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Abstract: Sequence similarity searches are the bioinformatic cornerstone of molecular sequence 

analysis for all domains of life. However, large amounts of divergence between organisms, such as 

those seen among viruses, can significantly hamper analyses. Profile hidden Markov models (profile 

HMMs) are among the most successful approaches for dealing with this problem, which represent 

an invaluable tool for viral identification efforts. Profile HMMs are statistical models that convert 

information from a multiple sequence alignment into a set of probability values that reflect position-

specific variation levels in all members of evolutionarily related sequences. Since profile HMMs 

represent a wide spectrum of variation, these models show higher sensitivity than conventional 

similarity methods such as BLAST for the detection of remote homologs. In recent years, there has 

been an effort to compile viral sequences from different viral taxonomic groups into integrated data-

bases, such as Prokaryotic Virus Orthlogous Groups (pVOGs) and database of profile HMMs (vFam) 

database, which provide functional annotation, multiple sequence alignments, and profile HMMs. 

Since these databases rely on viral sequences collected from GenBank and RefSeq, they suffer in 

variable extent from uneven taxonomic sampling, with low sequence representation of many viral 

groups, which affects the efficacy of the models. One of the interesting applications of viral profile 

HMMs is the detection and sequence reconstruction of specific viral genomes from metagenomic 

data. In fact, several DNA assembly programs that use profile HMMs as seeds have been developed 

to identify and build gene-sized assemblies or viral genome sequences of unrestrained length, using 

conventional and progressive assembly approaches, respectively. In this review, we address these 

aspects and cover some up-to-date information on viral genomics that should be considered in the 

choice of molecular markers for viral discovery. Finally, we propose a roadmap for rational develop-

ment of viral profile HMMs and discuss the main challenges associated with this task.

Keywords: profile hidden Markov models, viral discovery, DNA assembly, metagenomic 

analysis, molecular markers, de novo diagnosis

Profile hidden Markov models: introductory 
concepts
The goal of this section is to introduce the concepts necessary to understand the 

applicability of profile hidden Markov models (profile HMMs) for the process of viral 

discovery. For a more in-depth description on profile HMMs, the reader is referred to 

Durbin’s excellent book.1

Similarity searches and alignments
A very important part of the current study of living organisms relies on sequencing 

their genome and transcriptome to unravel functional aspects of their biology. The 
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initial annotation of the genes of an organism generally 

consists in performing similarity searches against databases 

of sequences derived from proteins whose functions have 

already been determined. Good hits, arbitrarily defined as 

those with E-values lower than a given value, for instance 

10–6, may correspond to orthologs, genes that evolved from 

a common ancestral gene through speciation events. Because 

orthologs usually retain the same function, their identification 

can be used to infer the functionality of novel sequences.2 

The most widely used tool for this type of search is Basic 

Local Alignment Search Tool (BLAST),3 a software capable 

of searching databases of millions of sequences, which is 

currently the scientific community’s standard for the prelimi-

nary annotation in large-scale projects. However, in spite of 

its versatility and speed, there are important limitations of 

this method for viral discovery, which we will discuss in the 

forthcoming sections. A multiple sequence alignment (MSA) 

is an alignment of three or more biological sequences where 

rows represent different sequences and columns correspond 

to position-specific aligned residues (Figure 1). Such a rep-

resentation is very useful to investigate sequence diversity 

across a set of orthologous sequences and it is one of the most 

valuable tools for inferring sequence homology (common 

ancestry), being widely used in phylogenetic analyses that 

may reveal evolutionary relationships.

An MSA reveals two important features: 1) various posi-

tions of the alignment have different degrees of conservation, 

and 2) some members of the family present insertions and 

deletions (also known as indels) in different positions of the 

alignment. As examples of different conservation patterns, 

we can see in the MSA of Figure 1 that positions 44 and 48 

are invariant throughout the family, positions 46 and 58 are 

highly conserved, and positions 66 and 67 are highly variable. 

In the case of indels, we use an operational (not evolutionary) 

definition to distinguish insertions (columns with more gaps 

than residues) from deletions (columns with more residues 

than gaps). Here, insertions occur in positions 22 and 95–100, 

whereas deletions occur at positions 3–17. These two features 

of the MSA demonstrate important limitations of database 

search by sequence alignment: variation tends to be position-

specific, but the simple pairwise alignment does not contain 

enough information to reflect that. Since the BLAST search 

algorithm is position invariant for both similarity and gap 

evaluation, it is clear that a more refined search mechanism 

must be used to enhance the ability to detect orthologs.

Gap-free characterization of alignments: 
position probability matrix (PPM) and 
position-specific scoring matrix (PSSM) 
The first step in developing a more precise characterization of 

protein families is to devise a scheme that can properly score 

amino acid variations based on their position in the protein. A 

natural way of performing this characterization is to compute 

amino acid frequencies in each position of the alignment. 

Next, we normalize these frequency counts and obtain prob-

ability measures. In our example, we would have probability 

1 (100%) of amino acid P occurring at position 48 and the 

probability distribution {G = 0.7 (14/20), A = 0.2 (4/20), T 

= 0.1 (2/20)} for position 75. This computation provides a 

matrix with amino acid probabilities for each position; a 

PPM. Assuming, for simplicity, that the various positions in 

the alignment are independent, the probability of the whole 

sequence given this model equals the multiplication of the 

values corresponding to each amino acid in it; this enables us 

to evaluate whether this new sequence belongs to the group 

of interest. The PPM for positions 46–49 of the MSA in 

Figure 1 Multiple sequence alignment of VP1 (major capsid protein) sequences from Alpavirinae phages. 
Notes: Multiple sequence alignment was performed with ClustalX using default parameters.57 Colors indicate conservation of residues according to the ClustalX color 
scheme.58
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 Figure 1 is depicted in Table 1 (for brevity, absent amino acids 

are not listed). In this case, if we evaluate two hypothetical 

new sequences where the corresponding values at positions 

46–49 are, respectively, “LVPV” and “LPPV”, the probability 

associated with “LVPV” would be 0.114 (0.95*0.6*1*0.2) 

and with “LPPV” would be 0 (0.95*0*1*0.2), since amino 

acid P is absent from our alignment in position 47. 

The PPM model demands that any new members of 

the group do not present, in any position of the alignment, 

amino acids not observed previously or the resulting prob-

ability will be zero. However, we do not know if the origi-

nal set of proteins used to compute the probabilities (our 

“training set”) presents all naturally occurring amino acid 

variations for every column of the alignment. The solution 

is to increment the model with the possibility of accepting, 

in every position of the MSA, amino acids that have never 

been observed there. Thus, unless there is a strong biologi-

cal reason against it, we should accept, with at least a low 

probability, the possibility of all amino acids occurring in all 

positions. The easy way to do that is to use “pseudocounts”: 

assign an initial count to the frequencies of every one of 

the twenty amino acids in all positions of the MSA, thus 

changing the values in the PPM. Hence, any sequence will 

have a total probability different from zero, albeit sequences 

very different from the original ones will present very low 

probability counts. Pseudocounts do not have to be integer 

numbers. A good rule of thumb is to ensure pseudocounts are 

lower than the frequency of any other residue present in the 

alignment (for a large number of sequences, the square root 

of this number could be used). Table 2 shows the effect of 

using pseudocounts of 0.5 in the previous PPM (Table 1). All 

amino acids not observed in the MSA would have probabil-

ity 0.0167 (0.5/(20+20*0.5)). With this incremented model, 

the sequence “LPPV” would now have a total  probability 

of 0.00111, instead of zero. On the other hand, the “LVPV” 

sequence would have a probability of 0.0277, lower than the 

previous value (0.114).

The model is now robust enough to deal with real-life 

incomplete training sets. However, we still need to address 

another question: what is the cutoff probability to accept 

a new sequence as part of a group? The solution to this 

problem requires more sophisticated concepts such as the 

Bayes theorem and is out of the scope of this article. The 

interested reader should refer to more detailed bibliography 

for further details.1 There are many ways to compute prob-

ability thresholds. In our case, the standard solution involves 

using an alternative model. This alternative model represents 

a “generic” protein sequence, where all amino acid frequen-

cies are equal (1/20=0.05). If the total probability in the MSA 

model is higher than that in the alternative one, we infer that 

it is more likely that the protein belongs to this group than 

being a generic protein in nature. Formally:

 

P sequence groupModel

P sequence genericModel

|

|

( )

( )
>1

In our case, the probability of the generic model would 

be 0.00000625 for both “LPPV” and “LVPV” sequences 

(0.05*0.05*0.05*0.05), which is lower than the probabilities 

computed using our model: 0.0011 and 0.0277, respectively. 

Therefore, both would be classified as being part of the group. 

In practice, due to computer architecture limitations that are 

beyond the scope of this review, probability values must be 

converted to logarithms, originating a more sophisticated 

model called PSSM. The original formula now changes as 

follows:

log (P (sequence|groupModel))> 
log (P (sequence|genericModel))

Table 1 Probability values for positions 46–49 from the multiple 
sequence alignment depicted in Figure 1

Amino  
acid

Position 46 Position 47 Position 48 Position 49

A 0.05 0.00 0.00 0.00
C 0.00 0.00 0.00 0.05
F 0.00 0.00 0.00 0.25
i 0.00 0.20 0.00 0.10
L 0.95 0.10 0.00 0.00
N 0.00 0.00 0.00 0.20
P 0.00 0.00 1.00 0.00
T 0.00 0.10 0.00 0.20
v 0.00 0.60 0.00 0.20
Y 0.00 0.00 0.00 0.00

Table 2 Probability values with pseudocounts for positions 46–49  
from the multiple sequence alignment depicted in Figure 1

Amino  
acid

Position 46 Position 47 Position 48 Position 49

A 0.0500 0.0167 0.0167 0.0167
C 0.0167 0.0167 0.0167 0.0500
F 0.0167 0.0167 0.0167 0.1833
i 0.0167 0.1500 0.0167 0.0833
L 0.6500 0.0833 0.0167 0.0167
N 0.0167 0.0167 0.0167 0.1500
P 0.0167 0.0167 0.6833 0.0167
T 0.0167 0.0833 0.0167 0.1500
v 0.0167 0.4167 0.0167 0.1500
Y 0.0167 0.0167 0.0167 0.0167

Note: The matrix was constructed using pseudocounts of 0.5.
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This is rearranged as follows:

log (P (sequence|groupModel)) – 
log (P (sequence|genericModel)) > 0

Since we are calculating in log space, the multiplication 

of positional probabilities is the same as the addition of the 

corresponding logarithms, i.e., log(x
1
 * x

2
 * ... * x

n
) = log x

1
 

+ log x
2
 + ... + log x

n
. When scoring a new sequence, we use 

the matrix to assign a value to each position and then simply 

add up all the scores. If the score is positive, the probability 

of the sequence in our model is higher than the probability 

of the sequence in the generic model. 

Dealing with gaps and insertions: profile 
HMMs
With PPMs, we can build a classifier based on a gap-free 

alignment, but most MSAs of protein sequences present 

indels. As discussed earlier, insertions and deletions generally 

occur in specific positions of the proteins and have similar 

lengths. To improve our characterization, we need another 

probabilistic model. This new model, the profile hidden Mar-

kov model (profile HMM),4 can be seen as a generalization 

of PPMs. Initially, we can represent the previous PPM as a 

series of “match” states, each one representing one column 

of the gap-free alignment, with a “Begin” state and an “End” 

state, and arrows indicating state order (Figure 2). 

Insertions and deletions are modeled with extra states. 

Each deletion is modeled as a “deletion” (silent) state that 

can be used to bypass the original “match” state. Each inser-

tion is modeled as a new regular state, preceding each of the 

original “match” states. “Deletion” (silent) states, as the name 

implies, do not have probabilities associated with amino acid 

residues. Insertion states present amino acid probabilities 

based on the background amino acid frequencies. In this new 

model, there are extra arrows (transitions) indicating that we 

can go through the silent states, skipping one or more of the 

original states, or go through the insertion states, inserting 

new residues. To model the frequency in which we have gaps 

and insertions, we assign probability values to the transitions. 

In the example of Figure 2, the transition from the “Begin” 

state to the first insertion state, with value 0.1, means that we 

have an insertion at this position in 10% of the sequences of 

the original alignment. Also, the transition from the “Begin” 

state to the first silent state, with value 0.2, means that 20% 

Figure 2 Diagram representing a profile hidden Markov model (profile HMM). 
Notes: Match states are represented as red rectangles, deletion (silent) states as green circles, and insertion states as blue diamonds. The red numerical values next to the 
arrows indicate transition probabilities. The equalities inside the states indicate amino acid probabilities, generally called emission probabilities. These emission probabilities 
do not include the use of pseudocounts. Match states use emission probabilities computed from the original alignment; insertion states use background amino acid probability 
values of 1/20. The transition probabilities highlighted with red circles indicate the probabilities described in the text. The other transition probabilities were arbitrarily set 
to make the figure more homogeneous and to increase clarity.
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of the sequences in the original alignment have a deletion in 

the first position. Note that insertion states are different from 

others because they have “self-transitions”. Self-transitions 

model the length of the insertions: the higher the probability 

of the self-transitions, the higher the average length of the 

inserted sequences. It is worth mentioning that only a few 

types of transitions are allowed. For instance, starting from a 

“match” state, it is possible to have a transition probability to 

the next “insertion” state, a transition to the next “deletion” 

state (in this case representing the probability of skipping the 

next match state), or a transition to the next “match” state 

(assuming no insertions between two consecutive “match” 

states). From a “deletion” state, we can transition to the 

next “deletion” state (skipping the next “match” state), to 

an “insertion” state (if there is an insertion before the next 

“match” state, when the current position is missing), and to 

the next “match” state (if the “match” state follows a deletion 

on the current position). Finally, from an insertion state, we 

can have self-transitions (related, as we mentioned earlier, 

to the size of the insert), a transition to the next “deletion” 

state (skipping the next “match” state), and a transition to 

the next “match” state. This architecture ensures that we can 

evaluate each possible sequence and, at the same time, reduce 

the number of parameters in the final model. 

Profile HMMs are a powerful identification tool, as they 

are able to characterize more precisely each position of a 

protein, as well as insertions and deletions. Profile HMMs 

increase generalization capability when compared to simple 

alignments and help finding more divergent members of the 

protein families. Considering that viral genomes present high 

evolutionary rates and, as such, are much more divergent than 

prokaryotic and eukaryotic genomes, profile HMMs are very 

effective in representing viral protein diversity. 

Viral diversity
Viruses are estimated to be the most abundant and diverse 

biological entity on the planet.5 Their abundance comes 

from a very high reproductive rate, also known as viral burst 

size, a consequence of the number of viral particles gener-

ated in each cell during the infection cycle. Furthermore, a 

high mutation rate allows them to be highly divergent and 

promotes the observed variability. In contrast to studies in 

cellular organisms, where a consistent taxonomy with a clear 

phylogeny from a common ancestor is observed, the phyloge-

netic origin of viruses is unknown. Different hypotheses have 

been presented and is not clear even whether all viruses have 

derived from a single common ancestor, nor the position of 

their origin relative to the Last Universal Common  Ancestor.6 

Notwithstanding genetic variation, there are certain processes 

that all viruses undergo during their life cycle, such as adhe-

sion, insertion of nucleic acid into the host cell, replication, 

and assembly of the viral particle. This would suggest that 

frequently shared genes might be identified, allowing a proper 

global phylogenetic analysis. However, no gene common to 

all viruses exists, which implies that different viral markers 

must be used for phylogenetic studies of distinct taxonomic 

groups. Viruses are usually classified based on their genetic 

material: dsDNA or ssDNA; dsRNA or ssRNA (positive or 

negative sense). Each of these types of genomes requires 

different strategies for replication, with no single polymerase 

type fulfilling this task for all viruses.6 Another conserved 

feature commonly used for viral taxonomy is particle mor-

phology, with capsid structure being highly conserved for 

different viral families. However, different evolutionary 

forces can often lead to similar structures for different cap-

sid proteins by convergent evolution rather than a common 

origin for the different capsid proteins.7 The rate of diversity 

and mutation is dependent on different factors; the nucleic 

acid type, in particular, has great influence. RNA viruses are 

among those with the highest mutation rates due to error-

prone polymerases, and this feature is believed to help with 

adaptation. Nevertheless, high mutation rates are balanced by 

selective pressure.8 Selection and its constraints on diversity 

depend on the viral environment and host. For example, the 

hepatitis C virus (HCV), a small (+)ssRNA virus and one of 

the causal agents of hepatitis, presents up to 30% variation at 

the nucleotide level within distinct genotypes. However, the 

genome does maintain a very cohesive structure and synteny, 

which would mostly be enforced by the restricted host range 

limited to infecting the human liver.9 Similar constraints 

are observed in all viral families and they make possible 

any type of molecular characterization within specific viral 

clades. Viral diversity does not rely solely on mutation for 

variability, as other factors such as genetic recombination 

also play important roles. However, differently from what 

is observed in cellular organisms, viral capsids impose a 

very tight carrying capacity constraint, significantly limit-

ing the space for acquisition of novel genes. Hence, gene 

remodeling has been observed as an alternative for gaining 

novel functions without increasing genome length. Gene 

remodeling consists of recombination between two different 

protein-coding genes to generate novel composite genes that 

can provide the viruses with new properties and functions. 

A recent survey studied 3,008 viral genomes and detected 

an abundance of 8%–15% of composite genes,10 suggest-

ing gene remodeling as an important mechanism for viral 
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evolution and a major source of potential misinterpretations 

when analyzing viral evolution through protein or domain 

similarity. This aspect partially explains why viral molecular 

evolution has been studied mainly in the context of particular 

viral families and specifically within a certain environment 

or host range.

Molecular markers in virology
The recent advent of next-generation sequencing (NGS) tech-

nologies has greatly impacted the study of microbial and viral 

communities, where full shotgun sequencing and amplicon 

sequencing have been the main methods employed. The use of 

these technologies for the characterization of viral communi-

ties presents various challenges. Methods such as full shotgun 

metagenomics usually require purification and concentration 

of viral particles prior to sequencing, since their genome 

content usually constitutes less than 5% of the total nucleic 

acid of a given microbial community. The capacity of viruses 

to exist in proviral forms, integrated within host genomes, 

makes it harder to identify proteins of viral origin, even when 

one does not consider horizontal gene transfer events. Once 

the viral nucleic acids are isolated and sequenced, the next 

challenge is to computationally characterize those sequences. 

The vast majority of the currently available viral sequences is 

derived from cultivated viruses that have already been clas-

sified. This small, highly biased subset of viruses explains 

the poor representation of viral diversity observed in public 

databases (see next section). Furthermore, due to a combina-

tion of high mutation rates and high selective pressure, viral 

genes evolve very rapidly. Considering the fact that pairwise 

alignment methods seem to be limited by a threshold value of 

30% for identifying true homologs,11 identifying homology 

is an extremely challenging task, hampering our capacity to 

ascribe potential functions to genes. This feature is even more 

evident in RNA viruses, which present high evolutionary 

rates.12 These challenges, combined with potential sequenc-

ing errors and relative short length of reads generated by high-

throughput sequencers, restrict conventional BLAST-based 

approaches to a successful classification rate ranging from 

10% to 90% of the sequences from viral genomes.13 It has 

been demonstrated that alternative methods, based on the use 

of protein profiles such as PSSMs and HMMs, detect three 

times as many remote homologs than conventional pairwise 

methods.14 Several public databases with search algorithms 

based on probabilistic methods are available, such as Pfam, 

SMART and TIGRFAMs, using profile HMMs, and CDD, 

using PSSMs. However, these invaluable resources rely on 

available sequences that limit their usability for viruses. 

Despite the challenges of viral discovery, the power of 

metagenomic methods should not be underestimated. For 

instance, a recent computational study extracted all poten-

tial viral sequences from more than 3,000 metagenomes 

and assembled the sequences into viral contigs. This effort 

allowed the identification of over 125,000 contigs, coding for 

~2.79 million proteins, 75% of which revealed no sequence 

similarity to known isolated viruses.15 Amplicon sequencing 

is a cheaper and more cost-efficient way of characterizing a 

microbial community. This method is limited, however, by 

the requirement of a conserved molecular marker. A universal 

marker, such as 16S rRNA in bacteria, capable of detecting 

and discriminating all viruses will never exist; conserved 

markers can generally be used only for some viral groups. 

Sakowski et al have proposed that a proper viral phylogenetic 

marker should, 1) be widely distributed, 2) be abundant in 

the studied environment, 3) play an important role in viral 

biology, 4) have a single evolutionary origin, 5) be phyloge-

netically informative, and 6) be well represented in reference 

databases.16 One such marker that has been traditionally used 

for different subsets of viruses is DNA polymerase. However, 

due to limitations of the available databases, primer design 

on existing sequences tends to be biased or fall short of 

amplifying all the diversity within a family. Schmidt et al have 

recently suggested that the currently available metagenomes 

can be used to survey gene diversity of potential gene mark-

ers in order to provide a better source for the design of more 

comprehensive primers, an approach that has been applied 

to DNA polymerase in marine environments.17 Regardless 

of the aforementioned limitations, different genes have been 

employed as potential molecular markers for particular viral 

groups; here we present four such genes. 

Most of the viral discovery methods using viral markers 

are derived from studies in phages where markers previously 

identified in known phages were used to describe novel organ-

isms. The major capsid protein (MCP), a common member 

of the core genes for different viral families, is essential for 

viral structure and has been frequently used to detect and 

classify viruses. A recent study shows that the use of MCP 

for characterizing members of the Phycodnaviridae provides 

better results than using DNA polymerase.18 Another success-

ful example comes from the use of MCP to demonstrate that 

the Gokushovirinae, a subfamily of the Microviridae, once 

believed to be of narrow, eukaryote-associated distribution, 

presents, in fact, a broader cosmopolitan distribution, being 

identified in many different marine environments.19 Among the 

viral phylogenetic markers, one that has not been widely used 

but is increasingly gaining importance, is the  ribonucleotide 
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reductase (RNR). RNR comprises a family of enzymes that 

reduce ribonucleotides to deoxyribonucleotides and is, there-

fore, essential to DNA synthesis. The corresponding genes are 

widely abundant in cellular life and commonly found in viral 

genomes, being estimated, for example, to be present in over 

90% of dsDNA viroplankton. Their distribution and diversity 

correlate well with the different subfamilies among the Cau-

dovirales in marine environments.16 Further studies of RNR 

distribution among viruses have shown different abundances 

among Myoviridae (65%), Siphoviridae (30%), and Podoviri-

dae (3%), with the class or RNR varying also according to 

the isolation environment and to the host’s ability to utilize 

oxygen.20 Another set of markers that have been recently used 

in viral studies consists of the photosystem I and II genes 

carried by cyanophages. Although it was suggested that these 

genes may have originated from horizontal gene transfer 

events, thus lacking strong taxonomic information, they 

were successfully used together with degenerate polymerase 

chain reaction (PCR) to identify clusters of cyanoviruses.21 

Finally, phoH, a host-derived auxiliary metabolic gene, has 

been used as a molecular marker for marine viruses, due to its 

presence in multiple families of dsDNA tailed phages. Using 

phoH in samples of multiple depths and in different seasons, 

it was possible to characterize both diversity and stability of 

the phoH harboring community, which is very diverse but 

uneven, with few (operational taxonomic units) dominating 

at different depths and times.22

In eukaryotic viruses, recent efforts using NGS focus 

more on full shotgun metagenomics for the discovery of 

novel viral entities.23–25 However, molecular markers are still 

used in eukaryotic viruses to characterize micro-variation 

within particular viral species, with most of that variation 

being commonly observed in RNA viruses. Some genes 

are known to harbor important genetic diversity such as the 

neuraminidase in the case of influenza A or the use of the 

env, gag, and pol genes to characterize sequence diversity 

in HIV-1 isolates.26,27 Another interesting example is HCV 

which is also well known for the high mutation rates and 

where genotyping efforts have focused on different proteins, 

including NS5A,28 NS5B,29 the E1 and/or E2,29,30 or even a 

composite fragment from short segments derived from the 

NS3, NS5A, and NS5B genes.31

Profile HMM databases derived 
from viral sequences
Public sequence databases are fundamental research tools 

that have revolutionized molecular biology research for 

all domains of life. Accordingly, given the medical and 

 ecological importance of viruses, there are many viral 

sequence databases available, with scope ranging from those 

including all viruses to those that focus on more specific 

viral groups (e.g., an order, a family, or a virus related to 

a disease). Virus sequence databases are plentiful and very 

popular resources in virology, and a comprehensive survey 

of web resources on the field of virus research has been 

recently reported.32 As discussed in the former section, most 

of the publicly available viral sequences are derived from 

known viruses that can be cultivated, and several technical 

challenges severely limit the rate at which novel viruses are 

being discovered and characterized. In spite of the huge 

amount of sequencing data deposited in public databases, 

complete viral genomes are relatively scarce. In fact, a 

survey of the complete RefSeq release of viral and viroid 

sequences, at the NCBI Viral Genomes Resource,33 revealed 

8,227 genome entries (as of March 18, 2017). A search 

for complete genomes of bacteria at the NCBI Microbial 

Genomes Resources showed many more entries, 13,351, 

despite the fact that prokaryotic genomes are usually two to 

three orders of magnitude larger than viral genomes. A list of 

all viral genomes from the NCBI Viral Genomes Resource, 

comprising 111,340 entries, also revealed a highly biased 

representation of different viral families, with Flaviviridae 

showing 11,623 entries, whereas Togaviridae presented 1,298 

and Adenoviridae only 665. These numbers exemplify how 

far we are from a reasonable representation of viral diversity 

in public databases.

As we have seen earlier, profile HMMs are a powerful 

way of modeling sequence diversity within a statistical frame-

work. While some generic profile HMM-based databases 

such as Pfam include viral protein sequence families,34 it is 

estimated that less than 20% of the currently available viral 

protein sequences are represented in Pfam.35 In recent years, 

there has been an effort to compile viral sequences from dif-

ferent viral taxonomic groups into integrated databases that 

also include profile HMMs (Table 3). With the exception 

of HIValign, a tool whose underlying HMM database does 

not seem to be available for direct third-party use (only the 

corresponding FASTA sequences are available), all other 

databases listed in Table 3 are either searchable online or can 

be downloaded for searches in the user’s own servers. From 

this list, Prokaryotic Virus Orthologous Groups (pVOGs), 

viral profile HMM database (vFam), and viral orthologous 

groups (OGs) are the most comprehensive databases, provid-

ing functional annotation and profile HMMs, among other 

data.35–37 However, since these profile HMM databases rely 

on viral sequences collected from GenBank and RefSeq, they 
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suffer in variable extent from uneven taxonomic sampling, 

with low sequence representation of many viral groups, which 

may affect the efficacy of the models. 

The pVOGs,36 a recent update of the formerly called 

Phage Orthologous Groups (POGs),38,39 is constructed within 

the microbial Cluster of Orthologous Groups framework and 

comprises a set of orthologous gene families built from com-

plete genomes of viruses that infect bacteria and archaea.40 

The current version (as of March 2017), updated in 2016, 

presents 9,518 OGs (and profile HMMs) and comprises 

296,595 protein sequences. In addition to profile HMMs, 

the database offers a plethora of data, including protein 

sequences, MSAs, and functional annotations. Another com-

prehensive and relevant viral resource is vFam, a database of 

viral profile HMMs built from all virus-derived (non-phage) 

annotated protein sequences available at RefSeq. The last 

update of the database was in 2014 and presents 5,585 OGs 

comprising 29,655 proteins. Viral protein sequences, func-

tional annotations, and profile HMMs are provided.

Both databases, pVOGs and vFam, provide map-

pings across functional annotation, orthology groups, and 

taxonomic classification. The available profile HMMs are, 

therefore, very useful for functional and taxonomic identi-

fication of viral proteins from genomic and metagenomic 

uncharacterized data. Despite their invaluable importance 

as integrated viral data resources, both pVOGs and vFam 

are severely limited by the relatively low number of publicly 

available viral sequences, the primary data source from 

which they are derived. Corroborating this perception, a 

graph depicting statistics over time, displayed in the pVOGs 

website (http://dmk-brain.ecn.uiowa.edu/pVOGs/), illustrates 

how viral diversity is still barely explored. The graph shows 

that the numbers of genomes and VOGs in the 2016 release 

are about three times larger than those seen in 2013. This 

indicates that the curve is still far from reaching saturation: if 

one keeps looking for microbial viruses, the amount of novel 

ones will be substantial. The situation is likely to be the same 

for other kinds of virus. Both pVOGs and vFam also suffer 

from limited and very skewed taxonomic coverage: only a 

few OGs are comprised by a large number of sequences; the 

vast majority of OGs are derived from alignments of very 

few sequences, thus limiting the amount of variation mod-

eled in the profile HMMs. vFam has on average 5.31± 9.73 

sequences per OG (median: 3), while pVOGs fares a little 

better with an average of 20.49±103.40 and a median of six 

sequences per OG. Additionally, pVOGs data also include the 

number of genomes involved in each group, which is on aver-

age 19.38±62.99 genomes per OG (median: 6). The fact that 

the numbers of genes and genomes per OG are very similar 

indicates that most viral genomes contain single copies of 

most genes, as expected. Figure 3 depicts the full distribu-

tion of sequences in OGs in these two databases. Taxonomic 

distribution is also far from even among the OGs, with few 

families dominating the databases. In pVOGs, only 18 viral 

families are present and, of these, three include 86% of the 

nearly 3,000 genomes (i.e., Siphoviridae: 1,421 genomes; 

Myoviridae: 671 genomes; and Podoviridae: 466 genomes). 

vFam, on the other hand, shows a slightly less skewed, and 

Table 3 Web resources of viral profile HMM databases and tools

Database Description Download 
availability

Last 
update

Reference

GyDB Gypsy Database of mobile genetic elements and viruses; comprises a lineage-specific 
collection of 314 profile HMMs; provides several online tools, including similarity 
searches against the profile HMMs
Source: http://gydb.org/

No 2010  Llorens et al55

HIVAlign HIVAlign is one of the numerous online tools offered by HIV databases. The program 
accepts as input aligned or unaligned sequences, which are then aligned against a 
curated reference profile HMM database
Source: https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html

No 2016 Foley et al56

vFam vFam is a database of profile HMMs built from all viral protein sequences available at 
RefSeq. Viral protein sequences, annotations, and profile HMMs are provided
Source: http://derisilab.ucsf.edu/software/vFam/

Yes 2014 Skewes-Cox et al35

Viral OGs Subset of eggNOG v. 4.5, composed of viral sequences, annotations, alignments, trees, 
and profile HMMs
Source: http://eggnogdb.embl.de/#/app/viruses

Yes Current  Huerta-Cepas 
et al37

pVOGs Prokaryotic Virus Orthologous Groups is a database of orthologous groups built from 
genomes of viruses that infect bacteria and archaea. Provides accession IDs of viral 
proteins, lists of orthologous groups, alignments, and profile HMMs
Source: http://dmk-brain.ecn.uiowa.edu/pVOGs

Yes Current Grazziotin et al,36 
Kristensen et al,38 
Kristensen et al39

Abbreviation: profile HMMs, profile hidden Markov models.
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Figure 3 Distribution of orthologous groups from vFam35 (A) and pVOGs36 (B) according to the viral families.
Notes: To obtain quantitative data, the number of corresponding profile HMM/orthologous groups was determined for each viral family based on the annotation provided 
in the database files. Profile HMMs from the original databases are derived from viruses of either single or multiple families. 
Abbreviations: pVOGs, Prokaryotic Virus Orthologous Groups; vFAM, viral profile HMM database; profile HMMs, profile hidden Markov models.
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more diversified, taxonomic distribution at the family level, 

probably due to its broader taxonomic sampling (62 non-
phage families). The full distribution of number of proteins 
per orthologous group in vFam and pVOGs can be seen in 
Figure S1, which demonstrates the aforementioned points: 
the vast majority of profile HMM models are based on few 
sequences per OG, and a few viral families are greatly over-
represented in the OG models. Thus, to make such databases 
more useful and informative, the characterization of a greater 
amount of viral sequences, from a broader taxonomic range, 
is of paramount importance. 

Another recent effort to include a viral information 
division (viral OGs) to a general orthology database is the 
eggNOG version 4.5 database.37 This resource contains 2,605 
OGs, comprised by 5,228 proteins derived from 352 viral 
genomes. However, this database presents several problems, 
including the fact that the classification mixes taxonomic 
names such as orders and biological features like the virus 
presenting single- or double-stranded RNA or DNA genome. 
Finally, similarly to what was observed in vFAM and pVOGs, 
the distribution of OGs according to viral groups is also 
highly biased, with 2,194 profile HMMs (84.2%) comprising 

only four viral groups: viruses (a mix of different viruses), 

dsDNA, Caudovirales, and Herpesvirales.

Sequence assembly approaches 
using profile HMMs
Using profile HMMs as seeds
As discussed earlier, profile HMMs model the diversity of a 

set of orthologs using an MSA of these sequences as a train-

ing set. Such a model, based on a profile, is more sensitive 

in the detection of remote orthology than pairwise alignment 

methods.14 One of the most promising applications of profile 

HMMs is their use as seeds to detect and “fish” reads, which 

can subsequently be assembled, from metagenomic datasets. 

By nucleating such reads, often of unknown origin, and 

assembling them into longer sequences, one can more effec-

tively validate their viral origin.35 There is a huge number of 

sequence assembly tools available (see http://www.mybio-

software.com/assembly-tools for a non-exhaustive list), but 

we found only six such programs in the literature that report 

the use of profile HMM seeds in their operations (Table 4). 

Profile HMMs can be used in seeded assemblies in two main 

approaches: 1) gene-sized, and 2) progressive assemblies. 

In the former method, the profile HMM is used in similarity 

searches against metagenomic data to identify similar reads, 

which are in turn assembled. Because the assembled sequence 

does not significantly extend the length of the sequences 

Table 4 Publicly available targeted assembly tools that use profile HMM seeds

Program Comments Assembly Documented Reference

HMM-GRASPx Gene-sized assemblies; implements its own novel profile HMM-based search; 
can be used either as a search tool or as an assembler; further extends contigs 
based on pre-constructed extension links (overlap graph)
Source: https://sourceforge.net/projects/hmm-graspx/

Targeted: 
gene-sized

Partially Zhong et al48

MegaGTA Iterative and succinct de Bruijn graph-based; tests multiple k-mers in each run; 
demands high memory; free from false-positive k-mers; gene-sized assemblies
Source: https://github.com/HKU-BAL/megagta

Targeted: 
gene-sized

No Li et al45

SAT-Assembler Uses profile HMM seeds for gene-sized assembly; builds and traverses overlap 
graph for contig generation
Source: https://github.com/zhangy72/SAT-Assembler

Targeted: 
gene-sized

No Zhang et al43

Snowball Aims at reconstructing different strains in metagenomic datasets; uses profile 
HMM seeds; algorithm based on read overlaps; uses overlapping ends paired-
end library; gene-sized assemblies
Source: https://github.com/hzi-bifo/snowball

Targeted: 
gene-sized

No Gregor et al44

Xander Based on De Bruijn graph; uses only one k-mer in each run; demands high 
memory for good false-positive performance; gene-sized assemblies
Source: https://github.com/rdpstaff/Xander_assembler

Targeted: 
gene-sized

Yes  Wang et al46

GenSeed-HMM Integrates targeted and progressive assembly: generates contigs potentially 
much longer than original seed; seed-driven (DNA, protein, or profile HMM); 
depends on external assemblers; low memory and processor use
Source: https://sourceforge.net/projects/genseedhmm/

Targeted 
and 
progressive: 
unrestrained 
contig length 

Yes Alves et al41

Notes: We have considered as properly documented those programs that present an external file (and not just help on the command-line or a short README file) with 
detailed description of program installation, operation, and options. Partially documented programs include a README file (either in the downloadable package or directly 
online) with reasonably detailed installation, option, and usage information (that is not simply a repetition of the command-line help). GenSeed-HMM also includes a detailed 
step-by-step tutorial with included example files.
Abbreviation: profile HMMs, profile hidden Markov models.
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originally used to derive the profile HMM, one refers to it 

as a “gene-sized” assembly. In the latter approach, sequence 

ends of the assembled sequence are used as extension seeds 

to recruit a new bunch of reads, which are then assembled 

with this sequence. Such assembly cycle is iteratively per-

formed, resulting in a step-by-step extension of the assembled 

sequence, an approach named “progressive assembly”.41,42 

Seed-driven gene-sized assembly 
In this section, we will discuss those tools that are geared 

toward the assembly of gene-sized sequences from raw 

metagenomics data, although they are not necessarily limited 

to that kind of data. SAT-Assembler,43 one of the first profile 

HMM–assisted assemblers, aims at recovering gene-sized 

sequences from high-throughput, second-generation data-

sets. It assembles only those reads that match one or more 

user-selected profile HMMs using an overlap graph. The 

authors compared this tool to global assemblers (i.e., those 

that assemble all reads, without any kind of similarity-based 

filtering) such as Velvet, IDBA-UD, and MetaVelvet, and 

observed that the seeded approach was more efficient and 

yielded as good as or better results than global (de novo) 

assembly. Snowball is a metagenomics assembler designed 

to differentiate between closely related strains.44 It uses an 

overlap-based approach, with error correction being per-

formed using the overlap between the ends of a paired-end 

sequence. Compared to SAT-Assembler, Snowball has shown 

much greater power of discrimination between closely related 

strains. MegaGTA and Xander are programs that perform tar-

geted assembly using de Bruijn graphs.45,46 According to the 

authors, MegaGTA performs much faster (two to ten times) 

than Xander and can employ multiple k-mers of different 

sizes in the same run, while Xander is limited to using one 

k-mer at a time during a run. The use of de Bruin graphs by 

these two applications implies, as a consequence, a demand 

for potentially very large amounts of computer working 

memory (RAM), in the order of tens or hundreds of giga-

bytes. HMM-GRASPx (guided reference-based assembly of 

short peptides) is a program that, instead of using third-party 

programs such as HMMER3 for the identification of reads 

to assemble, implements its own search algorithm by com-

bining the simultaneous alignment and assembly approach 

using a banded Viterbi dynamic programming algorithm.47,48 

HMM-GRASPx can be used either as a search tool (searching 

reads against profile HMMs, for example) or as an assem-

bly program, reconstructing complete or almost complete 

gene-sized sequences. Given its nature as a search tool, the 

authors have compared this tool to other search programs 

such as HMMER3 and RPS-BLAST, outperforming them 

in sensitivity but underperforming them slightly in precision. 

Seed-driven progressive assembly
The targeted assembly tools presented earlier use one or 

more profile HMMs as seeds to recruit reads, which are 

subsequently assembled by conventional de novo assembly 

generating gene-size contigs. GenSeed was the first sequence 

reconstruction program to integrate targeted assembly and 

an iterative assembly algorithm, the so-called progressive 

assembly, into a single tool.42 The program uses short nucleo-

tide or protein sequences in BLAST similarity searches to 

select reads, which are then assembled together with the seed 

sequence, incrementing its original length. Short sequences 

(extension seeds) are then extracted from the contig ends 

and used as new seeds to recruit more reads, which are 

subsequently assembled with the formerly built contig. The 

iterative assembly continues until one of the following condi-

tions is satisfied: 1) the contig reaches the maximum length 

defined by the user; 2) the algorithm reaches the maximum 

number of iterations, also defined by the user; 3) no new read 

has been added compared to the preceding assembly step, 

or 4) no contig size increment has been observed since the 

previous iteration. A similar seed-driven progressive assem-

bly method was later implemented in PRICE and IVA.49,50 

These programs have been successfully used for viral genome 

assembly from metagenomics data (see review by Smits et 

al51 for more details). However, unlike GenSeed, which uses 

either nucleotide or protein sequences as seeds, PRICE and 

IVA are restricted to the use of nucleic acid sequence seeds. 

A remarkable advantage of progressive assembly tools 

over gene-sized assembly programs is the fact that the final 

assembled sequence can be much longer than the gene cov-

ered by the original seed and even cover a full-length viral 

genome. Recently, Alves et al reported the development of 

GenSeed-HMM,41 a completely revised version of GenSeed, 

which incorporates the use of profile HMMs as seeds and 

is compatible with NGS data. As a proof-of-principle, the 

authors used GenSeed-HMM on human fecal samples (454 

platform) and raw sewage (Illumina platform) datasets to 

reconstruct viral sequences from phages of the subfamily 

Alpavirinae (Microviridae family). Using profile HMM seeds 

derived from short sequences of VP1 (major capsid protein) 

and VP4 (genome replication initiation protein), the authors 

obtained a large number of partial and complete genome 

sequences. The program’s seed-driven progressive assembly 

approach consistently outperformed global assemblers (e.g., 

Newbler) in the several metrics employed. 
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A roadmap for rational design of 
profile HMMs
Knowing the limitations of profile HMMs 
In the first part of this article, we discussed the theoretical 

aspects of the different models that can be used in MSA 

data to assess sequence diversity. We concluded that profile 

HMMs are powerful tools that may efficiently represent a 

wide spectrum of variation. However, this kind of model 

has some limitations and drawbacks. First, profile HMM 

construction relies on an initial MSA, which works as a 

training set. The quality of the MSA will directly impact the 

profile HMM: if the alignment presents misaligned stretches 

of one of more sequences, the impacted positions (columns) 

will lead to mistaken residue frequencies and, hence, wrong 

models. Such models will show lower accuracy when used 

for the detection of potential new members of the group. 

Many different alignment tools are available for produc-

ing MSAs, but they may often produce different results – 

sometimes to a large extent – for any non-trivial alignment. 

Because the real evolutionary history of the genes involved 

is not known, there is no way to define which program, if 

any, is closer to the truth. We advocate that careful manual 

editing of the MSA before building the profile HMM is, 

therefore, essential for good accuracy. Although such an 

approach may potentially introduce biases, models derived 

from these MSAs can be validated through straightforward 

analyses. The second important aspect is that a good train-

ing set alignment should represent all possible amino acid 

variations at each position, as well as present all the indels 

that could occur without disturbing protein function. It is 

obviously impossible to know beforehand when a training 

set is large enough to be representative, but a rule of thumb 

is that we need as many proteins in the alignment as possible, 

in order to represent repertoire diversity. As discussed in the 

introductory section of this article, pseudocounts guarantee 

that, no matter the size of the training set, we are still able 

to analyze any protein. However, with small training sets, 

pseudocounts dominate the final frequencies, generating poor 

classifiers. Another aspect that must be taken into account 

is that a high number of sequences per se is not enough to 

constitute a good training set. If proteins from a specific 

taxonomic subgroup dominate the training set, classification 

will be skewed to the frequencies of this subgroup. Hence, 

the model will be biased and less likely to detect proteins 

that are more distantly related. An ideal alignment should be 

composed of sequences that represent the diversity of group 

of interest, avoiding sampling biases that could overrepre-

sent specific subgroups, thus leading to profile dilution. It is 

essential, therefore, to examine the initial MSA and check 

if there is good balance among the sequences, with no over-

representation of very similar sequences or low sampling of 

more diverse ones. For this reason, we recommend careful 

selection of sets of sequences that are representative of the 

viral group’s diversity, instead of uncritically using thousands 

of sequences for the training set. A possible solution for 

this problem might involve the construction of a phyloge-

netic tree, followed by partition into clusters using patristic 

distance analysis,52 and selection of representatives from 

each cluster. Finally, another limitation of profile HMMs is 

related to one of the assumptions of the probabilistic model 

itself – all positions of the alignment are independent from 

each other. This is clearly not true, since protein folding is 

governed by interactions between amino acid residues that 

are often distant from each other in the polypeptide chain. 

These interactions mean that sites can present coevolution-

ary dependencies, which are not considered in the model. 

Coevolution-inspired computational methods are required 

to identify such long-range dependencies in sequences,53 but 

they come with a much higher computational cost and the 

need of much larger training sets.

The choice of molecular markers and 
seed regions
In a previous section (“Molecular markers in virology”), we 

discussed the fact that, because of the extremely high viral 

diversity, no universal marker is available for viruses. In addi-

tion, we presented some of the molecular markers that have 

been proposed for specific groups of viruses. Finally, to illus-

trate the complexity of viral evolution and resulting diversity, 

we mentioned that some viruses may undergo a process of gene 

remodeling, which generates novel composite genes (see “Viral 

diversity” section). The latter feature implies that evolutionarily 

unrelated viruses may show genome mosaicism and share com-

mon genes, hampering phylogenetic and diagnostic analyses. 

To deal with this high and complex diversity, profile HMMs 

are more sensitive than pairwise alignment methods to detect 

remote homologs, but at the cost of being more prone to false 

positives. This aspect is particularly relevant if one considers 

that viruses often share orthologs with prokaryotic and eukary-

otic genomes, mainly due to horizontal gene transfer events. 

Examples of such common orthologs include polymerases, 

uracil-DNA glycosylases, helicases, serine/threonine protein 

kinases, guanylyltransferases, methyltransferases, proteases, 

NTPases, among others. To avoid cross-detection of non-viral 

sequences, a proper choice of molecular markers is imperative. 

Viral ORFan genes are open reading frames (ORFs) that do 
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not show similarity to other ORFs in sequence databases.54 The 

appropriate selection of ORFans in viral genomes could be 

helpful for the establishment of sequences specific to viruses 

and even to narrow groups of viruses. For instance, the genus 

Flavivirus is composed of a wide variety of viruses display-

ing different host specificities and clinical manifestations on 

the hosts, such as yellow fever (YFV), dengue (DENV), Zika 

(ZIKV), West Nile fever, and tick-borne encephalitis. These 

viruses express a polyprotein that is posttranslationally cleaved 

into multiple mature polypeptide products. By analyzing an 

MSA of all available Flavivirus polyprotein sequences, it 

is possible to identify regions that are conserved across all 

members of the genus. Some of these regions are contained 

within ORFan regions and could potentially be converted to 

profile HMMs and used as Flavivirus-specific probes for both 

diagnosis and sequence reconstruction from metagenomics 

data. An additional strategy is the identification of regions 

whose specificity is restricted to some viruses only, such as 

ZIKV, DENV, or YFV. In fact, using this approach, our group 

has recently identified such regions and constructed profile 

HMMs that were able to specifically detect each one of these 

viruses in metagenomics data from human patient samples, 

and reconstruct the corresponding genomes using the program 

GenSeed-HMM, with almost no false positives (unpublished 

data). 

It is worth mentioning that the approach proposed here, 

of using short and specific sequences to build profile HMMs, 

represents a radical change compared to methods employed 

in databases such as vFam and pVOGs. In these databases, 

the models were built from MSAs derived from full-length 

protein sequences. Because the original MSAs included 

regions that are rich in indels, noise may have been intro-

duced into the models, potentially decreasing their efficacy. 

By using models derived from short-sequence stretches, as 

we suggest here, alignment regions containing indels could 

be avoided or even discarded. Also, the use of full-length 

protein sequences, as performed in vFam and pVOGs, may 

have resulted in maximum detection sensitivity, but at the 

cost of lower taxonomic specificity, as some protein domains 

may often be conserved across multiple viral taxa. The best 

compromise between sensitivity and specificity could be 

obtained by the simultaneous use of multiple, highly specific, 

short-profile HMMs, which could increase final sensitivity 

without sacrificing specificity. 

Making profile HMMs public
Despite the limitations of the currently available public 

repositories of virus-derived profile HMMs, such as pVOGs, 

vFam, and viralOGs, discussed previously, they certainly 

represent seminal contributions to the virus research com-

munity.35,37–39 In addition to these resources, it is fundamen-

tal to stress the importance of making new collections of 

profile HMMs promptly available to the public. Of similar 

importance, the development of novel strategies for rational 

design of profile HMMs, as discussed previously, must be 

accompanied by their open disclosure to all those concerned 

with viral discovery and detection. 

De novo diagnosis and viral 
discovery
A paradigm of the diagnosis of infectious agents is the fact that 

conventional serological- and nucleic acid–based assays rely on 

previously known information on the target of detection. For 

instance, to establish an enzyme-linked immunosorbent assay 

(ELISA) test for the detection of host antibodies, we have first 

to discover and then be able to produce the antigen that will be 

the target of such detection. The same occurs with PCR-based 

assays, in which we design primers based on the sequence that 

will be amplified. Given the broad diversity and high diver-

gence rate of viruses, currently available assays can hardly be 

useful for the detection of emergent viruses. Although novel 

viruses may be quite different from already known viruses, 

some proteins may still contain conserved motifs. Since good 

profile HMMs are built from MSAs that sample sequence 

diversity from a variety of viruses, they might potentially detect 

sequences that have not been sampled, within a reasonable 

range of divergence. This means that these models could detect 

a novel virus for the very first time, even if it had never been 

isolated and characterized. A full molecular characterization 

of such viruses, using metagenomics data, could be attained by 

using profile HMMs as seeds for progressive assembly, result-

ing in the reconstruction of complete or near-complete viral 

genomes. While such approach does not represent a complete 

disruption of the aforementioned diagnosis paradigm, it may 

significantly improve our ability to detect emergent viruses, 

on the one hand, and accelerate the pace of development of 

new diagnostic tests, on the other. Since this process implies 

the diagnosis of novel infectious agents, we propose to define 

it as “de novo diagnosis”. De novo diagnosis has the potential 

to become a major strategy for epidemiological surveillance, 

especially in some sensitive locations such as hospitals, sewage 

treatment stations, animal production facilities, and migratory 

bird colonies. A routine collection of environmental samples, 

followed by metagenomics sequencing and screening with a 

well-established set of viral profile HMMs, could constitute a 

framework for such strategy. 
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Conclusion
In this review, we discussed some of the major aspects 

involved in the use of profile HMMs for viral discovery, 

including basic concepts of the statistical model itself, public 

databases that provide viral sequence-derived profile HMMs, 

and some DNA assembly programs that use profile HMMs as 

seeds to build either viral genome sequences of unrestrained 

(often complete) length, when using the progressive assembly 

approach, or gene-sized assemblies, when employing other 

algorithms. We also presented some up-to-date information 

on aspects of viral genomics that should be considered in 

the choice of molecular markers for viral discovery and their 

further use for the construction of profile HMMs for viral 

discovery. Based on all these aspects, it is clear that some 

fundamental steps must be considered to better exploit profile 

HMMs for viral discovery: 1) we need better and more com-

prehensive viral sequence databases; 2) increasing diversity 

of taxa sampling, on one hand, and enriching sequence rep-

resentation of each taxon, on the other, will provide deeper 

information for the construction of robust models; 3) profile 

HMM construction should follow rational rules, in order 

to reliably detect and distinguish taxonomical groups; and 

4) novel bioinformatic approaches should be developed to 

exploit the viral dark matter from metagenomic datasets. 

Regarding step 3, we recommend the following guidelines: 

1) choose molecular markers that are specific to viral groups 

of interest (and absent in both prokaryotes and eukaryotes); 

2) establish standardized protocols to define sets of evolu-

tionarily related sequences to compose the MSAs; 3) avoid 

under- or overrepresentation of taxa; 4) manually edit the 

MSA to ensure that each individual position represents the 

product of evolutionary forces, rather than alignment errors; 

5) use objective criteria to define either regions conserved 

across all sampled taxa or regions specific to subsets of taxa; 

and 6) validate profile HMM specificity across different viral 

taxa. We foresee that, with ever increasing amounts of viral 

sequence data, comprehensive and robust profile HMM data 

will become available. Together with the development of 

more powerful bioinformatic tools and databases, we would 

be able in the near future to submit multiple metagenomic 

datasets to automated pipelines for viral detection and clas-

sification, and genome reconstruction and haplotyping.
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Supplementary material

Figure S1 Distribution of number of proteins per orthologous group for vFam1 (A) and pVOGs2 (B).
Notes: Data were obtained from the annotation files provided by the database authors and bins of size 10 were used for building the histograms. For increased readability, 
pVOGs data are shown only up to 1,000 proteins per orthologous group (just six groups presented numbers larger than that, up to a maximum of 8,131 proteins in the 
largest group). 
Abbreviations: pVOGs, Prokaryotic Virus Orthologous Groups; vFAM, viral profile HMM database.
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