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Abstract: Next-generation sequencing technology has provided resources to easily explore and 

identify candidate single-nucleotide polymorphisms (SNPs) and variants. However, there remains 

a challenge in identifying and inferring the causal SNPs from sequence data. A problem with 

different methods that predict the effect of mutations is that they produce false positives. In this 

hypothesis, we provide an overview of methods known for identifying causal variants and discuss 

the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point 

classification strategy, which could be an additional annotation method in identifying causalities.
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Introduction
In the face of effective treatment strategies, identifying causal single-nucleotide poly-

morphisms (SNPs) plays an important role in prioritizing biomarkers. The methodolo-

gies for understanding and determining which genes are linked to a certain disease are 

aimed at detecting quantitative trait loci (QTLs) associated with the phenotypes. While 

there have been broad approaches established in identifying causal genes, polymor-

phisms, and variants affecting a range of diseases including inflammatory diseases,1 it 

would be remarkable to predict whether the SNPs function as the actual causal variants 

to diseases. Recent advances using bioinformatics and systems biology approaches 

seem to be amenable in functionally mapping genes and variants associated with the 

diseases.2 The most commonly used methods are pathway analyses,3 functional map-

ping/association methods,4 structural variants and single-nucleotide variant calling,5 a 

relationship between genotypes and expressed phenotypes,6,7 incorporated workflows, 

and computational frameworks.8 A detailed review on the promises and challenges of 

genome-wide association studies (GWAS) for studying complex traits is beyond the 

scope of this article; nevertheless, apart from the methods discussed above, we point 

to reviews.9–11 Although these mapping strategies are aimed to discover causal SNPs, 

integrated bioinformatics and systems biology methods are not thoroughly evalu-

ated. Furthermore, multiple nucleotide variants, insertions–deletions, copy number 

variations, translocations, and mobile elements could also play an important role 

for the fact that these variant types are more difficult to detect from short read data. 

The SNP markers are identified by improving the integrated data from association 

studies and novel gene/functional mapping strategies. In addition, pathway fractional 

analysis serves to predict these SNP markers, which can be further validated in vitro 
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for  susceptibility to diseases or for linking changes in gene 

expression to phenotypic variations. The genomic variation 

can be specially associated with noncoding/introns, and inter-

genic and intragenic–intronic sequences, each with a small 

effect, further suggesting that several regulatory sequences 

might be involved in causing the diseases. As significant 

fractions of these noncoding sequences are transcription-

ally regulated, the impact of such variations associated with 

diseases/traits – pleiotropic effect – cannot be undervalued. 

With the effort in finding the causal mutation for quantita-

tive/complex traits, many associated variants are reported 

from GWAS across species, but only a few cases had led to 

the discovery of real causal gene/variant.12,13 For example, a 

significant number of candidate SNPs/variants between the 

genes vitamin D-binding protein precursor (group-specific 

component) and neuropeptide FF receptor 2 genes on chro-

mosome 6 in cow are known to be putative candidates for 

bovine clinical mastitis.14 More recently, imputed sequence 

variants have been rigorously used for association studies, and 

udder conformation traits including mastitis were identified 

in noncoding regions of the genome.15 This region underlying 

the peaks of associations with bovine clinical mastitis has 

certain traits specific for vitamin D components across all 

eutherians including humans.16 Conversely, strong linkage 

disequilibrium (LD), especially in these regions, affects the 

subregions underlying the peaks of associations with the 

disease. Thus, there remains a challenge to identify bona 

fide candidate SNPs for such regions using integrated bio-

informatics and systems biology approaches by  choosing a 

region among denser peaks of interest to determine whether 

the approaches such as transcription factor binding sites 

(TFBSs), enhancer elements, and methylation play a role 

in the identification of causal mutations or genes associated 

with diseases, thereby serving as the major determinants of 

variation specific to diseases.

Three-point classification strategy 
to discern candidate SNPs
A three-point classification approach, based on functional 

annotation, regulatory regions, and constrained elements, 

is proposed to identify causal variants and further validate 

as SNP as a cause (Figure 1). The three-point classification 

and its associated parametric annotations are described with 

illustrative examples.

Improved functional annotation
The interaction between genes and transcription factors is 

important for understanding gene regulation and the origin 

of protein complexes components. For example, identify-

ing TFBS regions and signal peptides (SPs) nearing the 

protein is useful to understand the details of the regulatory 

networks and pathways associated with the gene. To show 

this, we have selected a highly enriched LD region in cow 

that is associated with various phenotypic traits, viz. calf 

size, carcass weight, and somatic cell count/score. If these 

regions contained TFBS or signal peptides, it would be 

straightforward to assume that the underlying SNPs would 

be very good candidates for being associated with the dis-

Figure 1 Approaches in identifying the candidate SNPs: the SNPs are annotated using three annotation features in the form of classifiers (light blue) and the candidates are 
confirmed from those that match all these features. However, for those candidate SNPs that are highly enriched, only the regulatory regions can be used for confirmation. 
Abbreviations: SNPs, single-nucleotide polymorphisms; RNAs, ribonucleic acids.
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ease (Figure 2). While the somatic cell count is a cell count 

of somatic cells in the milk indicating the (trait) quality of 

milk, the carcass weight is considered as a production trait 

to determine the yield grade of the animal.

Signal peptide
The sorting signal present in the protein is usually at the 

N-terminal region. A cleavage site is also associated with 

each SP. A strategy for prioritizing SNPs occurring within 

these regions needs a great deal of functional understanding 

of the cell processes implicated in the diseases.17 Tools such 

as SignalP18 can be used to predict the presence of SPs and 

their cleavage sites.

Transcription factor-binding affinity
As SNPs presence peaks significantly in the intronic/non-

coding regions, searching the TFBS that span across 5′ 
untranslated regions (UTRs), intronic, and 3′ UTRs could be 

very helpful. Common TFBS associated with diseased genes 

such as myc, jun, and zinc finger are searched for alternative 

targets with TFBS prediction tools such as PhysBinder,19 and 

experimental prediction tools such as Qiagen’s ChIP qPCR 

search (http://www.sabiosciences.com/chipqpcrsearch.php) 

can be used as validation tool if the SNPs lie in those regions. 

Furthermore, computing the percentage of identified true 

positives as a weighted average of the precision and recall for 

the TFBS regions would allow to better understand the role of 

enriched motifs that are essentially conserved sequences. For 

instance, SP1, a well-known transcription factor associated 

with immune diseases, has a selection for an enriched motif. 

The enriched motifs, when checked for exon/intron specific-

ity, help us to identify the level of conservation in the TFBS 

and can be visualized through sequence logos20 (Figure 3). 

Bickhart and Liu21 have detected TFBS in cattle genome 

using phylogenetic footprinting tools. However, the challenge 

would be to validate them with different prediction scores.

Shared pathways
Previous efforts helped in identifying relevant gene networks 

using Ingenuity Pathway Analysis in milk-yielding traits22 

and in understanding pathways of the mammary gland 

involved in the pathogenesis of bovine Escherichia coli 

mastitis.23 The disease-specific phenotypic traits/data share 

similar genetic variation, and so the phenotypic variation 

may be associated with it. With complementary approaches 

existing,24 possibly the shared phenotypic traits might be 

connected with shared pathways25 and so the genes and 

pathways with the related phenotypes might be collectively 

associated with similar outcomes, thus influencing the het-

erogeneity of a disease.

Figure 2 (Left) Location of features with clinical mastitis in cow (http://www.ensembl.org).40 (Right) Select regions in chromosome 6 of cow (chromosome 6: 88689609–
89208707) with high LD demarcated in selection with arrow. The panel below shows the zoomed in region containing the genes, SNPs, GERP, phenotypic traits conjoining 
the regions, and other information. Inferring the candidate SNPs from these approaches would essentially allow us to find novel biomarkers for genotyping.
Abbreviations: GERP, genomic evolutionary rate profiling; LD, linkage disequilibrium; SNPs, single-nucleotide polymorphisms.
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Skimming the regulatory regions
To identify SNPs underlying the regulatory regions, it may 

be possible to look for the functional effect of SNPs. For 

example, the presence of promoters, enhancers, or silencers 

accompanied by noncoding RNA sequences would facilitate 

a strong correlation of genes interacting with them. These, 

in turn, could serve as biomarkers for disease diagnosis and 

therapy allowing us to understand the varied phenotypic traits 

linked to a disease, for example, from the GWAS. Regions 

could be skimmed by checking the regions for structural 

variants/regulatory elements using the variant effect predic-

tor from Ensembl.org. Inferring noncoding RNAs within 

the genome would mean that the upstream or downstream 

regions harboring the SNPs could play a regulatory role. 

Recent efforts on the exploration of genetic variants using 

regulatory genomics approaches in complex diseases have 

provided insights into easy detection of causal variants.26 

Finding the syntenic regions to nearest taxa, such as dogs 

and chimps, for the presence of any long noncoding RNAs 

(lncRNA) would be an added verification.27 A blast search 

with the well-reported human lncRNAs from databases such 

as Noncode (www.noncode.org) and the highly significant 

regions that meet the e-value (expectant value) threshold of 

<0 are considered. The reason why lncRNAs and not small 

noncoding RNAs like miRNAs could serve as important 

candidates is that we believe that miRNAs, being highly 

conserved with 22–23 mers (when compared with >200 bp 

lncRNAs), may not harbor mutations specific to a disease. 

To understand the transcripts that are single and multiple 

exonic, Koufariotis et al28 have indeed looked for lncRNA 

in various tissues. As an example, we have analyzed the 

lipopolysaccharide-induced mastitis-specific RNA-Seq gene 

expression data sets to see whether they have any ncRNAs 

spanning these regions.29 From our annotation, we perceive 

that they indeed are a part of multi-exonic regions and we 

found ~45 lncRNAs and 2 miRNAs associated with the differ-

entially expressed gene data sets (Figure 4). On the contrary, 

we found them not to be harbored near the intronic regions, 

where SNPs specific to mastitis are seen. The location of the 

SNP, such as intergenic, intragenic–intronic, downstream, 

or upstream regions, serves as a run-up to the evolutionary 

conserved regions (ECRs). To show this, we proposed a third 

classifier in the form of constrained elements.

Constrained/enriched elements
Conservation across the genome by checking its syntenic 

blocks may validate the presence of conserved SNPs. In 

the light of finding ECR, blasting the regions (paralogons) 

that are conserved against the organism of interest would be 

a useful resource to add. Also, genomic evolutionary rate 

profiling (GERP) may be considered, to a certain degree, 

to find whether the conservation is specifically called as a 

constrained element.30 While these conservation regions are 

estimated across a wide range of organisms, the genome-wide 

consistency check would restrict information on their con-

servation wherein the SNP may be considered as a candidate 

if detected to be lying in both ECR and GERP. The syntenic 

regions are made assuming that the sequence blocks are in 

synteny, and the alignments are grouped as blocks apart in 

the genome browser. In those regions, the enriched motifs 

can be approximated based on the TFBS and enhancers found 

using a database enhancer region such as cap analysis gene 

expression tags from the FANTOM5 project.31

Keeping in view of the fact that introns harbor important 

functional elements which we might miss from the annota-

tion strategy as discussed above, the top significant SNPs 

from the regions of interest are checked if they form any 

sequence patterns. A false discovery rate adjusted –log
10 

P-value cutoff for the regions would denote the most 

 significant peak associations for causal detection. As an 

example illustrated earlier for high-density SNPs in clinical 

mastitis-specific region, considering 50 SNPs from those 

regions with significant associations and 20 top SNPs each 

with effective P-value scores for those set of chromosomes 

Figure 3 Enriched motifs seen for SP1 (GAAAG) and the panel next to it shows the exon/intron boundary where the consensus motif (GTA(G)AG) can essentially be seen 
in eukaryotes.
Note: Sequence logos: http://weblogo.berkeley.edu.41 
Abbreviation: SP, signal peptide.
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would determine a scale of how much genetic variation is 

seen. To identify functional elements in these regions, and 

to tag them as candidates based on the effective GERP 

score and ECR, would mean establishing the position of 

SNP regions corresponding to known constrained elements. 

The latter part of functional analysis is helpful in detecting 

pre-mRNA splicing variants, 5′ UTR regions, which show 

less conservation but a high level of genetic variation. 

The prioritized SNPs flanking the GERPs and those SNPs 

underlying the enhancers and constrained elements assume 

that these patterns are significantly associated with genetic 

variation. In discriminating these candidates, we are then 

able to identify causative SNPs that could possibly explain 

their role in phenotypic associations. The “Genomic Repeat 

Element Analyzer for Mammals” validates how many genes 

form a part of the repeat elements and family members, 

and whether they are conserved or specific to these organ-

isms.32 However, GeneMANIA predictions33 by Cytoscape, 

as shown in  Figure 5, would serve as a confirmatory tool 

to check whether associations or pathway mappings exist 

among the genes. In each instance, this will allow us to mark 

the queried genes with the corresponding annotation and 

check if any of these genes form a peer interaction network.

Current challenges and promises in 
prioritizing the SNPs
Prioritizing SNPs requires different methods for identify-

ing causal relationship between genes. There is a growing 

number of challenges and promises in this next generation 

sequencing (NGS) era to understand the available knowledge 

Figure 4 Forty-five lncRNAs and two miRNAs shown in the form of circos figure associated with the differentially expressed gene data sets.
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that can be used to predict the bona fide SNPs. Identifying 

DNase I hypersensitive sites (DHSs) can perhaps discern a 

catalog of variants that are regulatory and transcriptionally 

active. Williams et al34 have identified such regions comparing 

livestock genomes, and substantial efforts on sidelines have 

been in place. Given the fact that there are good annotated 

references for these genomes, identifying DHS would prove 

vital. Furthermore, as the DHS profiles are documented in 

the human ENCODE project based on the cell type, the com-

plexity of finding the SNPs regulating the genetic expression 

would measure the same catalog of such DHS from the human 

ENCODE project.35 Wherever there are open chromatin ele-

ments, the presence of DHS and their enrichment does not 

necessarily mean that there are enhancer elements. A care-

ful integration of these annotation methods could designate 

an SNP as a causal. So we ask “Are the CpG islands (CGI) 

predisposed by the presence of SNPs”? The epigenetics of 

CpG-rich regions attribute to understanding the polymor-

phisms related to SNPs (cgSNPs). However, with our current 

goal of identifying bona fide SNPs, we may not validate the 

potential effects such as methylation. Loss of CGI sites that 

are significantly enriched in these QTL regions along with 

histone marks, H3k4Me signals, and methylation events can 

distinguish prospects for high-throughput identification of 

putative enhancers to complement experimental approaches.36

Recently, Functional Annotation of Animal Genomes, 

an international project consortium,37 has set up a commit-

tee on various data generated from eutherian mammalian 

resources, including bovine genome project. In addition, 

the 1000 bull genomes38 project has provided the bovine 

research community a set of regulatory data including a 

noncoding repertoire that is periodically published. Apart 

from the predicted coding and noncoding elements, the 

primary resources that supply information for annotations 

from actual empirical observations of TFBS, DHSs, CTCF 

motifs, expression QTLs, and so on would be of great value. 

Furthermore, tools such as InnateDB would be of great 

resource to identify candidate genes and pathways specific 

to innate pathway.39

Conclusion
We have discussed how the three classification features are 

helpful in detecting causative variants associated with a dis-

ease such as clinical mastitis. In prioritizing a set of variants 

Figure 5 GeneMANIA predictions for the candidate genes associated with traits lying in the regions (GC, NPFFR2, and SLC4A4).
Abbreviations: GC, group-specific component; NPFFR2, neuropeptide FF receptor 2.
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based on bioinformatics annotation, there is indeed a technical, 

perhaps also an economical advantage in going for a complete 

targeted sequencing of the LD segment underlying the associa-

tion peak. Unfortunately, it is still early to reach consensus on 

statistical and functional evidence, especially when the data 

are imperfect, which may lead to wrong conclusions. As the 

new and new methods pop up, we hope the next generation 

of SNP/genetic variants annotation would definitely bring 

a complex and yet noticeable resource of information with 

features/standards of annotation records from heterogeneous 

data sets, including functional annotation, enhancer elements, 

methylation and regulatory events, pathways, associations 

and interactions, spectrum of noncoding SNPs, and so on, 

and discern SNP prioritization using an accurate and comput-

able confidence scores. While considering such a wide array 

of highly sensitive, if not less-stringent, classifiers/features, 

we might devalue the scale of causal SNP prediction. In this 

process, a thorough definition of “causal SNPs” should be 

constructed as “all causal variants may be a part of candidate 

or bona fide SNPs.”
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