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Objectives: We set out to investigate the prevalence, different mechanisms, and clonal relat-

edness of multidrug resistance (MDR) among third-generation cephalosporin-resistant Gram-

negative clinical isolates from Egypt.

Materials and methods: A total of 118 third-generation cephalosporin-resistant Gram-

negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern 

was determined using Kirby–Bauer disk diffusion method. Efflux pump-mediated resistance 

was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detec-

tion of different aminoglycoside-, β-lactam-, and quinolone-resistance genes was done using 

polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random 

amplification of polymorphic DNA.

Results: Most of the tested isolates exhibited MDR phenotypes (84.75%). The occurrence of 

efflux pump-mediated resistance in the different MDR species tested was 40%–66%. Acineto-

bacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. 

The bla
OXA-23-like

 gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype 

was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux 

pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gen-

tamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR 

Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6’)-Ib-cr, 

qnrB, and qnrS) were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia 

coli and Klebsiella pneumoniae isolates, respectively. The β-lactamase-resistance gene bla
SHV-31

 

was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube 

specimen in Egypt, accompanied by bla
TEM-1

, bla
CTX-M-15

, bla
CTX-M-14

, aac(6’)-Ib-cr, qnrS, and 

multidrug efflux-mediated resistance.

Conclusion: MDR phenotypes are predominant among third-generation cephalosporin-resistant 

Gram-negative bacteria in Egypt and mediated by different mechanisms, with an increased role 

of efflux pumps in Enterobacteriaceae.

Keywords: multidrug resistance, efflux pump, Egypt, Gram-negative bacilli, RAPD typing

Introduction
Effective treatment of infections is compromised worldwide by the emergence of 

multidrug resistance (MDR). According to the European Centre for Disease Preven-

tion and Control, MDR is defined as unsusceptibility to at least one agent in three or 

more of the specified antimicrobial categories used in treatment.1

MDR Gram-negative bacteria (MDRGNB) have become a major public health 

threat, as there are fewer or even sometimes no effective antimicrobial agents  available 
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for infections caused by these bacteria.2 MDR organisms, 

such as MDR carbapenemase-producing Klebsiella pneu-

moniae, and Acinetobacter spp., can be resistant to all 

currently available antimicrobial agents. Sometimes, they 

may remain susceptible only to older, potentially more toxic 

agents, such as polymyxins, leaving limited and suboptimal 

options for treatment.3 The problem of increasing antimi-

crobial resistance is even more threatening when consider-

ing the very limited number of new antimicrobial agents in 

development.4

Several biochemical mechanisms can account for the 

antimicrobial resistance in GNB. These mechanisms include 

the enzymatic degradation of antibacterial agents, as in case 

of β-lactam resistance due to β-lactamases or modification 

of the antimicrobial agent by modifying enzymes, as in the 

case of aminoglycosides. It may also result from the alteration 

of antimicrobial targets in such organisms, as the in case of 

topoisomerase IV gene mutations that mediate resistance to 

fluoroquinolones. Moreover, changes in bacterial membrane 

permeability to antibiotics caused by mutations resulting in 

the loss of outer-membrane porin or overexpression of an 

efflux pump can lead to resistance to many effective anti-

microbials. Efflux pumps, which expel multiple kinds of 

antibiotics, are now recognized as major contributors to MDR 

in bacteria: they can pump out most of the antibiotics in use.5

MDR has been reported to be highly prevalent among 

different clinical isolates in Egyptian patients;6,7 however, 

few studies have examined the underlying resistance mecha-

nisms.7 Third-generation cephalosporins are among the most 

commonly used antibiotics in Egypt.8 Therefore, resistance to 

third-generation cephalosporin will present a major problem 

in infection control, especially if accompanied with MDR. 

The aim of the present study was to detect the prevalence, 

molecular mechanisms of resistance, and clonal related-

ness of MDRGNB among third-generation cephalosporin- 

resistant GN clinical isolates from Egypt.

Materials and methods
Bacterial strains and antibiotic 
susceptibility testing
A total of 118 GN clinical isolates collected during 2009–

2010, previously identified with API 20E and API 20NE 

systems (BioMérieux, France) with an identity of not less 

than 80%, were included in this study. They were selected 

from our culture collection based on their resistance to at least 

one of the third-generation cephalosporins. All isolates were 

from children with suspected infections in Abu El-Rish Chil-

dren’s Hospital, Cairo, Egypt.9 The isolates had been taken 

from different specimens: blood (n=3), catheter tips (n=3), 

cerebrospinal fluid (n=8), ear discharge (n=1), endotracheal 

tubing (n=20), midline subumbilical gaps (n=1), peritoneal 

discharge (n=4), pus (n=4), sputum (n=18), stool (n=9), urine 

(n=43), and wounds (n=5). All experiments in this study were 

conducted in accordance with and approval of the ethical 

committee at the Faculty of Pharmacy, Cairo University.

The antibiotic susceptibility of each isolate against 

its assigned categories of antimicrobials, as suggested by 

Magiorakos et al,1 was determined using Kirby–Bauer disk 

diffusion method following Clinical and Laboratory Stan-

dards Institute guidelines.10 Stenotrophomonas maltophilia 

was tested against the antimicrobial categories suggested 

by Milne and Gould.11 The antibiotics included in the study 

were gentamicin 10 μg, tobramycin 10 μg, amikacin 30 μg, 

ciprofloxacin 5 μg, cefoxitin 30 μg, piperacillin 100 μg, 

piperacillin– tazobactam 100 and 10 μg, sulfamethoxazole–

trimethoprim 1.25 and 23.75 μg, imipenem 10 μg, ofloxacin 

5 μg, cefepime 30 μg, aztreonam 30 μg, ampicillin–sulbac-

tam 10 μg each, cefotaxime 30 μg, and ceftazidime 30 μg 

(all Oxoid; Thermo Fisher Scientific, Waltham, MA, USA). 

Isolates were classified as MDR and non-MDR according to 

Magiorakos et al.1 Intermediate susceptibility to any tested 

antibiotic was counted as resistant during the classification.

Identification of efflux pump-mediated 
resistance using efflux-pump inhibitor-
based microplate assays
Chlorpromazine (CPZ; Hongda Pharmaceutical, Donggang, 

China) acts as an efflux-pump inhibitor in GN bacteria.12 

The minimum inhibitory concentration (MIC) of CPZ was 

determined by the microdilution method as per Clinical and 

Laboratory Standards Institute guidelines in all tested MDR 

clinical isolates.13 Efflux-pump inhibitor-based microplate 

assays using half the minimum inhibitory concentration of 

CPZ were performed in 24-well microplates (Thermo Fisher 

Scientific). Negative bacterial growth in a well containing 

an antibiotic disk besides CPZ and positive growth in a well 

containing the same antibiotic disk alone indicated efflux 

pump-mediated resistance to that antibiotic.14

Detection of antibiotic-resistance genes
Genomic DNA was extracted from MDR clinical isolates 

by the boiling method.15 Polymerase chain reaction (PCR) 

identification of aminoglycoside-resistance genes (armA 

and aac(6’)-Ib), β-lactamase-resistance genes ((bla
TEM

, 

bla
SHV, 

bla
CTX-M

 group 1 and group 9), metallo-β-lactamase-

resistance genes (bla
IMP

, bla
VIM

, bla
SPM-1

, bla
NDM

, bla
OXA-23-like

) 
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and  quinolone-resistance genes (qepA, qnrA, qnrB and qnrS) 

was performed as previously described.16–23 Sequences of the 

resistance-genes primers used in the study and their anneal-

ing temperatures are provided in Table 1. When necessary, 

PCR products were purified with a GeneJet PCR purification 

kit (Thermo Fisher Scientific). PCR products of aac(6’)-Ib 

positives were analyzed further by digestion with BstF5I 

(Thermo Fisher Scientific) to detect the cr variant.18 The 

purified PCR products were sequenced by an ABI 3730 XL 

DNA sequencer (Thermo Fisher Scientific). Detection of 

similarity for nucleotide sequences was performed using 

the BLAST program (http://www.ncbi.nlm.nih.gov/blast) 

with default settings.

Detection of genetic diversity of MDR 
isolates using random amplification of 
polymorphic DNA
Clonal relatedness between isolates from the same species 

was assessed by random amplification of polymorphic DNA 

(RAPD) using at least two primers for each tested species.24–27 

Sequences of RAPD primers used in the study are provided 

Table 1 Primers used for detection of resistance genes and RAPD typing, annealing temperatures (Ta), and expected product sizes

Primer Sequence (5'-3') Target gene Ta Product 
size

Reference

armA-F ATT CTG CCT ATC CTA ATT GG 16S RNA methylase armA 55°C 315 bp 16
armA-R ACC TAT ACT TTA TCG TCG TC
aac(6’)-Ib-F TTGCGATGCTCTATGAGTGGCTA aac(6’)-Ib 54°C 482 bp 18
aac(6’)-Ib-R CTCGAATGCCTGGCGTGTTT
MultiTSO-T-F CATTTCCGTGTCGCCCTTATTC TEM variants, including TEM1 and 

TEM2
60°C 800 bp 20

MultiTSO-T-R CGTTCATCCATAGTTGCCTGAC
MultiTSO-S-F AGCCGCTTGAGCAAATTAAAC SHV variants, including SHV1 60°C 713 bp 20
MultiTSO-S-R ATCCCGCAGATAAATCACCAC
MultiCTXMGp1-F TTAGGAARTGTGCCGCTGYAa Variants of CTXM group 1 60°C 688 bp 20
MultiCTXMGp1-R CGATATCGTTGGTGGTRCCATa

MultiCTXMGp9-F TCAAGCCTGCCGATCTGGT Variants of CTXM group 9 60°C 561 bp 20
MultiCTXMGp9-R TGATTCTCGCCGCTGAAG
MultiIMP-F TTGACACTCCATTTACDGa IMP variants 55°C 139 bp 20
MultiIMP-R GATYGAGAATTAAGCCACYCTa

MultiVIM-F GATGGTGTTTGGTCGCATA VIM variants 55°C 390 bp 20
MultiVIM-R CGAATGCGCAGCACCAG
Spm-F AAA ATC TGG GTA CGC AAA CG SPM1 52°C 271 bp 23
Spm-R ACA TTA TCC GCT GGA ACA GG
NDM-F GGT TTG GCG ATC TGG TTT TC NDM variants 52°C 621 bp 21
NDM-R CGG AAT GGC TCA TCA CGA TC
OXA-23-like-F GAT CGG ATT GGA GAA CCA GA OXA23-like 53°C 501 bp 22
OXA-23-like-R ATT TCT GAC CGC ATT TCC AT
qepA-F GCA GGT CCA GCA GCG GGT AG qepA 60°C 199 bp 17
qepA-R CTT CCT GCC CGA GTA TCG TG
QnrA-F AGAGGATTTCTCACGCCAGG qnrA 54°C 580 bp 19
QnrA-R TGCCAGGCACAGATCTTGAC
QnrB-F GGMATHGAAATTCGCCACTGb qnrB 54°C 264 bp 19
QnrB-R TTTGCYGYYCGCCAGTCGAAb

QnrS-F GCAAGTTCATTGAACAGGGT qnrS 54°C 428 bp 19
QnrS-R TCTAAACCGTCGAGTTCGGCG
208 ACGGCCGACC

RAPD for Pseudomonas aeruginosa
36°C

24272 AGCGGGCCAA 36°C
ERIC1 ATGTAAGCTCCTGGGGATTCAC

RAPD for Klebsiella pneumoniae
35°C

25ERIC2 AAGTAAGTGACTGGGGTGAGCG 25°C
RAPD7 GTGGATGCGA 35°C 26
1247 AAGAGCCCGT

RAPD for Escherichia coli and 
Acinetobacter baumannii

36°C
271281 AACGCGCAAC

1283 GCGATCCCCA

Notes: aY = T or C; R = A or G; D = A or G or T; bM = A or C; H = A or C or T; Y = C or T.
Abbreviation: RAPD, random amplification of polymorphic DNA.
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in Table 1. Amplicons were separated by 1.5% agarose-gel 

electrophoresis using a GeneRuler 100 bp ladder (Thermo 

Fisher Scientific) as a molecular size standard in each gel. 

Gels were stained with ethidium bromide and photographed 

under ultraviolet transillumination. Gel images were analyzed 

by GelAnalyzer 2010. The absence or presence of a band of a 

certain size was recorded as 0 or 1. For each strain, the RAPD 

type was defined as the combined band patterns obtained with 

the tested primers. The relationship between the RAPD types 

of isolates of the same species were calculated by unweighted 

pair-group (UPG) averages and represented as a dendrogram 

using UPGMA algorithms. In any tested isolate, banding 

patterns differing by two or more bands represented different 

strains, while banding patterns that differed by fewer than 

two bands were the same strain.25

Results
Bacterial strains and antibiotic-
susceptibility testing
A total of 118 GN clinical isolates characterized as being 

resistant to at least one of the third-generation cephalospo-

rins were included in the study, and 100 isolates (84.75%) 

were classified as MDR: Acinetobacter baumannii (13 of 

15, 86.6%), Escherichia coli (37 of 38, 97.37%), K. pneu-

moniae (21 of 22, 95.45%), Pseudomonas aeruginosa (17 of 

26, 65.38%), S. maltophilia (three of four, 75%), and other 

Enterobacteriaceae (nine of 13, 69.23%). MDR and non-

MDR distribution among third-generation cephalosporin-

resistant GN clinical isolates from different infection sites 

is shown in Figure 1. The antibiotic-susceptibility profile of 

each tested isolate is shown in Table S1.

A. baumanii isolates were resistant to most of the tested 

antibiotics. Imipenem was the most effective antibiotic 

against tested Enterobacteriaceae and P. aeruginosa. All 

S. maltophilia isolates were susceptible to ofloxacin, cipro-

floxacin, cefepime, piperacillin, piperacillin–tazobactam and 

sulfamethoxazole–trimethoprim. The number of resistant 

isolates in every tested bacterial species for each of the tested 

antibiotics is shown in Table 2 and Figure 2.

Identification of efflux pump-mediated 
resistance using efflux-pump inhibitor-
based microplate assays
Efflux pump-mediated resistance was recorded in 46.1% (six 

of 13), 41.1% (seven of 17), 40.54% (15 of 37), 66.67% (14 

of 21), 66.67% (two of three), and 66.67% (six of nine) of 

MDR A. baumannii, P. aeruginosa, E. coli, K. pneumoniae, 

S. maltophilia, and other Enterobacteriaceae, respectively. 

Efflux pump-mediated resistance for more than one antibiotic 

was recorded in five of 13 and nine of 21 of MDR A. bauman-

nii and K. pneumoniae, respectively. However, this multidrug 

efflux pump-mediated resistance was of lower incidence in 

other tested species. The number of isolates in each tested 

species displaying different patterns of efflux-mediated resis-

tance is shown in Table 3. Efflux pump-mediated resistance 

to different antibiotics in each MDRGNB isolate is shown 

in Table S2.

Antibiotic-resistance genes
The sequenced products were deposited in the GenBank 

under accession numbers KY640457–KY640597. The 

incidence of each tested gene in the different species of 

MDRGNB clinical isolates tested is recorded in Table 4, 

and their distribution in the different MDRGNB isolates is 

shown in Table S3. All detected bla
TEM

 were TEM1 variants, 

while, bla
SHV

 were SHV1, SHV11, SHV12, and SHV31 

variants. Group 1 bla
CTX-M

 ESBL-resistance genes belonged 

to type CTXM15, while bla
CTX-M

 group 9 belonged to type 

Figure 1 Distribution of MDR and non-MDR phenotypes among third-generation cephalosporin resistant Gram-negative clinical isolates from different infection sites.
Abbreviations: MDR, multidrug-resistant; CSF, cerebrospinal fluid.
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CTXM14. The metallo-β-lactamase resistance genes bla
IMP

, 

bla
SPM-1

, and bla
NDM

 and quinolone-resistance genes: qepA 

and qnrA were not detectable in our tested MDRGNB clini-

cal isolates.

Determination of genetic diversity of 
MDR isolates using RAPD
The number of clonal patterns detected in MDRGNB isolates 

was 34 of 37, ten of 13, 18 of 21, and 17 of 26 patterns in 

E. coli, A. baumannii, K. pneumoniae, and P. aeruginosa 

isolates, respectively. No predominant clonal type was 

detectable with E. coli or P. aeruginosa isolates. However, 

five of 13 of A. baumannii isolates belonged to two clonal 

types, and three of 21 of K. pneumoniae isolates belonged to 

one clonal type. Clonally identical isolates shared the same 

antibiotic-resistance pattern (8, 27, and 146; 150, and 179 

in A. baumanii and 161, 163, and 223 in K. pneumoniae), 

although they had different infection sites. Phenograms 

constructed using UPGMA algorithms for MDR isolates are 

shown in Figure S1.

Discussion
Few reports are available on the prevalence and mecha-

nisms of MDR in GNB in developing countries including 

Egypt.6,7 Therefore, our study was carried out to determine 

the prevalence, molecular resistance mechanisms, and clonal 

relatedness of MDRGNB among third-generation cephalo-

sporin-resistant isolates from Egypt. Our findings showed 

that 84.75% of the third-generation cephalosporin-resistant 

isolates were classified as MDR, with the highest percentage 

of MDR recorded in E. coli, followed by K. pneumoniae and 

A. baumannii. Various international surveys have reported an 

increase in the number of MDRGNB in the last few years.28

One of the alarming results was the resistance of 

A.  baumanii isolates to most of the antibiotics tested, 

including imipenem. Carbapenems are considered one of 

the last-resort antimicrobials for GNB,29 and resistance to 

carbapenems leaves few effective therapeutic options, such 

as polymyxins or tigecycline.5 This high level of imipenem 

resistance (ten of 13) may result from the high number of 

bla
OXA-23

-like genes detected among MDR A. baumanii (nine 

of 13), as previously reported.5 This is in accordance with the 

results of Al-Agamy et al from Egypt, where bla
OXA-23

 and 

bla
OXA-24

-like genes were found to be the most prevalent type 

of β-lactamase-encoding genes in A. baumannii.30 Efflux-

mediated resistance accounted for this MDR phenotype in 

A. baumannii (six of 13), half of which (three of six) con-

tained multidrug-efflux pumps that mediated resistance to T
ab
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gentamicin, ciprofloxacin, sulfamethoxazole–trimethoprim, 

and piperacillin. A previous study in Egypt reported a higher 

percentage of efflux pumps (77.8%) in A. baumannii iso-

lates.31 In accordance with previous studies,5 aminoglycoside 

resistance was common among our isolates. This may have 

been due to the presence of aac-(6’)-Ib gene-and efflux 

pump-mediated gentamicin resistance in nine of 12 and five 

of 12 of aminoglycoside-resistant MDR A. baumanii isolates, 

respectively.

In agreement with the reported susceptibility pattern of 

P. aeruginosa,5 most of our isolates were sensitive to imipe-

nem (84%) and piperacillin–tazobactam (73%). On the con-

trary, 65% of P. aeruginosa isolates were MDR, of which only 

23.5% showed multidrug efflux-mediated resistance. This is 

in contrast to the known major contribution of efflux pumps 

in MDR P. aeruginosa.5 The metallo-β-lactamase-resistance 

gene bla
VIM

 was detected in one P. aeruginosa isolate. This 

represented 5.88% of MDR P. aeruginosa clinical isolates 

and 33.33% of P. aeruginosa isolates resistant to imipenem. 

Other studies in Egypt reported higher prevalence of bla
VIM

 

in P. aeruginosa clinical isolates.32,33

All our S. maltophilia isolates were sensitive to sulfa-

methoxazole–trimethoprim, the cornerstone in the treat-

ment of this pathogen,5 and to the tested fluoroquinolones 

(ciprofloxacin and ofloxacin). Most isolates (three of four) 

were sensitive to β-lactam/β-lactamase inhibitor combina-

tions. Fluoroquinolones and β-lactam/β-lactamase inhibitor 

combinations have been reported to be among the most effec-

tive agents against S. maltophilia.5 Although S. maltophilia 

are known to be aminoglycoside-resistant,5 only one isolate 

(of three) was resistant to the three tested aminoglycosides, 

and showed efflux-mediated resistance to aminoglycosides. 

Efflux pumps are one of the known resistance mechanisms 

in S. maltophilia.5 Predominant resistance to aztreonam, 

cephalosporins, and imipenem in S. maltophilia, has been 

reported in the literature.5

About 76% of the MDR Enterobacteriaceae contained 

at least one of the tested β-lactam-resistance genes, where 

β-lactamases are commonly reported among Enterobacteria-

ceae.5 In addition, efflux-mediated resistance to piperacillin 

(β-lactam) was recorded in 47.5% of piperacillin-resistant 

MDR Enterobacteriaceae. This highlights the major role 

played by efflux pumps in resistance to β-lactams in MDR 

Enterobacteriaceae. A lower predominance of efflux pump-

mediated resistance (39%) was reported among MDR 

K. pneumoniae isolates in Turkey.34

The bla
TEM-1

 gene was common in our MDR Enterobac-

teriaceae isolates and was the only detected β-lactamase-

resistance gene in 6% of them. This is in agreement with 

previous studies showing the high persistence of the 

bla
TEM-1

 gene among Enterobacteriaceae worldwide.35 The 

β-lactamase-resistance gene bla
SHV

 was detected in 28.3% 

of MDR Enterobacteriaceae and identified by sequencing 

as variants SHV1, SHV11, SHV12 and SHV31 in 79%, 

10.5%, 5%, and 5% of bla
SHV

-positive isolates, respec-

tively. This was in contrast to another study from Egypt 

that detected only SHV1 and SHV11 in 57% and 29% of 

bla
SHV

-containing isolates, respectively.36 To the best of 

our knowledge, this is the first report on the occurrence 

of SHV31 in MDR K. pneumoniae isolates from Egypt, 

Africa, and the Middle East. Isolates were recovered from 

an endotracheal tube specimen, and were also positive for 

Figure 2 Percentage of isolates resistant to each antimicrobial tested within the different bacterial species.
Abbreviations: CN, gentamicin; AK, amikacin; TOB, tobramycin; OFX, ofloxacin; CIP, ciprofloxacin; FOX, cefoxitin; FEP, cefepime; PRL, piperacillin; PT, piperacillin–
tazobactam; SXT, sulfamethoxazole–trimethoprim; IMP, imipenem; AO, aztreonam; AS, ampicillin–sulbactam.
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bla
TEM-1

, bla
CTX-M-15

,  bla
CTX-M-14

, aac(6’)-Ib-cr, qnrS, and 

multidrug efflux-mediated resistance. The SHV31 variant 

has limited dissemination worldwide. It has been detected 

only in K. pneumoniae in the Netherlands (2001), Brazil 

(2005–2007), Iran (2006–2007), and Taiwan.37

ESBL-resistance genes bla
CTX-M-15

 and bla
CTX-M-14

 were 

detected in 60%, and 24% of our MDR Enterobacteriaceae. This 

is in agreement with the worldwide prevalence of CTXM15 and 

CTXM14.38 Our findings are comparable with another study 

conducted in Egypt on β-lactamase prevalence in Enterobac-

teriaceae.39 In a similar study conducted in India, 66% of third-

generation cephalosporin-resistant E. coli and K. pneumoniae 

isolates had bla
CTX-M-15

.40 Moreover,  bla
OXA-23

-like, mainly detect-

able in A. baumannii,30 was detected in two of 21 K. pneumoniae 

isolates. The detection of bla
OXA-23

-like in K. pneumoniae has 

previously been reported in the literature.41

Fluoroquinolone resistance in Enterobacteriaceae results 

mainly from mutations in DNA gyrase and topoisomerase 

genes.5 It was surprising to detect the plasmid-mediated 

quinolone-resistance genes (aac(6’)-Ib-cr, qnrB, and qnrS)  

in 57.6% (19 of 33) and 83.33% (ten of 12) of quinolone-

resistant MDR E. coli and K. pneumoniae, respectively. 

These determinants have been detected worldwide with high 

prevalence among K. pneumoniae.42 The aac(6’)-Ib-cr gene, 

which confers resistance to ciprofloxacin and norfloxacin 

besides aminoglycosides, was prevalent in MDR E. coli 

isolates (48.6%), although lower incidence has previously 

been detected in Egypt (23.3%).43

The aminoglycoside-modifying enzyme (aac (6’)-

Ib) was detected in 84.4% of aminoglycoside-resistant 

Enterobacteriaceae. The role of modifying enzymes in 

aminoglycoside resistance has been documented.5 However, 

efflux-mediated gentamicin resistance was detected in 26.6% 

of aminoglycoside- resistant MDR Enterobacteriaceae. This 

again reflects the growing role of efflux pumps in mediat-

ing MDR among members of Enterobacteriaceae in Egypt.

The copresence of different classes of resistance genes 

was common among our isolates (Table S3). This is alarming, 

as it presents an antibiotic selection advantage for these iso-

lates to predominate as MDR. It is also worth noting that 17 of 

the MDRGNB isolates carried none of the tested β-lactamase 

genes nor exhibited efflux pump-mediated resistance. It is 

likely that these isolates carry one or more β-lactamase genes 

not tested in this study or contain efflux pumps that could not 

be detected by the efflux-pump inhibitor used.

The MDR species tested were genotypically variable. 

This suggested that multiple subtypes of the species were 

involved in MDR and opposed the probability that MDR 

may have resulted from clonal spread. The only limitation 

of this study was the small number of isolates tested in some 

species, which made it difficult to draw solid conclusions 

about these organisms.

Conclusion
MDR is predominant among third-generation cephalospo-

rin-resistant GNB in Egypt. In most cases, resistance is 

caused by different mechanisms. This study highlighted 

the increasing role of efflux pumps and the increase in 

plasmid-mediated quinolone resistance among MDR 

Enterobacteriaceae. Therefore, new treatment strategies 

need to be implemented. The use of an efflux-pump inhibi-

tor combined with old antibiotics can provide a possible 

treatment for infections caused by efflux-mediated resistant 

bacteria, maintaining the effectiveness of old antibiotics. 

Moreover, antibiotic misuse needs to be stopped to avoid 

the selection of MDR species.
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Table S2 Efflux-mediated resistance profile in each tested multidrug-resistant Gram-negative isolate

Isolate number Gentamicin Ciprofloxacin Trimethoprim–sulfamethoxazole Piperacillin

Acinetobacter baumanii 8

27

82

136

141

145

146

149

150

162

179

203

236

Citrobacter freundii 72

202

252

Enterobacter cloacae 87

Escherichia coli 9

25

70

71

74

78

81

94

113

121

122

123

124

135

137

140

174

177

181

183

184

188

192

195

199

204

206

214

219

227

229

231

232

(Continued)
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Isolate number Gentamicin Ciprofloxacin Trimethoprim–sulfamethoxazole Piperacillin

Escherichia coli 246

247

249

255

Klebsiella pneumoniae 3

7

12

39

68

75

83

100

114

134

153

157

161

163

165

210

220

223

243

251

254

Morganella morganii 224

Proteus mirabilis 96

182

Pseudomonas aeruginosa 11

14

15

28

29

38

58

88

102

107

127

138

158

167

170

198

256

Serratia marcescens 79

143

Stenotrophomonas 
maltophilia

211

240

245

Notes: Black cells, presence of efflux-mediated resistance; white cells, absence of efflux-mediated resistance.

Table S2 (Continued)
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Figure S1 Phenogram of different multidrug resistant isolates constructed using UPGMA algorithms based on RAPD analysis. 
Notes: (A) Phenogram of Escherichia coli using three different primers; (B) phenogram of Klebsiella pneumoniae using three different primers; (C) phenogram of Acinetobacter 
baumannii using three different primers; (D) phenogram of Pseudomonas aeruginosa using two different primers.
Abbreviations: RAPD, random amplification of polymorphic DNA; UPGMA, unweighted pair group method with arithmetic mean.
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