(OH)
2
D and FGF23 and clinically relevant side effects.
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