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Abstract: Protein–protein docking simulations can provide the predicted complex structural 

models. In a docking simulation, several putative structural models are selected by scoring 

functions from an ensemble of many complex models. Scoring functions based on statistical 

analyses of heterodimers are usually designed to select the complex model with the most 

abundant interaction mode found among the known complexes, as the correct model. However, 

because the formation schemes of heterodimers are extremely diverse, a single scoring function 

does not seem to be sufficient to describe the fitness of the predicted models other than the 

most abundant interaction mode. Thus, it is necessary to classify the heterodimers in terms of 

their individual interaction modes, and then to construct multiple scoring functions for each 

heterodimer type. In this study, we constructed the classification method of heterodimers based 

on the discriminative characters between near-native and decoy models, which were found in 

the comparison of the interfaces in terms of the complementarities for the hydrophobicity, the 

electrostatic potential and the shape. Consequently, we found four heterodimer clusters, and 

then constructed the multiple scoring functions, each of which was optimized for each cluster. 

Our multiple scoring functions were applied to the predictions in the unbound docking.

Keywords: classification of  heterodimers, prediction of complex structures, scoring functions, 

protein–protein docking, CAPRI

Introduction
Many biological functions of proteins occur through specific recognition among protein 

molecules. Knowledge of protein–protein interactions, particularly three-dimensional 

structural information of protein–protein complexes, is crucial for understanding 

the biochemical and physiological functions of proteins.1–3 Recently, the number of 

tertiary structures of protein complexes has been increasing by the efforts of structure 

biologists; however, it is still smaller than that of known protein–protein interactions.4–6 

Therefore, the precise prediction of protein complex structures is required for further 

experimental studies. A protein–protein docking simulation is one of the popular 

approaches to predict protein complex structures.7–9

Docking procedures generally consist of two main steps, a sampling step and a 

subsequent scoring step. A large number of complex models are generated in the former 

step. The problem of searching the high dimensional conformational space to create a 

collection of complex models was studied by various research groups.10–19 However, 

there are still several issues to overcome, such as the introduction of conformational 

flexibility in the generation of near-native models for targets with large conforma-

tional changes.9,20,21 In the latter step, the selection of near-native models is achieved 
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with a scoring function from the many complex models 

generated in the former step. The various scoring functions 

that are presently available evaluate complex models in 

terms of the surface complementarity22,23 along with the 

electrostatic filter,10,11,24–26 the atomic contact energy (ACE)27 

or the statistical potentials based on the pairs of interacting 

residues,28–30 including hydrogen bonds and van der Waals 

interactions. However, the selection of correct solutions is 

not easily performed in the structure predictions of many 

different heterodimers.9,21

As previous studies have pointed out,1–3 various types 

of heterodimer complexes exist not only in biological func-

tions and three-dimensional structures, but also interaction 

modes. For example, there are heterodimers with electrostatic 

dominant interfaces, those with hydrophobic dominant 

interfaces, and those without interfaces but with high or low 

shape complementarity. In contrast, the scoring functions 

based on the statistical analysis of heterodimer interactions 

are usually designed to select the complex models with the 

most abundant interaction mode in the known complexes, and 

thus a single scoring function will not be enough to evaluate 

the diverse protein–protein interfaces. In addition, the 

identification of the interaction modes, ie, the classification 

of heterodimer complexes, was usually performed based 

on the interface characters observed in experimentally 

determined structures of heterodimers. However, to make a 

native dimer structure, the information about the difference 

between noninteracting sites and interacting sites will be 

more important because even a weak interface can be a native 

interface if no other better interfaces exist.

Several pioneering works have already proposed the 

multiple scoring functions optimized for each type of protein 

function.10,31–33 However, they focused only on two types: 

enzyme-inhibitor and antibody–antigen type complexes. The 

other heterodimers, such as those related to signal transduc-

tion and gene transcription and translation, were classified as 

other types.32,34 This is probably because the small numbers 

of known complex structures make it difficult to find the 

functional similarities between these heterodimers and to 

categorize them. Thus, the classification of heterodimers by 

using information other than that of protein functions will 

facilitate the construction of the multiple scoring functions.

In this study, we addressed the problem of selecting 

the correct solutions from the many complex models in 

the scoring step, by considering the various features of the 

heterodimers. First, we classified the native interacting 

sites by considering decoy structures, where the search 

for the parameters of the scoring functions to discriminate 

the near-native and the decoy models was carried out. 

As a scoring function, we used a linear combination of 

the weighted values of three complementarity scores for the 

hydrophobicity, the electrostatic potential, and the shape at the 

protein–protein interface.35 This function indicates the total 

degree of complementarities for the three surface features 

over the interfaces. The four heterodimer clusters were found 

according to our classification scheme. Four scoring functions 

were then constructed as multiple scoring functions where 

each function was optimized for each heterodimer type.

Materials and methods
Training dataset
native heterodimer complexes
The X-ray crystal structures of heterodimers, according to 

the biological units described in the header of the Protein 

Data Bank (PDB),36 which have 2.5 Å or better resolution 

and consist of two protein chains with more than 30 residues 

and a sequence identity lower than 85% by FASTA program,37 

were extracted from the PDB in April 2006. Among these 

structures, 122 representative heterodimers from each SCOP 

family class38 were finally selected. These entries are listed in 

Supplementary Tables 1 and 2. We referred to these experi-

mentally determined complexes as the native complexes.

Complex models generated by the sampling method
Up to 500 models for each heterodimer entry were generated 

by using our sampling method39 in the bound–bound docking 

where the structures of two protomers derived from the 

complex structure were used. This method generates complex 

models by optimizing an objective function, which evaluates 

the shape complementarity of the molecular surfaces of two 

component protomers by evaluating the angle of the normal 

vectors at the vertices on their molecular surfaces, and the 

sequence conservation of the surface residues calculated 

by the evolutionary trace (ET) analysis,40 when required. 

The sequence conservation information was not used for 

generating the complex models in this section, because 

there are the case where such information is not effective in 

indentifying the interacting region, and the case where a suf-

ficient number of homologous sequences cannot be obtained 

to calculate the sequence conservation.39 However, we used 

conservation information to construct one of the two test 

datasets, as described in the next section. The optimization of 

the objective function was accomplished by using a genetic 

algorithm in combination with Monte Carlo sampling. The 

final models were selected so that each model had a ligand-

rmsd (L-rmsd) larger than 3.0 Å from any other models. 
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Note that the smaller protomer in a complex structure is 

referred to as a ligand protein, and the larger protomer as a 

receptor protein. The rmsd is the root mean square deviation 

of one structure from another structure. The ligand-rmsd 

is the rmsd between the ligand proteins in two complex 

models when the receptor proteins are superimposed. Since 

we could not obtain any correct solutions, in other words, 

near-native models for the 43 entries, by the above sampling 

procedure, we carried out Monte Carlo sampling of the 

complex models by starting from the native structure to 

obtain the conformations around the native conformations, 

and we used these conformations as the near-native models. 

The Monte Carlo sampling was also performed so that each 

model had an optimized objective function and an L-rmsd 

smaller than 10.0 Å from the native complex. It should be 

noted that in the CAPRI experiments, the submitted models 

with an L-rmsd smaller than 10.0 Å from the correct answer 

are judged as the successful models.41,42 Then, all models 

were energy minimized by the myPresto program.43 In one 

entry, no model was successfully minimized due to many 

clashes. Therefore, we decided to exclude this entry from the 

dataset. Consequently, both near-native models and decoy 

models could be prepared for 121 heterodimer entries. The 

total numbers of the near-native and the decoy models in the 

121 heterodimer entries are 404 and 60,238, respectively.

The optimized objective function39 was used as an 

indicator of the quality of a complex model concerning the 

area and the shape complementarity in the contact region. 

Table 1 The test dataset: the CAPRi targets

Target (PDB ID)a Component proteinsb Near-nativec Decoyd Highest 
ranke

Scoring 
functionf

Characters of the native  
interface

T12 (1ohzg) Cellulosomal scaffolding 
cohesin/dockerin xylanase 
domain

1 29 8 fc3 Almost flat, Hydrophobic and 
electrostatic complementary interface

T18 (-) endo-1, 4-B-xylanase/its 
inhibitor TAXi

1 29 1 fc   4 highly concave and convex, 
highly shape and no hydrophobic 
complementary interface

T21 (1zhih) Origin recognition complex 
subunit1/regulatory protein 
sir1

1 29 2, 1 fc1, fc2 nonglobular complex, highly 
electrostatic and modestly shape 
complementary interface

T25 (2j59i) ADP-ribosylation factor1/Rho 
gTPase-activating protein 10 
ARF-binding domain

1 297 103 fc3 Almost flat, Hydrophobic and shape 
complementary interface

T26 (2hqsj) Peptidoglycan-associated  
lipoprotein/tolb

7 112 7 fc3  Concave and convex, hydrophobic 
and shape complementary interface

Notes: aThe target identity and the PDB iD of the native heterodimer complex. The PDB iD of T18 is unknown. binformation for the component proteins. cThe number of 
near-native models used in the test. dThe number of decoy models used in the test. eThe highest rank of the near-native model. fThe scoring function that made the highest 
rank of the near-native model. gCarvalho et al.62 hhou et al.63 iMenetrey et al.64 jBonsor et al.65

Table 2 The test dataset: the unbound–unbound pairs of the four heterodimer entries

Targeta Component proteinsb Near-nativec Decoyd Highest 
ranke

Scoring 
functionf

Characters of the native interface 

1bvng 1hx0.A (alpha-amylase)/1ok0.A 
(its inhibitor)

10 309 3 fc  4 Modestly shape, and no hydrophobic and 
electrostatic complementary interface

1ewyh 2bmw.A (ferredoxin-nADP reductase)/
1czp.A (ferredoxin i)

10 434 31 fc   4 Large concave and convex, Modestly 
electrostatic and shape complementary 
interface

1p2ji 1hj9.A (beta-trypsin)/5pti.A  
(its inhibitor)

10 490 3 fc 2 small concave and convex, electrostatic 
and shape complementary interface

1uugj 3eug.A (uracil-DnA glycosylase)/1ugi.A 
(its inhibitor)

10 469 10, 4 fc1, fc 2  Large concave and convex, highly 
complementary for three surface features

Notes: aThe PDB iD of the native complex of the training heterodimer entry. bPDB iDs and chain iDs of the monomeric structures of the component proteins and their 
information. cThe number of near-native models used in the test. dThe number of decoy models used in the test. eThe highest rank of the near-native model. fThe scoring 
function that made the highest rank of the near-native model. gWiegand et al.66 hMorales et al.61 ihelland et al.67 jPutnam et al.59
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Since the magnitude of the objective function differs entry 

by entry, the ratio of the optimized objective function of 

the model to that of the native complex, called the “relative 

docking-score”, was considered, where the objective func-

tions of the native complexes were calculated in the same 

way as that in the sampling method. The relative docking-

score = 1.0 means that the complex model had an interface 

as good and large as that in the native complex. In this study, 

we defined the complex models with an L-rmsd smaller than 

10.0 Å from the native complex and a relative docking-score 

higher than 0.95 as the near-native models.

heterodimers used in developing scoring functions
The 121 heterodimer entries were divided into two groups: 

one contained 47 entries, and another contained 74 entries. 

In the former 47 entries, the complex model with the largest 

relative docking-score was the near-native model. On the 

other hand, in the latter 74 entries, the model with the largest 

relative docking-score was not the near-native model, and 

there were some “false positive models”, which we defined 

as the complex models with 10.0 Å or greater L-rmsds 

from the native complexes and with relative docking-scores 

higher than 0.95. For the latter 74 entries, scoring functions 

that evaluate the complex models by regarding factors other 

than the contact area should be required to select the correct 

solutions. We considered that the number of false positive 

models is related to the difficulty in the selection of the 

correct solutions, and that it may be advantageous to develop 

multiple scoring functions by using the latter cases. Thus, 

we examined the number of false positive models in the set 

of complex models for the 121 heterodimer entries.

In the 47 heterodimer entries, no false positive model was 

obtained, as shown in Figure 1A, which provides an example 

of the relation between the L-rmsd and the relative docking-

score of each complex model. The native complexes of these 

entries are entangled, as in a swapping dimer or a dimer with 

a loop wound around it. The regions corresponding to the 

entangled loops in the complex state are usually flexible 

or disordered in the monomer state, and these regions will 

be fixed or ordered when the complex is formed. In the 

bound–bound docking, these entries will not yield any false 

positive complex models due to their tangles. On the other 

hand, in the unbound–unbound docking it will be difficult to 

generate the near-native models due to their flexibility. This is 

because the monomeric structures of the protomers are used, 

which may have flexible loops or disorder regions. Thus, in 

these entries, the near-native models will be selected based 

only on their contact area without ranking of the complex 
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Figure 1 A) An example of the heterodimers that do not need ranking of complex 
models to select the near-native models. The scatter plot shows the relation between 
the L-rmsd from the native complex and the relative docking-score in each model, in 
the heterodimer entry.  As this plot shows, this entry, the heterodimer between chains 
B and F of 1or7 (RnA polymerase sigma-e factor and its negative regulatory protein),68 
has no model with a 10.0 Å or greater L-rmsd and a higher relative docking-score than 
0.95. B) An example of the heterodimers that need ranking of complex models for the 
selection of the near-native models.  This heterodimer, chains A and B of 1ksh (arf-like 
protein 2 and 3′,5′-cyclic phosphodiesterase delta-subunit),69 has many models with 
large L-rmsds and high relative docking-scores.

models by the scoring functions. These 47 entries are listed 

in Supplementary Table 1.

The other 74 heterodimer entries have at least one false 

positive decoy, as shown in Figure 1B, where there are many 

false positive models with various L-rmsds. The native 

complexes of these entries have either convex and concave 

surfaces or almost flat surfaces in the interacting regions. 

These entries may require the evaluation functions other 

than the contact area to select the correct solutions, and 

therefore, they could be suitable for the development of 

scoring functions. Consequently, we decided to use these 

74 heterodimer entries, listed in Supplementary Table 2, as the 

training entries to construct the scoring functions. For each 
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of these heterodimers, 491.8 complex models, including 

4.4 near-native models, were obtained on average.

Test datasets
The CAPRi targets
For the CAPRI targets T12, T18, T21, T25, and T26, the 

complex models were generated from two initial struc-

tures in unbound–bound forms (targets T12, T18, and T25) 

or in unbound–unbound forms (targets T21 and T26) by using 

our sampling method, where the ET scores were included in 

the objective functions.39 We used the models with an L-rmsd 

smaller than 10.0 Å from the native complexes and with any 

relative docking-scores as near-native models (summarized 

in Table 1). It should be noted that we did not set the thresh-

old of the relative docking score in the determination of the 

near-native models for the test datasets. This is because the 

structures of the component protomers of the test targets and 

those of the corresponding native complexes were deter-

mined under different crystallization conditions, and thus a 

comparison of the scores of the complex models for the test 

targets with those of the native complexes is not significant.

The unbound–unbound pairs 
of the heterodimer entries
Six heterodimers, which have the monomeric structures 

of the two component protomers stored in the PDB, were 

found in the training dataset. We performed the unbound–

unbound docking from the monomeric structures of these 

entries by our sampling method without ET scores so that 

up to 500 complex models were generated for each entry. 

Four entries were available for this test because the other 

two entries yielded no model with an L-rmsd smaller than 

10.0 Å from the native complexes due to the conformational 

changes of the loop structures involved in the protein–protein 

interaction. All four of the entries had 10 or more models with 

L-rmsds smaller than 5.0 Å. Therefore, we chose 10 models 

with the largest values of the optimized objective functions 

among the complex models with L-rmsds smaller than 5.0 Å 

for each target as the near-native models. The other models 

with L-rmsds smaller than 10.0 Å were not used in this test. 

The information for these entries is summarized in Table 2.

scoring function
A scoring function was defined as a linear combination of 

weighted complementarity scores for the hydrophobicity, 

the electrostatic potential, and the shape on the molecular 

surfaces of the protein–protein interface. The basis of the 

complementarity calculation was originally developed for 

the classification and analyses of homo-oligomer interfaces 

in our previous study.35 First, a Connolly surface44 consisting 

of triangular polygons was constructed for each protomer. 

Next, the hydrophobicity calculated by the Ooi–Oobatake 

method,45 and the electrostatic potential obtained by solving 

the Poisson–Boltzmann equation numerically with the SCB 

program46 were mapped onto each vertex on the Connolly 

surface. The shape of the surface was also considered using 

the average curvatures at each vertex.47 The interacting region 

on the surfaces was defined as a set of pairs of vertices from 

different surfaces with a distance shorter than 3.0 Å. Then, the 

complementarity scores, H
cmp

, E
cmp

, and S
cmp

 for the hydropho-

bicity, the electrostatic potential and the shape, respectively, 

were defined as the ratio of the number of complementary 

vertex-pairs for the hydrophobicity (N
hyd

, hydrophobic and 

hydrophobic), the electrostatic potential (N
ele

, opposite sign 

of the potential) or the shape (N
shape

, convex and concave), 

respectively, to the total number of vertex-pairs exist-

ing in the interface, N
total

, as follows: H N Ncmp hyd total= , 

E N Ncmp ele total=  and S N Ncmp shape total= . It should be noted 

that we used the two indices of the shape complementarity 

of the interfaces in this study. One is the shape complemen-

tarity calculated by the objective function in the sampling 

step, which is used to choose complex models that have no 

or few crashes, moderately large areas, and almost continu-

ous interfaces, and to eliminate poor models. Another is the 

S
cmp

 that represents the degree of the shape complementarity 

against the interface, which is used to compare the different 

complex models in terms of the shape complementarities of 

the interfaces. The parameters to define the complementary 

vertex-pairs for the three surface features were optimized 

in conjunction with changing the distance cut off in the 

definition of the interacting region, from 1.0 Å in the original 

study35 to 3.0 Å, so that the difference between the comple-

mentarity scores of the energy-minimized and nonenergy-

minimized models was minimized. Since the optimization of 

the parameters was performed independently of this study, it 

will not be discussed further.

Finally, the degree of complementarities, COMP, was 

defined as follows:

	 COMP = Wh × Hcmp + We × Ecmp + Ws × Scmp  (1)

where the weight parameters, W
h
, W

e
, and W

s
, are normal-

ized so that W W Wh e S
2 2 2 1+ + = . The weight parameters 

were optimized by introducing the subparameters w
1
, w

2
, 

and w
3
, so that W w Wh = 1 ,  W w We = 2  and W w Ws = 3  

where W w w w= + +1
2

2
2

3
2  to ensure the constraint of 

W W Wh e S
2 2 2 1+ + = . The subparameters were changed 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2009:284

Tsuchiya et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

from -100 to 100 at intervals of 1. Thus, 8, 120, 600 (= 2013 - 1) 

weight combinations, the combinations of w
1
, w

2
, and w

3
, were 

considered, where 1 is (w
1
, w

2
, w

3
) = (0, 0, 0). The values of 

W
h
, W

e
, and W

s
 ranged from -1.0 through 1.0, respectively.

search for the successful weight 
combinations
The highly successful weight combinations in the selection 

of near-native models were searched among all of the pos-

sible weight combinations, to classify the heterodimers and 

then to construct the multiple scoring functions, as follows.

Conversion of the three-dimensional weight 
combinations into the two-dimensional space
The three-dimensional weight combinations were con-

verted into the two-dimensional space of two angles, 

the zenith and azimuth angles in polar coordinates, where 

the radius = 1, the zenith angle was the angle between the 

W
s
-axis and the line from the origin to the considered point, 

and the azimuth angle was that between the positive 

W
h
-axis and the line from the origin to the considered point, 

projected onto the W
h
-W

e
 plane. The two-dimensional space 

was separated into 162 grids at intervals of 20 degrees as 

shown in Figure 2. We considered two more grids, which 

correspond to (W
h
, W

e
, W

s
) = (0, 0, 1) and (W

h
, W

e
, W

s
) = 

(0, 0, -1), because when the zenith angle is 0 or 180, namely 

W
s
 = 1 or -1, respectively, the azimuth angle cannot be 

defined. It should be noted that this weighing scheme did 

not yield equal density of weight combinations. Therefore, 

these 164 grids contained different numbers of weight 

combinations, as shown in the third column of Supple-

mentary Table 3.
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Figure 2 The distribution of the grids with high foccrs in each cluster. The grids with foccrs higher than 5.0 in the entries belonging to each cluster are colored based on the 
color bar on the bottom-right corner, where “C1”, “C2”, “C3” and “C4” mean Clusters 1, 2, 3 and 4, respectively.  The outside grids with (0, 0, 1) and (0, 0, -1) are those 
corresponding to (Wh,  We,  Ws) = (0, 0, 1) and (Wh,We,Ws) = (0, 0, -1), respectively.  The Wgrids in the grids surrounded by black dotted-lines were defined as the multiple 
scoring functions, where the grids with fc1, fc2, fc3 and fc  4 were selected from Clusters 1, 2, 3 and 4, respectively.  The serial numbers of each grid for the zenith (θ   ) and azimuth 
(φ  ) angles, respectively, are also shown on the axes of the both angles, which are assigned at intervals of 20 degrees, respectively.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2009:2 85

Analysis of diverse heterodimer interfacesDovepress

submit your manuscript | www.dovepress.com

Dovepress 

An occurrence frequency of the successful weight 
combinations in a grid
In each training entry, for each weight combination, the COMP 

values of all complex models were calculated, and the complex 

models were ranked in the order of the COMP values. Then, an 

occurrence frequency, f
occr

(θ, φ), of the weight-combinations 

that could rank the near-native models in the top 10 was 

calculated in each grid according to the following Equation,

 
f

N

N

N
occr

grid entry

grid possible

total entry( , )
( , )

( , )
_

_

_θ φ
θ φ
θ φ

=
NNtotal possible_

  (2)

where N
grid_entry

(θ, φ) was the number of weight combinations 

that could rank at least one near-native model in the top 10 

in each grid, and N
grid_possible

(θ, φ) was the number of all of the 

possible weight combinations belonging to each grid, which 

was shown in the third column of Supplementary Table 3. 

Because N
grid_possible

(θ, φ) differs grid by grid as described 

above, N
grid_entry

(θ, φ) was normalized by N
grid_possible

(θ, φ) in 

Eq. 2, to avoid under- or overestimation in the calculation 

of the f
occr

. The “θ ” and “φ ” were the serial numbers of each 

grid for the zenith and azimuth angles, respectively, and they 

were assigned at intervals of 20 degrees on the axes of the 

both angles as shown in Figure 2. It should be noted that a 

prediction is generally regarded as “acceptably” successful, 

when the correct solutions are ranked within the top 10. 

This criterion is also adopted in the CAPRI experiment.41,42 

(N
total_entry

/N
total_possible

) was set to correct the differences in 

the degrees of difficulty in ranking the near-native models 

in the top 10 between different entries. N
total_entry

 was the 

summation of the N
grid_entry

(θ, φ)s in all grids. N
total_possible

 was 

the summation of the N
grid_possible

(θ, φ)s in all grids, namely 

N
total_possible

 = 8,120,600. If (N
total_entry

/N
total_possible

) is 1, then all 

weight-combinations can rank the near-native models in the 

top 10. When (N
total_entry

/N
total_possible

) is considerably smaller 

than 1, only a few weight combinations can rank the near-

native models highly. This indicates that the selection of the 

near-native models in the latter case is more difficult than that 

in the former case. The high f
occr

(θ, φ) indicates that the weight 

combinations existing in the grid have high possibilities of 

success in the selection of near-native models.

Results and discussion
Classification of the heterodimer entries
We first tried to classify the 74 heterodimers to construct the 

multiple scoring functions that select the near-native models 

from many decoy models, as summarized in the flowchart 

in Supplementary Figure 1 where the whole procedures for 

constructing the multiple scoring functions are shown. The 

classification was performed based on the discriminative 

characters between near-native models and decoy models, 

which were found in the calculation of the f
occr

(θ, φ) for each 

grid in each entry, as follows.

As shown in the seventh column of Supplementary Table 3, 

the numbers of entries with N
grid_entry

(θ, φ) larger than 0 were 

very diverse. It suggests that there are no major grids in which 

the weight parameters can succeed in selecting near-native 

models in many entries, and therefore, the classification will 

be required. Thus, the 74 training heterodimer entries were 

classified based on the f
occr

(θ, φ)s in all 164 grids in each 

entry, by the clustering method of program R,48 where the 

Euclidean distances between the 164-dimensional vectors 

of the f
occr

(θ, φ)s were used as the distances between entries. 

The distances between the clusters were then calculated by 

Ward’s method. This clustering method divided the 74 training 

heterodimer entries into two groups clearly, where one group 

was also separated into two clear clusters, but another was not 

divided. We investigated the grids where the entries belong-

ing to each group had f
occr

 higher than 5.0, and found that the 

separation in the former group related to the grids with high 

f
occr

, as shown in Figure 2. We also found that the latter group 

might be separated into two clusters in the same manner as 

that in the former group. Therefore, we decided to classify the 

heterodimers into four clusters, Clusters 1 and 2 from one large 

group, and Clusters 3 and 4 from another large group, each 

containing 15, 12, 9, and 9 entries, respectively. It should be 

noted that we tried 1.0, 2.5, 5.0, and 7.5 as the f
occr

 criterion 

to define the distribution of the grids. When either 1.0 or 2.5 

was used as the criterion, the difference between the distribu-

tions in the two groups was unclear. On the other hand, some 

entries had no f
occr

(θ, φ) higher than or equal to 7.5. Therefore, 

we used 5.0 as the criterion. The grids where at least one entry 

belonging to a cluster had the f
occr

(θ, φ) higher than 5.0 were 

regarded as the “grids belonging to the cluster”, which were 

colored according to the color bar in Figure 2. Note that the 

grids could belong to two or more different clusters. The other 

29 entries could not be classified as any clusters, because no 

weight-combination could rank the near-native models in 

the top 10, namely the f
occr

(θ, φ)s in all grids were 0.

Our method succeeded in the selection of the near-native 

models in 45 entries (60.8% = 45/74), as described above. 

To investigate the performance of our method, we examined 

the performance of ZDOCK12 in the bound–bound docking 

for the 74 training heterodimers. ZDOCK could include at 

least one complex model with the L-rmsd smaller than 10 Å 

from the native complex in the best 10 models, in 62 entries 
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(83.8% = 62/74). Because our criterion for a successful 

prediction is that at least one complex model with the L-rmsd 

smaller than 10 Å from the native complex and with the relative 

docking-score larger than 0.95 is ranked in the top 10, we 

calculated the relative docking-scores of the best 10 complex 

models generated by ZDOCK. We also tried 0.90 and 0.85 

as the thresholds of the relative docking-score, because 0.95 

might be a severe threshold for ZDOCK models which were 

not optimized for the objective functions by our sampling 

method. As the result, in 43 entries (58.1% = 43/74), at least 

one complex model could meet our criterion. For 0.90 and 0.85 

thresholds, 52 (70.3% = 52/74) and 56 (75.7% = 56/74) entries 

could meet the criteria, respectively. Thus, the performance of 

our method was not very low, compared to that of ZDOCK 

in the bound-bound docking for our training dataset.

All of the grids with high f
occr

(θ, φ)s in Cluster 1 

had positive weights for the shape of the interface. This 

indicates that the shape complementarity was the most 

effective contributor in ranking the near-native models 

in the top 10. In other words, the shape complementarity 

was the “discriminator” of the near-native models from 

the other decoys. The discriminators in Clusters 2 and 3 

were the complementarities for the electrostatic potential 

and the hydrophobicity, respectively. In Cluster 4, the 

weight of the shape contribution was positive; however, 

the weight of the hydrophobicity was negative. The informa-

tion about these clusters is summarized in Table 3.

Construction of the multiple scoring 
functions
Based on the classification results, the multiple scoring 

functions were constructed so that each function was 

applicable to the selection of the near-native models in the 

heterodimer entries belonging to each cluster, as follows. 

First, we considered the respective averages of the three 

weight values corresponding to all weight-combinations 

belonging to each grid, as a representative weight-

combination in each grid, which we designated as W
grid

. 

Then, the near-native models were again selected by using 

the 164 W
grid

s for the training entries. Finally, four W
grid

s, 

each of which was a W
grid

 in a grid belonging to each cluster, 

were chosen so that the total number of successful entries in 

the selections by the four W
grid

s was maximized. Since there 

were cases where the near-native models in an entry could 

be ranked in the top 10 by two or more W
grid

s belonging to 

different clusters, the total number of successful entries by 

the four W
grid

s was counted as follows, to avoid overlaps in 

counting: the number of successful entries by a W
grid

 from 

Cluster 1 was counted, and then, among the failed entries by 

the W
grid

 from Cluster 1, the number of successful entries 

by a W
grid

 from Cluster 2 was counted. This procedure was 

iterated up to Cluster 4. The number of successful entries 

was counted for all of the possible combinations of the four 

W
grid

s from the four clusters. Consequently, we selected 

the four W
grid

s, with grids surrounded by the dotted-lines 

in Figure 2, as the multiple scoring functions, and desig-

nated them as f
c1

, f
c2

, f
c3

 and f
c4

, from Clusters 1, 2, 3 and 4, 

respectively. The real weight values of the four W
grid

s are f
c1

: 

(W
h
, W

e
, W

s
) = (0.34, 0.40, 0.84), f

c2
: (-0.27, 0.71, -0.64), 

f
c3

: (0.74, 0.13, -0.64), and f
c4

: (-0.52, -0.10, 0.84), 

respectively. The total number of successful entries by 

the four W
grid

s was 33 (73.3% = 33/45), where 45 was the 

number of entries where the near-native models could be 

selected by any W
grid

s.

Table 3 Discriminator of the scoring function and characteristics of the native complexes in each cluster

Clustera Discriminatorb Native charactersc

 Hydrophobic Electrostatic Shape  

1 + ++ Modestly globular complex. highly shape and 
electrostatic complementary interface

2 ++ nonglobular complex. highly electrostatic 
complementary interface

3 + Almost globular complex. hydrophobic 
complementary interface

4 – + shape complementary but no hydrophobic 
complementary interface

Notes: aThe cluster identity. bThe discriminator in each cluster. The terms “hydrophobic”, “electrostatic” and “shape” mean the complementarities for the hydrophobicity, 
the electrostatic potential and the shape, respectively. The “+” means that the corresponding weight had a positive effect on the selection of the near-native models. On the 
other hand, the “-” means that the weight did not contribute to the selection. The weight with “++” contributes significantly to the selection. cThe characters of the native 
complexes of the entries classified as the cluster.
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Classification results of heterodimers 
in the training dataset
The heterodimers in our training dataset were classified based 

on the occurrence frequencies of the weight-combinations 

that could select the near-native models, as described 

above. Next, we tried to find the common characteristics in 

each cluster, and to investigate whether the classification 

results were related to the biological functions. To find the 

characteristics of the heterodimers, we examined the native 

complexes of the heterodimer entries from the aspects of 

the whole complex structures and the interface shapes by 

assessing them visually,49 and the aspect of the interaction 

modes by checking the complementarity scores for the 

hydrophobicity, the electrostatic potential, and the shape at 

the interfaces, designated as H
cmp

, E
cmp

, and S
cmp

, respectively. 

The common characteristics of the native complexes in each 

cluster are summarized in Table 3.

Common characteristics in Cluster 1
In 11 entries among the 15 entries belonging to Cluster 1, 

the interfaces of the native complexes have higher S
cmp

s than 

the average of the S
cmp

s in the 74 training entries (0.36). The 

S
cmp

s in the other four entries are lower than the average, but 

are not very small (1m2t: 0.33, 1o6s: 0.34, 1sq2: 0.34, and 

1t6g: 0.34). The overall structures of these 15 entries are 

modestly “globular”. Eight of them also have higher E
cmp

s 

than the average of the E
cmp

s (0.38). The entry in Figure 3A: 

the heterodimer of lysozyme C and antigen receptor V 

domain (1sq2),50 which has a lower S
cmp

 (0.34) than the 

average, shows that the proteins interact with each other by 

placing concave surfaces on convex surfaces. This suggests 

that shape complementarity is the dominant characteristic in 

this cluster. It corresponds to the discriminator in this cluster, 

namely the character of f
c1

.

Common characteristics in Cluster 2
Among the 12 entries in Cluster 2, 11 interfaces of the native 

complexes have higher E
cmp

s than the average (0.38), and 

their overall complex structures are “nonglobular”, as shown 

in Figure 3B: the heterodimer of the chaperone ATPase 

domain and the BAG chaperone regulator (PDB ID 1hx0, 

E
cmp

: 0.61),51 where the electrostatically positive surfaces, 

colored blue, tightly interact with the electrostatically negative 

surfaces, colored red. Thus, the characteristic surface feature 

of the native interfaces in Cluster 2 could be the electrostatic 

complementarity, and it corresponds to the character of f
c2

.

The last entry, 1fxw, has lower complementarity scores for 

three surface features (H
cmp

: 0.10, E
cmp

: 0.28, and S
cmp

: 0.29) 

than the averages in the 74 training entries (0.16, 0.38, 

and 0.36), respectively. No significant characteristics were 

found for this example.

Common characteristics in Cluster 3
In seven of the nine entries classified in Cluster 3, the 

interfaces of the native complexes have higher H
cmp

s than the 

average (0.16). The interface shapes are either low convex 

and concave or almost flat. The whole complex structures 

are more “globular” than those in Clusters 1 and 2. The 

heterodimer of the GTPase domain of a signal recognition 

particle and its receptor (1rj9),52 shown in Figure 3C, has 

an almost flat interface and a higher H
cmp

 (0.26) than the 

average, and resembles a homodimer interface. Thus, the 

characteristic surface feature of the native interfaces in this 

cluster could show the hydrophobic complementarity, which 

corresponds to the character of f
c3

.

In the remaining two entries, one entry, 1clv, has lower 

complementarity scores for three surface features (H
cmp

: 0.11, 

E
cmp

: 0.13, and S
cmp

: 0.34), and the other entry, 1uzx, has 

lower H
cmp

 and S
cmp

 (H
cmp

: 0.12, E
cmp

: 0.55, and S
cmp

: 0.29) 

than the averages (0.16, 0.38, and 0.36). Since the interface 

of the former entry consists of relatively highly convex and 

concave surfaces, this interface is considered to be similar 

to those of the entries belonging to Cluster 1. We could not 

understand why the latter case differed.

Common characteristics in Cluster 4
For all nine of the entries belonging to Cluster 4, the 

near-native models could be ranked in the top 10 by fewer 

weight-combinations than those in the other clusters. This 

indicates that the selection of the near-native models in this 

cluster was more difficult than those in the other clusters. 

The native interface of one entry has a steep shape, made of 

one loop structure, and those of the other five entries have 

smooth shapes, as shown in Figure 3D: the heterodimer of 

DNA polymerase III beta and delta chains (1jql).53 In the 

other three entries, the native complexes have a few water 

molecules at the interacting regions. No characteristic of the 

native complexes was found in this cluster, and the features 

of these entries were similar to those of the entries that failed 

in the selection of the near-native models, described in the 

next section.

Failed entries in selecting the near-native models
Among the 74 training heterodimers, 29 were not classified 

as any clusters because no near-native model could be 

ranked in the top 10 by any weight combination. The native 
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Figure 3 The characters of the native complexes of the heterodimer entries belonging to each cluster. For an entry in each cluster, the whole complex structure, the interface 
region colored purple, and the electrostatic potential mapped on the surfaces, where the negative and positive electrostatic potentials are colored red and blue, respectively, 
of the native complex are shown. The middle and left figures are shown in open-book view. A) An example in Cluster 1 (chains L and n of 1sq2). B) An example in Cluster 2 
(chains A and B of 1hx1). C) An example in Cluster 3 (chains A and B of 1rj9). D) An example in Cluster 4 (chains A and B of 1jql). E) An example of the failed entries in the 
selection of near-native models (chains A and B of 1tej).

complexes in six entries have steep shapes at the interfaces 

and those in 17 other entries have smooth shapes or almost flat 

interfaces. In these 23 (= 6 + 17) entries, the protomers of the 

dimers could bind tightly with each other at different surface 

regions from the native interfaces, thus generating many 

decoy models with high complementarity scores, as shown in 

Figure 3E: a disintegrin heterodimer (1tej).54 In the other six 

entries, the native complexes have water or ligand molecules 

in the interacting regions. These native interfaces have lower 

complementarity scores than those expected. This is because 
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the protein–water and protein–ligand interactions were not 

considered in the calculation of the complementarities. 

Thus, the complementarity scores of the near-native models 

were also lower than those of other decoy models.

The many decoy models with high complementarity 

scores in the former 23 entries, and the low complementar-

ity scores of the near-native models in the latter six entries 

made the correct selection difficult. Further optimization of 

the parameters or the introduction of other parameters in the 

calculation of interface complementarities might be required 

for these cases.

Biological functions of the heterodimers  
in each cluster
Among the 74 training entries, 19 enzyme-inhibitor 

complexes were included, as marked in Supplementary 

Table 2. We examined the clusters to which these enzyme-

inhibitor complexes belonged, in order to investigate whether 

the classification results were related to the biological 

function. Twelve complexes were classif ied into four 

different clusters; five, two, two, and three entries belong-

ing to Clusters 1, 2, 3, and 4, respectively. The other seven 

entries were not classified into any clusters because they 

failed in selecting the near-native models. In 14 of the 

19 enzyme-inhibitor complexes, the native interfaces are 

formed through the interaction between the concave and 

electrostatically negative surface of the enzyme and the 

convex and electrostatically positive surface of the inhibitor, 

as shown in Figure 4B: the heterodimer of alkaline metal-

loproteinase and its inhibitor (1jiw),55 Figure 4C: alpha-

amylase and its inhibitor (1clv),56 and Figure 4D: endo-1, 

4-beta-xylanase and its inhibitor (1ta3).57 However, as 

these examples show, they have diverse depths and sizes of 

cavities and different ratios of molecular sizes between the 

enzyme and the inhibitor proteins. The other four enzyme-

inhibitor complexes have both electrostatically positive and 

negative surfaces on each side of the interfaces, as shown 

in Figure 4A: the heterodimer of the TEM-1 beta-lactamase 

and its inhibitor protein II (1jtd).58 In the remaining entry, 

1uug, the heterodimer of uracil-DNA glycosylase and its 

inhibitor,59 which was not classified in any cluster and 

is shown in Figure 4E, the interface on the enzyme side 

is electrostatically positive, and that on the inhibitor is 

electrostatically negative. These observations indicate that 

the heterodimers with the same protein functions can have 

the different discriminative characters between the near-

native and the decoy models, and also have the different 

dominant characters in their native interfaces.

It is widely accepted that transient and permanent 

complexes differ in terms of the type of interactions: the 

former complexes are often formed through salt bridges 

and hydrogen bonds, while the latter are formed through 

hydrophobic interactions.2 Since the identification of transient 

complexes is difficult, we tried to find stable heterodimers 

by checking the primary citations of the native complexes 

of the training heterodimer entries, and also to find transient 

heterodimers by referring to the list of transient heterodimers 

by Nooren and Thornton.60 We found 13 stable heterodimers 

and eight transient heterodimers. Among the latter transient 

heterodimers, five entries were included in their list, and 

the other three entries contained the domains with the same 

SCOP family identities38 as those of the listed heterodimers. 

Both the stable and transient heterodimers were also classified 

as different clusters, as shown in Supplementary Table 2. 

It suggests that the discriminative interface characters are 

not common in transient complexes and in stable complexes, 

respectively, and moreover, there are no clear differences 

between the discriminative characters of transient complexes 

and those of stable complexes.

Thus, the clusters based on the discriminative interface 

characters between the near-native and the decoy models 

were independent from the types of biological functions of 

the heterodimers, and they were only related to the dominant 

characters of the native heterodimer interfaces.

scoring tests for unbound docking models
The multiple scoring functions were tested in the selection 

of the correct solutions from complex models, which were 

generated from the monomeric structures of component 

proteins of heterodimers. Two datasets were tested: one is the 

set of five CAPRI targets,8,21 T12, T18, T21, T25, and T26, and 

the other is the set of four pairs of the monomeric structures 

for the four training heterodimer entries. For each target, both 

near-native and decoy models were generated by our sampling 

method from the monomeric structures in the unbound-bound 

form (T12, T18, and T25), and in the unbound–unbound 

form (T21, T26, and the four training entries). Note that the 

complex models for the CAPRI targets were generated by 

considering the sequence conservations by the ET method, 

as described in Materials and methods. Because we narrowed 

the search of complex models according to the result of the 

ET, we could not obtain a large number of models. Thus, the 

numbers of complex models in these targets were small and 

diverse. Although we did not calculate the number of false 

positive models for each target because the relative-docking 

scores could not be estimated for unbound docking models 
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Figure 4 The characters of the native complexes of the enzyme-inhibitor type heterodimers. For the enzyme-inhibitor dimer classified as each cluster, the whole complex 
structure, the interface region colored purple, and the electrostatic potential mapped on the surfaces, where the negative and the positive electrostatic potentials are colored 
red and blue, respectively, of the native complex are shown. The middle and left figures are shown in open-book view. A) An example in Cluster 1 (chains A and B of 1jtd). 
B) An example in Cluster 2 (chains i and P of 1jiw). C) An example in Cluster 3 (chains A and i of 1clv). D) An example in Cluster 4 (chains A and B of 1ta3). E) An example 
of the failed entries in the selection of near-native models (chains C and D of 1uug).

as described before, the difficulty of the selection of the 

near-native models may differ target by target. In the scoring 

test, the rankings of the complex models were performed by 

each of the four scoring functions, and the prediction was 

considered to be successful when at least one near-native 

model could be ranked in the top three by at least one scoring 

function. As a result, in two out of the five CAPRI targets 

and the two monomer pairs of the heterodimer entries, at 

least one scoring function could rank the near-native models 

within the top three. In the other three targets, the near-native 

models were ranked within the top 10. The characteristic 

surface features of the native interfaces also corresponded 
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to the characters of the successful scoring functions in these 

seven targets, as summarized in Tables 1 and 2 and shown 

in Supplementary Figure 2.

In the CAPRI target T25 and the monomer pair of 1ewy,61 

no scoring function could rank the near-native models in the 

top 10. The highest ranks of the near-native models were 

103 by f
c3

 in T25 and 31 by f
c4

 in 1ewy. The native complex 

of  T25 has a hydrophobic interface with a complementary 

shape, and that of 1ewy has a modestly electrostatic and 

shape complementary interface. These features suggest 

that f
c3

 for T25 and f
c2

 or f
c4

 for 1ewy are appropriate for 

selections of the near-native models. Thus, the characters 

of the scoring functions that made the highest ranks, also 

corresponded to the characteristic features of the native 

interfaces in these two entries.

Conclusion
In this study, we constructed the multiple scoring functions 

based on the classification of the diverse heterodimers. In 

the four clusters found in this study, Cluster 1 contained the 

largest number of entries (15 entries); however, there were 

few differences between the number of entries in Cluster 1 

and those in the other clusters, 12, 9, and 9 in Clusters 2, 3, 

and 4, respectively. In other words, based on our classification 

scheme no major cluster with a dominant interaction mode 

was found. Therefore, we think that the multiple scoring func-

tions constructed according to our classification scheme may 

have a better potential for selecting the near-native models 

of heterodimers than a single scoring function.

In an actual prediction, the selection of one scoring 

function appropriate for a given pair of protomers may be 

required. We consider that one possible approach to the 

selection is as follows; the COMP values of all complex 

models are calculated by each of the four scoring functions, 

and then, the Z-scores are estimated from the COMP values. 

The scoring function with the best Z-score can be the most 

appropriate scoring function. This approach succeeded in 

ranking the near-native models in the top 10 in two CAPRI 

targets (T21 and T26) and one monomer pair (1bvn) of our 

test datasets.
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Supplementary data

Table S1 heterodimer entries not used to construct the scoring functions

PDBIDa Chain 1 Chain 2 Residue 1b Residue 2c

1b0n A B 111 57

1dce C D 567 331

1dev C D 196 41

1e44 B A 96 85

1euc B A 396 311

1euv A B 211 86

1f2t A B 149 148

1f34 A B 326 149

1f3u F e 171 118

1f60 A B 458 94

1fs0 g e 230 138

1g8k F e 825 133

1gk9 B A 557 260

1go3 M n 187 107

1gzs A B 180 165

1h0h A B 977 214

1h1r A B 303 258

1h9h* e i 223 36

1hfe M T 421 123

1i2m B A 402 216

1izn A B 286 277

1jdh A B 529 38

1jkg B A 250 140

1jlt A B 122 122

1ka9 F h 252 200

1kfu L s 699 184

1ld8 B A 437 382

1lp1 A B 58 58

1m1e A B 538 81

1mtp A B 323 43

1mu2 A B 555 426

1n1j B A 97 93

1nf3 A C 195 128

1o94 D C 320 264

1o97 D C 320 264

1oo0 A B 147 110

1or7 B F 194 90

1p5v A B 235 147

1q7l A B 198 88

1r8o A B 96 71

1rp3 g h 239 88

1s9d e A 203 164

1tqy g h 424 415

1ubk L s 534 267

1ugp B A 226 203

1vet B A 125 124

1vf6 B D 83 72

6req C D 727 637

Notes: aThe entry with “*”, 1h9h, failed in the energy minimization. bThe number of residues in chain 1. cThe number of residues in chain 2.
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Table S2 74 training heterodimer entries

PDBID Chain 1 Chain 2 Residue 1a Residue 2b Clusterc Functiond NNe FPf

1b2s A D 110 90 C4 e 8 20

1bvn P T 496 74 C4 e 7 3

1c1y A B 167 77 C2 t 1 300

1clv A i 471 32 C3 e 4 8

1ct4 e i 185 51 C3 e 4 144

1cxz A B 182 86 C1 t 3 216

1d2z D C 153 108 C1 3 3

1d4x A g 375 126 C3 2 4

1dj7 A B 117 75 C4 s 4 14

1dtd A B 303 61 – e 4 101

1e96 B A 203 192 C2 t 4 157

1ewy A C 303 98 – 10 238

1f3v A B 179 171 – 2 81

1f7z A i 233 65 – e 3 96

1fm0 e D 150 81 C4 s 3 6

1fr2 B A 134 86 C2 2 36

1fxw A F 232 229 C2 s 3 4

1fyh A B 258 229 C4 4 109

1gl1 C K 245 36 – e 6 26

1gl4 A B 285 98 – 5 33

1h32 A B 261 138 C1 s 2 2

1he1 C A 176 135 – t 3 18

1hx1 A B 400 114 C2 5 105

1ibr D C 462 216 – t 4 11

1ird B A 146 141 – s 3 8

1j2j A B 166 45 – 4 66

1jat A B 155 138 C2 5 35

1jiw P i 470 106 C2 e 6 15

1jql A B 366 140 C4 5 47

1jtd B A 273 263 C1 e 9 47

1jtg A B 263 165 – e 6 3

1kd8 e F 36 36 C3 4 6

1ki1 B A 352 188 – 5 33

1kli h L 254 69 – s 2 3

1kps D C 171 159 – 3 128

1ksh A B 186 152 C4 6 84

1kxq B g 496 120 C2 e 7 21

1kz7 A B 353 188 – t 3 3

1l4d A B 249 122 – 4 165

1lsh A B 1056 319 C3 s 5 135

1lw6 e i 281 64 C1 e 2 9

1m2t B A 263 254 C1 s 5 21

1m9x B C 165 146 C1 5 121

1mbx A C 142 106 – 3 159

1mqk h L 127 120 – s 4 2

1nf5 D C 286 123 – s 6 302

1nrj B A 218 158 C3 3 35

(Continued)
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Table S2 (Continued)

PDBID Chain 1 Chain 2 Residue 1a Residue 2b Clusterc Functiond NNe FPf

1nw9 B A 277 98 – 6 19

1o5e h L 255 114 C1 s 3 3

1o6s A B 466 105 C1 2 15

1oc0 A B 379 51 C1 e 2 184

1ow3 A B 242 193 C3 t 3 14

1p2j A i 223 58 C1 e 3 29

1qav B A 115 90 – s 1 34

1rj9 A B 304 300 C3 4 33

1shw B A 181 138 – 8 154

1sq2 L n 129 113 C1 3 48

1sv0 A C 85 82 C2 5 88

1svx B A 395 169 C1 6 271

1t6b Y X 735 189 C4 10 78

1t6g A C 381 184 C1 e 9 45

1ta3 B A 303 274 C4 e 3 155

1te1 A B 274 190 – e 6 136

1tej A B 64 64 – s 5 174

1tmq A B 471 117 – e 6 16

1tue L K 218 212 C2 6 164

1u0s Y A 118 86 C1 t 4 16

1ukv g Y 453 206 – 3 3

1usu A B 260 170 C2 3 192

1uug C D 229 84 – e 7 49

1uw4 D C 248 91 – 2 26

1uzx A B 169 76 C3 5 122

1v74 A B 107 87 C2 5 39

3fap A B 107 94 –  8 315

Notes: aThe number of residues in chain 1. bThe number of residues in chain 2. cThe cluster in which the entry was classified. “C1”, “C2”, “C3” and “C4” mean Clusters 1, 2, 
3 and 4, respectively. The “–” means that the entry failed in the selection of near–native models. d The entries with the signs “e”, “t” and “s” were discussed in terms of their 
biological functions in the text.  The “e” means that the entry is an enzyme–inhibitor type complex. The “s” means that the entry is considered as a stable complex. The “t” 
means that the entry is considered as a transient complex by nooren and Thornton.1 eThe number of near–native models. f The number of false positive models.
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Table S3 Data for 164 grids

θa φb Ngrid _ possible
c Wh

d We
e Ws

f Ngrid_entry  0g

1 1 6,985 -0.24 -0.05 0.97 9

1 2 7,750 -0.20 -0.12 0.97 8

1 3 7,806 -0.15 -0.18 0.97 7

1 4 7,832 -0.08 -0.22 0.97 6

1 5 7,829 0.00 -0.23 0.97 6

1 6 7,832 0.08 -0.22 0.97 6

1 7 7,806 0.15 -0.18 0.97 7

1 8 7,750 0.20 -0.12 0.97 8

1 9 6,985 0.24 -0.05 0.97 11

1 10 8,776 0.22 0.04 0.97 14

1 11 7,750 0.20 0.12 0.97 16

1 12 7,806 0.15 0.18 0.97 20

1 13 7,832 0.08 0.22 0.97 17

1 14 7,829 0.00 0.23 0.97 18

1 15 7,832 -0.08 0.22 0.97 17

1 16 7,806 -0.15 0.18 0.97 16

1 17 7,750 -0.20 0.12 0.97 15

1 18 8,776 -0.22 0.04 0.97 12

2 1 32,634 -0.52 -0.10 0.84 10

2 2 33,681 -0.45 -0.26 0.84 5

2 3 33,747 -0.34 -0.40 0.84 2

2 4 33,819 -0.18 -0.49 0.84 1

2 5 33,647 0.00 -0.53 0.84 1

2 6 33,819 0.18 -0.49 0.84 1

2 7 33,747 0.34 -0.40 0.84 3

2 8 33,681 0.45 -0.26 0.84 5

2 9 32,634 0.52 -0.10 0.84 7

2 10 35,031 0.52 0.09 0.84 16

2 11 33,681 0.45 0.26 0.84 19

2 12 33,747 0.34 0.40 0.84 19

2 13 33,819 0.18 0.49 0.84 18

2 14 33,647 0.00 0.53 0.84 19

2 15 33,819 -0.18 0.49 0.84 19

2 16 33,747 -0.34 0.40 0.84 19

2 17 33,681 -0.45 0.26 0.84 17

2 18 35,031 -0.52 0.09 0.84 16

3 1 69,113 -0.74 -0.14 0.64 9

3 2 90,640 -0.66 -0.39 0.63 1

3 3 106,400 -0.50 -0.59 0.62 0

3 4 77,866 -0.27 -0.71 0.64 1

3 5 68,054 0.00 -0.75 0.65 1

3 6 77,866 0.27 -0.71 0.64 2

3 7 106,400 0.50 -0.59 0.62 2

3 8 90,640 0.66 -0.39 0.63 4

3 9 69,113 0.74 -0.14 0.64 9

(Continued)

Table S3 (Continued)

θa φb Ngrid _ possible
c Wh

d We
e Ws

f Ngrid_entry  0g

3 10 72,059 0.74 0.13 0.64 15

3 11 90,640 0.66 0.39 0.63 17

3 12 106,400 0.50 0.59 0.62 20

3 13 77,866 0.27 0.71 0.64 21

3 14 68,054 0.00 0.75 0.65 21

3 15 77,866 -0.27 0.71 0.64 19

3 16 106,400 -0.50 0.59 0.62 22

3 17 90,640 -0.66 0.39 0.63 19

3 18 72,059 -0.74 0.13 0.64 17

4 1 49,496 -0.91 -0.17 0.35 10

4 2 75,588 -0.80 -0.48 0.35 2

4 3 102,916 -0.61 -0.70 0.35 1

4 4 58,480 -0.33 -0.87 0.35 0

4 5 48,037 0.00 -0.93 0.35 1

4 6 58,480 0.33 -0.87 0.35 2

4 7 102,916 0.61 -0.70 0.35 2

4 8 75,588 0.80 -0.48 0.35 3

4 9 49,496 0.91 -0.17 0.35 10

4 10 51,523 0.91 0.16 0.35 14

4 11 75,588 0.80 0.48 0.35 19

4 12 102,916 0.61 0.70 0.35 18

4 13 58,480 0.33 0.87 0.35 19

4 14 48,037 0.00 0.93 0.35 19

4 15 58,480 -0.33 0.87 0.35 17

4 16 102,916 -0.61 0.70 0.35 20

4 17 75,588 -0.80 0.48 0.35 17

4 18 51,523 -0.91 0.16 0.35 15

5 1 43,535 -0.97 -0.18 0.00 10

5 2 66,479 -0.85 -0.51 0.00 1

5 3 90,408 -0.65 -0.75 0.00 1

5 4 51,433 -0.35 -0.93 0.00 0

5 5 42,244 0.00 -0.99 0.00 0

5 6 51,433 0.35 -0.93 0.00 2

5 7 90,408 0.65 -0.75 0.00 2

5 8 66,479 0.85 -0.51 0.00 3

5 9 43,535 0.97 -0.18 0.00 7

5 10 45,313 0.97 0.17 0.00 14

5 11 66,479 0.85 0.51 0.00 19

5 12 90,408 0.65 0.75 0.00 17

5 13 51,433 0.35 0.93 0.00 15

5 14 42,244 0.00 0.99 0.00 15

5 15 51,433 -0.35 0.93 0.00 19

5 16 90,408 -0.65 0.75 0.00 18

5 17 66,479 -0.85 0.51 0.00 17

5 18 45,313 -0.97 0.17 0.00 13

(Continued)
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Table S3 (Continued)

θa φb Ngrid _ possible
c Wh

d We
e Ws

f Ngrid_entry  0g

6 1 49,496 -0.91 -0.17 -0.35 7

6 2 75,588 -0.80 -0.48 -0.35 1

6 3 102,916 -0.61 -0.70 -0.35 0

6 4 58,480 -0.33 -0.87 -0.35 0

6 5 48,037 0.00 -0.93 -0.35 0

6 6 58,480 0.33 -0.87 -0.35 1

6 7 102,916 0.61 -0.70 -0.35 1

6 8 75,588 0.80 -0.48 -0.35 4

6 9 49,496 0.91 -0.17 -0.35 6

6 10 51,523 0.91 0.16 -0.35 12

6 11 75,588 0.80 0.48 -0.35 13

6 12 102,916 0.61 0.70 -0.35 12

6 13 58,480 0.33 0.87 -0.35 14

6 14 48,037 0.00 0.93 -0.35 14

6 15 58,480 -0.33 0.87 -0.35 18

6 16 102,916 -0.61 0.70 -0.35 17

6 17 75,588 -0.80 0.48 -0.35 13

6 18 51,523 -0.91 0.16 -0.35 10

7 1 69,113 -0.74 -0.14 -0.64 2

7 2 90,640 -0.66 -0.39 -0.63 0

7 3 106,400 -0.50 -0.59 -0.62 0

7 4 77,866 -0.27 -0.71 -0.64 0

7 5 68,054 0.00 -0.75 -0.65 0

7 6 77,866 0.27 -0.71 -0.64 1

7 7 106,400 0.50 -0.59 -0.62 1

7 8 90,640 0.66 -0.39 -0.63 2

7 9 69,113 0.74 -0.14 -0.64 4

7 10 72,059 0.74 0.13 -0.64 6

7 11 90,640 0.66 0.39 -0.63 11

7 12 106,400 0.50 0.59 -0.62 11

7 13 77,866 0.27 0.71 -0.64 11

7 14 68,054 0.00 0.75 -0.65 12

7 15 77,866 -0.27 0.71 -0.64 12

7 16 106,400 -0.50 0.59 -0.62 12

7 17 90,640 -0.66 0.39 -0.63 12

7 18 72,059 -0.74 0.13 -0.64 8

8 1 32,634 -0.52 -0.10 -0.84 2

8 2 33,681 -0.45 -0.26 -0.84 0

8 3 33,747 -0.34 -0.40 -0.84 0

8 4 33,819 -0.18 -0.49 -0.84 0

8 5 33,647 0.00 -0.53 -0.84 0

8 6 33,819 0.18 -0.49 -0.84 0

8 7 33,747 0.34 -0.40 -0.84 0

8 8 33,681 0.45 -0.26 -0.84 1

(Continued)

Table S3 (Continued)

θa φb Ngrid_possible
c Wh

d We
e Ws

f Ngrid_entry  0g

8 9 32,634 0.52 -0.10 -0.84 2

8 10 35,031 0.52 0.09 -0.84 4

8 11 33,681 0.45 0.26 -0.84 5

8 12 33,747 0.34 0.40 -0.84 8

8 13 33,819 0.18 0.49 -0.84 11

8 14 33,647 0.00 0.53 -0.84 11

8 15 33,819 -0.18 0.49 -0.84 12

8 16 33,747 -0.34 0.40 -0.84 13

8 17 33,681 -0.45 0.26 -0.84 11

8 18 35,031 -0.52 0.09 -0.84 5

9 1 6,985 -0.24 -0.05 -0.97 2

9 2 7,750 -0.20 -0.12 -0.97 0

9 3 7,806 -0.15 -0.18 -0.97 0

9 4 7,832 -0.08 -0.22 -0.97 0

9 5 7,829 0.00 -0.23 -0.97 0

9 6 7,832 0.08 -0.22 -0.97 0

9 7 7,806 0.15 -0.18 -0.97 0

9 8 7,750 0.20 -0.12 -0.97 1

9 9 6,985 0.24 -0.05 -0.97 1

9 10 8,776 0.22 0.04 -0.97 1

9 11 7,750 0.20 0.12 -0.97 3

9 12 7,806 0.15 0.18 -0.97 2

9 13 7,832 0.08 0.22 -0.97 4

9 14 7,829 0.00 0.23 -0.97 4

9 15 7,832 -0.08 0.22 -0.97 7

9 16 7,806 -0.15 0.18 -0.97 6

9 17 7,750 -0.20 0.12 -0.97 3

9 18 8,776 -0.22 0.04 -0.97 2

10 0 100 0.00 0.00 1.00 0

10 1 100 0.00 0.00 -1.00 0

Notes: aThe serial number of the grid on the axis of the zenith angle (θ). bThe serial 
number of the grid on the axis of the azimuth angle (φ). grid(10, 0) is correspond-
ent to the grid with θ = 0, namely, (Wh, We, Ws) = (0, 0, 1). cgrid(10, 1) is correspondent 
to the grid with θ = 180, namely, (Wh, We, Ws) = (0, 0, -1). dThe number of 
weight-combinations belonging to the grid. eThe averaged weight value for the 
hydrophobicity in the grid. fThe averaged weight value for the electrostatic potential 
in the grid. gThe averaged weight value for the shape in the grid. hThe number 
of entries with Ngrid_entry  0, where Ngrid_entry is the number of weight-combination 
which could rank the near-native models in the top 10.
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Dataset construction Selection of
122 heterodimers

from the PDB

Generation of 500 complex models 
for each heterodimer

Sampling

NN > 0

NN = 0
Monte Carlo 

to generate NN

Minimization

Elimination of 
one crushed entry

121 entries

FP = 0 FP > 0

47 heterodimers 74 heterodimers
(training entries)

Classification of
training heterodimers 

Calculation of COMPs
for all weight-combinations

for all complex models
in each of 74 training entries 

Calculation of foccr(θ, φ)
for each grid

in each training entry 

Classification of training entries
into four clusters,

based on foccr(θ, φ)s

Construction of
multiple scoring functions

Calculation of COMPs
for 164 Wgrids

for all complex models
in each training entry

Selection of
four scoring functions
with max success rate

Figure S1 The flowchart of the procedures for constructing the multiple scoring functions.
Abbreviations: nn, near-native model; FP, false postive model.
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Figure S2 The characters of the native complexes of the targets in the scoring test datasets. For the native complex for each target used in the scoring tests, the whole 
complex structure, the interface region colored purple, and the electrostatic potential mapped on the surfaces, where the negative and the positive electrostatic potentials are 
colored red and blue, respectively, are shown. The middle and left figures are shown in open-book view. A) The CAPRi targets. Figures for the native complexes of targets T12 
(1ohz), T18, T21 (1zhi), T25 (2j59) and T26 (2hqs) are shown, beginning at the top. B) The unbound–unbound pairs of four heterodimer entries. Figures for the native complexes 
of 1bvn, 1ewy and 1p2j are shown, beginning at the top.
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