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Abstract: We have previously reported that a moderate dietary supplementation of 20% fructose 

but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–

hydrogen exchanger activity and increased renal sodium retention. We also found that while high 

salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. 

We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive 

hypertension could be due to fructose-induced formation of reactive oxygen species and inap-

propriate stimulation of renin secretion, all of which would contribute to an increase in blood 

pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane 

excretion. The superoxide dismutase (SOD) mimetic tempol significantly reduced this elevated 

excretion. Next, we placed rats on a high-salt diet (4%) for 1 week in combination with normal 

rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-

salt diet induced a rapid increase (15 mmHg) in systolic blood pressure and reversed high salt 

suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored 

high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is 

driven by increased renal reactive oxygen species formation associated with salt retention and 

an enhanced renin–angiotensin system.
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Introduction
Rats fed a high-fructose diet have been characterized as a model of insulin resistance 

and associated hypertension.1,2 An animal model was first reported by Hwang et al3 in 

rats fed with very high fructose (66% of their caloric intake) which developed type 2 

diabetes, hyperinsulinemia, hypertriglyceridemia, metabolic syndrome, and hyperten-

sion within 2 weeks. Similar studies using glucose had no such effect. However, this 

model has been criticized because of the excessive amount of fructose required to pro-

duce these results. When similar studies have been carried out using just 20% fructose 

in the drinking water but without high salt (HS), it took much longer (8–12 weeks) to 

develop systolic hypertension, and this was accompanied by parameters such as obesity, 

hypertrophy of adipocytes, hypertriglyceridemia, and hyperglycemia.4

It has been suggested that fructose-induced hypertension results from excess renal 

salt retention.5 Our laboratories have previously shown that fructose, at levels consistent 

with those consumed by the upper 20th percentile of the human population, does not 

induce hypertension in rats during 2 weeks if consuming a normal salt intake (0.4% 

NaCl). However, combining fructose and an HS intake (4.0% NaCl) resulted in a 
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rapid and significant rise in blood pressure (15–20 mmHg) 

within 1 week.6,7 We also reported that combining HS diet 

with 20% fructose (but not with glucose) intake led to 

significant sodium retention associated with the increase 

in blood pressure.7 Further, we reported6 that fructose but 

not glucose acutely stimulated luminal sodium–hydrogen 

exchanger activity in the proximal tubule. These studies 

led us to conclude that 20% fructose intake results in a pre-

disposition for salt-sensitive hypertension well before the 

previously reported4 effects of a 20% fructose diet alone on 

blood pressure over 8–12 weeks.

The renin–angiotensin system is an important regulator 

of blood pressure.8,9 Inappropriate elevation of renin can 

cause both salt-sensitive and salt-independent hypertension. 

Renin activity is the rate-limiting step in the formation of 

angiotensin II (Ang II). Salt sensitivity of blood pressure in 

renin-dependent hypertension results largely from the effects 

of Ang II on the kidney primarily due to increases in sodium 

reabsorption by the nephron. Ang II increases activation and 

production of proinflammatory cytokines in the kidney, which 

are believed to play an important role in the development of 

salt-sensitive hypertension.10–12 Ang II induces the produc-

tion of reactive oxygen species in the proximal tubule mainly 

through the activation of nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase, leading to tubulointerstitial 

injury.13 These products also mediate various signaling path-

ways involved in intrarenal inflammation and hypertension. 

Several studies have implicated activation of renin secretion 

by a high-fructose diet.14,15

We found7 that fructose acutely enhances the sensitivity of 

angiotensin-stimulated sodium–hydrogen exchanger activity 

in the rat proximal tubule. Queiroz-Leite et al16 have similarly 

found that fructose stimulates proximal sodium–hydrogen 

exchanger 3 (NHE3) activity. So, while Ang II may directly 

affect sodium reabsorption in this model, it is not known 

whether moderate fructose intake directly stimulates renin 

secretion or if it interacts with Ang II and an HS diet to cause 

hypertension, or a combination of both.

Reactive oxygen species such as superoxide (O
2

-) and 

hydrogen peroxide (H
2
O

2
) are increased in the renal cortex 

in genetic models of salt-sensitive hypertension.17 HS diet 

has also been shown to increase 8-isoprostane excretion, a 

marker for increased renal reactive oxygen species forma-

tion.18 Besides having intrinsic vasoconstrictor properties and 

decreasing the bioavailability of the intrinsic vasodilator and 

natriuretic nitric oxide,19,20 it has been reported that reactive 

oxygen species can stimulate the secretion of renin21 directly 

from the juxtaglomerular cells. Further, Ang II is a well-known 

stimulator of reactive oxygen species.18 High fructose has also 

been linked to increased reactive oxygen species production. 

In vitro, fructose added to the culture media of skeletal muscle 

cells22 provoked mitochondrial reactive oxygen species forma-

tion, mitochondrial dysfunction and progressive apoptosis. 

In vivo, fructose ingestion prior to aerobic exercise in male 

athletes resulted in a significant rise in oxidative stress,23 not 

seen with glucose ingestion. From all of these related obser-

vations, we hypothesized that at least part of the pathway 

leading to fructose-induced salt-sensitive hypertension could 

be due to fructose-induced increased reactive oxygen species 

and inappropriate stimulation of renin secretion, all of which 

would contribute to an increase in blood pressure.

Materials and methods
Our studies employed male Sprague Dawley rats initially 

weighing 220–300 g (8–10 weeks of age), which were 

obtained from Charles Rivers Laboratories (Kingston, NY, 

USA). All procedures were approved by the Henry Ford 

Health System Institutional Animal Care and Use Committee 

(IACUC) and adhered to the guiding principles in the care and 

use of experimental animals in accordance with the National 

Institute of Health (NIH) guidelines. Henry Ford Hospital 

operates an American Association for Laboratory Animal 

Care (AALAC)-certified animal care facility.

Protocol 1: urinary 8-isoprostane 
excretion with fructose and HS rats
Groups
This study was gleaned from data obtained over 2 years using 

identical protocols of 2-week duration, including all rats from 

protocol 2. After the initial training period, rats were placed 

on one of six diet permutations including 1) a control (C) 

diet, eating standard rat chow containing 0.4% NaCl (Harlan 

Teklad, Madison, WI, USA) over 2 weeks (n = 9), 2) an HS 

diet, in which the standard diet was replaced by an HS diet 

(4% NaCl; Harlan Teklad) during the second week of the 

protocol (n = 17), 3) an HS plus tempol (HS + T) treatment, 

where the rats received the free radical scavenger tempol 

(Sigma-Aldrich Co., St Louis, MO, USA) in the drinking 

water (15 mg tempol/400 g rat/day) throughout the 2 weeks 

and were switched to the HS diet during the second week 

(n = 9), 4) fed with fructose (F), in which the rats received 

the normal rat chow, but their drinking water was supple-

mented with 20% fructose (Sigma-Aldrich Co.) throughout 

the 2-week study period (n = 9), 5) HS plus fructose (HS 

+ F), in which the rats received the 20% fructose drinking 

water throughout the 2 weeks and were switched to the HS 
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diet during the second week of the study (n = 27), and 6) HS 

plus fructose plus tempol (HS + F + T) treatment, in which the 

rats received both 20% fructose plus tempol in their drinking 

water throughout the 2 weeks and were switched to the HS 

diet during the second week (n = 7). During the final 48 h of 

the study period, the rats were moved to metabolic caging 

and allowed to acclimate to the new environment for 1 day. 

For the second 24 h, urine was collected and the volume was 

measured gravimetrically.

Urinary 8-isoprostane excretion
A portion of each urine sample was assayed for urinary excre-

tion of 8-isoprostane, a marker of oxidative stress.24 Urine 

collection vials contained 200 µL of anti-anti, an antifungal, 

antimicrobial agent (Thermo Fisher Scientific, Waltham, MA, 

USA). Collected urine samples were centrifuged to eliminate 

particulate contamination. An 8-isoprostane enzyme-linked 

immunosorbent assay (ELISA) kit was used to measure urinary 

concentration (Cayman Chemical, Ann Arbor, MI, USA). Uri-

nary concentrations were multiplied by urine volumes to obtain 

24 h 8-isoprostane excretion values, expressed as ng/24 h.

Protocol 2: systolic blood pressure with 
tempol treatment of fructose- and HS-fed 
rats
Male Sprague Dawley rats weighing 226–251 g were housed 

in standard caging. Prior to the beginning of the protocol, 

rats were allowed free access to distilled water and normal rat 

chow containing 0.4% sodium chloride (Harlan Teklad). In 

addition, rats were pretrained over 7–10 days on a noninvasive 

tail cuff plethysmography multichannel system (Kent Scien-

tific, Torrington, CT, USA). When the protocol commenced, 

systolic blood pressure was measured every other day for 

the duration of the 2-week protocol. In our experience, with 

proper training and consistent methodology, tail cuff systolic 

blood pressure measurements are reliable and match systolic 

blood pressure data obtained using telemetry.

Rats were distributed into one of four treatment groups. 

These included 1) the HS diet control group (HS-C), in which 

the standard diet was replaced by an HS diet (4% NaCl) 

during the second week of the protocol (n = 8); 2) the HS 

+ T-treated group, where the rats received the free radical 

scavenger tempol (Sigma-Aldrich Co.) in the drinking water 

(15 mg tempol/400 g rat/day) throughout the 2 weeks and 

were switched to the HS diet during the second week (n = 9); 

3) the HS + F group, in which the rats received drinking water 

containing 20% fructose in their drinking water throughout 

the 2 weeks and were switched to the HS diet during the 

second week of the study (n = 9); and 4) the HS + F + T 

group, in which the rats received both 20% fructose plus 

tempol in their drinking water throughout the 2 weeks and 

were switched to the HS diet during the second week (n = 8). 

We did not include any groups on a normal salt diet as we 

have previously documented their responses extensively in 

comprehensive metabolic balance studies7 and blood pressure 

did not change within this 2-week time frame.

Diet and body weight
During the first week of the 14-day protocol, all rats were fed 

normal rat chow (0.4% NaCl). For the second week, the diet in 

every group was switched to HS (4.0% NaCl). Both the normal 

rat chow and the HS diets were obtained from Harlan Teklad, 

and otherwise were identical in nutrient and caloric content. 

The rat chow had an energy density of 3 kcal/g (Harlan Data 

Sheet #8640). The energy density of fructose is 4 kcal/g.

Body weight was recorded every other day using a covered 

rodent triple-beam balance (Ohaus, Parsippany, NJ, USA).

Drinking water/tempol + fructose administration
Prior to the 2-week protocol, an initial training period of 1 

week was run. Rats were then assigned to one of four dietary 

treatment groups. To assure consistent drug intake, all rats 

were given a volume of 35 mL of their assigned drinking 

water once every 24 h for week 1 of the protocol. When 

scheduling allowed, rats of all groups were given free access 

to distilled water but only after drinking their initial treat-

ment volume. For the second week of the protocol, assigned 

drinking water doses were increased in volume from 35 mL 

to 45 mL. This change was designed to accommodate an 

anticipated greater thirst with the change to an HS diet in the 

second week of the protocol. Each group’s drinking water 

solution was prepared every 2–3 days apart and stored in a 

refrigerator to limit microbial growth.

Sodium excretion
Two 24 h urine collections were obtained over the final 48 h 

of the 2-week protocol. The rats were placed in metabolic 

cages. In these, their urine drained freely through the wire 

mesh bottom of the cage, then through a wire mesh feces 

trap, and into a 50 mL conical tube containing 200 mL of 

antibiotic–antimycotic solution to prevent growth of bacteria 

(Thermo Fisher Scientific). All the initial 24 h urine collection 

samples were discarded, and only the urines from the final 

24 h of the protocol were analyzed. The volume of these final 

24 h urine samples was measured by weight using an Ohaus 

electronic balance (Mettler Toledo, Columbus, OH, USA). 
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Urine samples were spun at 3500 rpm at 4°C for 10 min to 

remove sediment. Samples were transferred to Eppendorf 

tubes and placed in a -80° freezer. Sodium excretion was 

calculated from 24 h urine volumes and sodium concentra-

tions measured by a Nova Biomedical 1 electrolyte analyzer 

(Nova Biomedical, Waltham, MA, USA).

Plasma renin activity (PRA)
At the end of the protocol, rats were euthanized via decapita-

tion using a rat guillotine (Harvard Bioscience, Cambridge, 

MA, USA). Promptly after decapitation, the first 3 s of 

trunk blood were collected for PRA analyses in 15 mL tubes 

containing 200 µL of 6% EDTA in 0.9% NaCl. This collec-

tion method has been approved by our IACUC as it avoids 

the abnormal stimulation of PRA by the renal baroreceptor 

reflex and by anesthesia, which would otherwise abnormally 

increase PRA.25 Additional blood samples were taken using 

either 200 µL of 6% EDTA (Sigma-Aldrich Co.), or 100 µL 

of sodium heparin (Sagent Pharmaceuticals, Schaumburg, 

IL, USA) as anticoagulants. Blood samples were spun at 

1,000× g at 4°C for 10 min, and the plasma was separated 

and stored at −80°C until further analysis.

PRA was analyzed by generation of angiotensin I (Ang 

I; ng Ang I×mL−1×h−1×min−1) using a Gamma Coat RIA kit 

(DiaSorin, Stillwater, MN, USA) as previously described26 

and according to the manufacturer’s instructions. Following 

blood collection, the kidneys were excised, decapsulated, 

blotted, weighed, split, and inspected for gross abnormalities 

(hydronephrosis, lobular appearance, ischemic areas, etc), 

and none were found. In previous studies characterizing 

this model, within this 2-week protocol duration, we did not 

observe any microscopic histological changes nor proteinuria.

Blood glucose
Blood glucose was measured at the end of the protocol. 

For 24 h prior to euthanasia, the rat groups were fasted, but 

allowed access to water. Following euthanasia, blood droplets 

were collected from trunk blood to measure fasting plasma 

glucose levels. Blood glucose was measured with a True 

Result Blood Glucose Monitor (CVS, Woonsocket, RI, USA).

Statistical treatments
Single comparisons were run using a Student’s t-test. Change 

between two periods was evaluated using a paired t-test. 

Multiple comparisons were run using analysis of variance 

(ANOVA) or ANOVA with repeated measures. For a post hoc 

test, we used the Newman–Keuls test. Statistical significance 

was established by a p-value of at least 0.05.

Results
Protocol 1: urinary 8-isoprostane 
excretion with fructose and HS rats
To test the effect of 20% fructose and an HS diet on renal 

oxidative stress, we measured 24 h urinary 8-isoprostane 

excretion. 8-Isoprostane excretion in the six study groups 

(Figure 1) were: 1) (C) 16.38 ± 1.30, 2) (HS) 26.69 ± 0.51, 

3) (HS + T) 26.86 ± 4.60, 4) (F) 32.18 ± 3.89 5) (HS + F) 

29.84 ± 1.96, and 6) (HS + F + T) 20.80 ± 3.40 ng/24 h. 

By the end of the 2-week study period, 8-isoprostane was 

significantly higher by 80–90% (p < 0.01) in all groups 

fed either HS, 20% fructose, or a combination of the two 

(Figure 1) compared to controls. There were no differences 

among the different HS or fructose-fed groups with elevated 

8-isoprostane excretion. Tempol treatment did not affect the 

increased 8-isoprostane excretion in the HS-only group, but 

significantly reduced 8-isoprostane excretion in the HS + F 

+ T group by 40% (p < 0.028; Figure 1). Thus, both HS and 

20% fructose increased this marker for oxidative stress, but 

when combined the effects were not additive. Tempol treat-

ment reduced this elevation of 8-isoprostane only when both 

HS and fructose were present.

Protocol 2: systolic blood pressure with 
tempol treatment of fructose and HS rats
Diet and body weight
Body weights between the four groups were similar both at 

the beginning and at the end of the 2-week protocol (Table 1). 

Thus, growth rate was also similar among the four groups 

(Table 1). While growth in the two groups treated with tempol 

Figure 1 Protocol 1: 8-isoprostane excretion in the six different groups.
Notes: C = control, normal salt (0.4% NaCl) diet; HS (4.0% NaCl) diet; HS + T, HS 
plus tempol-treated; F = 20% fructose-fed group; HS + F, 20% fructose-fed plus an HS 
diet; HS + F + T, 20% fructose-fed plus an HS diet and treated with tempol. *p < 0.01 
vs C (adjusted for multiple comparisons), §p < 0.028 vs HS + fructose-fed group.
Abbreviations: C, control; F, fructose; HS, high salt; T, tempol.
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appeared somewhat slower, none of these differences were 

statistically significant. Kidney weights at the end of the study 

period were also similar among the four groups.

Systolic blood pressure
The mean systolic blood pressures within the four groups 

(138 ± 2 mmHg) were similar at the beginning of the protocol 

after the training period and were not still not different from 

each other after a week on the high-fructose diet (Figure 

2A): the HS-C group, 144 ± 6 mmHg; the HS + T-treated 

group, 142 ± 4 mmHg; the HS + F group, 142 ± 4 mmHg; 

the HS + F + T-treated group, 132 ± 12 mmHg. Over the final 

week, when HS was added to the diets, the blood pressure 

in the HS + F group began increasing within 4 days (150 ± 

5 mmHg, p < 0.05) and increased even further (Figure 2A) 

by the end of the protocol. After a week of receiving both 

20% fructose and HS, the blood pressure was increased by 

over 15 mmHg (156 ± 6 mmHg, p < 0.01); a rise similar to 

what we have previously reported.7 Blood pressure in the 

other three groups remained unchanged after 7 days on HS: 

HS-C group, 139 ± 4 mmHg; HS + T-treated group, 138 ± 

3 mmHg; HS + F + T-treated group, 136 ± 3 mmHg. Thus, 

tempol treatment completely reversed the increase in blood 

pressure seen with the combination of 20% fructose and 

HS (Figure 2B).

Drinking water/tempol + fructose 
administration
Sodium and water excretion
The 24 h sodium excretion in the four groups on the last day 

of the 2-week protocols was not statistically different from 

each other. The values were 1) HS-C, 2.20 ± 0.65 mM/24 h; 

2) HS + T, 3) 1.63 ± 0.25 mM/24 h; 4) HS + F, 1.74 ± 

0.27 mM/24 h, and HS + F + T, 2.14 ± 0.24 mM/24 h.

The 24 h urinary excretion in the four groups on the 

last day of the 2-week protocols were 1) HS-C, 27.3 ± 

3.9 mL/24 h; 2) HS + T, 12.0 ± 2.7 mL/24 h; 3) HS + F, 25.7 

± 1.1 mL/24 h, and 4) HS + F + T, 21.1 ± 2.7 mL/24 h. The 

volume output was similar in all groups except the HS + T 

group, which had a volume only half that of the other groups 

(p < 0.02). We found that the rats did not like tempol in their 

water, which led to reduced intake and greater variability in 

the HS + T group. However, when fructose was added (in 

the HS + F + T group), the sweetness overcame this distaste 

and water intake was normalized.

Table 1 Protocol 2: body weight and kidney weight

Parameter Diet group

HS-C HS + T HS + F HS + F + T

Body weight at day “0” (g) 260 ± 10 259 ± 8 258 ± 6 254 ± 6
Body weight at 2 weeks (g) 321 ± 10 311 ± 6 321 ± 6 304 ± 4
Growth rate (g/day) 4.3 ± 0.5 3.7 ± 0.4 4.5 ± 0.5 3.9 ± 0.4
Left kidney weight (g) 1.19 ± 0.05 1.15 ± 0.03 1.11 ± 0.04 1.11 ± 0.03

Abbreviations: C, control; F, fructose; HS, high salt; T, tempol.

Figure 2 Effect of the different diets/treatments on systolic blood pressure.
Notes: Protocol 2: (A) the SBP over 2 weeks on 20% fructose with HS diet during 
the second week and the effects of tempol treatment. *p < 0.05, **p < 0.01 vs 
control SBP at day “0.” (B) The changes in SBP over the 2 weeks of the study in 
each group. 
Abbreviations: F, fructose; HS, high salt; SBP, systolic blood pressure; T, tempol.
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PRA
PRA in the HS-C group was 2.28 ± 0.53 ng Ang I/mL/h. 

The HS + T group was similar at 1.84 ± 0.27 ng Ang I/mL/h. 

The addition of 20% fructose combined with HS tended to 

increase PRA to 3.57 ± 0.52 ng Ang I/mL/h (Figure 3) as 

we have reported previously,7 this increase did not reach a 

statistically significant difference from HS-C. However, the 

combination of 20% fructose plus HS treated with tempol 

decreased PRA by 50% compared to the same treatment 

without tempol (p < 0.025) to a value of 1.79 ± 0.37 ng Ang 

I/mL/h, and this value was similar to HS-C with or without 

tempol (Figure 3).

Blood glucose
Fasting blood glucose levels at the end of the protocol were 

not significantly different between the four groups: HS-C, 

52 ± 2 mg/dL; HS + T, 53 ± 2 mg/dL; HS + F, 58 ± 2 mg/dL; 

and HS + F + T, 57 ± 2 mg/dL.

Discussion
We have previously reported6,7 that a diet supplemented with 

20% fructose in the drinking water of rats over a duration of 

just 2 weeks, when combined with an HS diet, can induce 

salt-sensitive hypertension prior to the onset of other meta-

bolic alterations. This was coincident with increased renal 

proximal NHE3 activity and enhanced sensitivity to Ang II 

in isolated proximal tubules,6 as well as increased sodium 

retention, decreased renal nitric oxide,7 and diminished sup-

pression of PRA with an HS diet.7 In the current study, we 

again found that the combination of 20% fructose and an HS 

diet led to significant increases in systolic blood pressure in 

only 1 week. Likewise, HS suppression of PRA was blunted 

by fructose intake. We also now report that both an HS diet 

and 20% fructose intake increase urinary 8-isoprostane 

excretion suggesting each lead to an increase in renal reactive 

oxygen species formation. Because of this, we tested if the 

oxygen-free radical scavenging, superoxide dismutase (SOD) 

mimetic tempol, would affect the increase in blood pressure 

seen with a combination of these two dietary challenges of 

reactive oxygen species. We hypothesized that at least part 

of the pathway leading to fructose-induced salt-sensitive 

hypertension could be due to fructose-induced formation 

of reactive oxygen species and inappropriate stimulation of 

renin secretion, all of which would contribute to an increase 

in blood pressure. What we found was a rapid and dramatic 

increase in systolic blood pressure in response to the com-

bination of 20% fructose and HS, similar to what we have 

previously reported,6,7 and further that this was completely 

reversed in rats chronically treated with tempol. Further, 

while we found (as before7) that fructose blunted the HS 

suppression of PRA, but now we found that this effect on 

PRA was significantly reduced (reversed) with the addition of 

tempol. Our data suggest that the factors leading to fructose-

induced, salt-sensitive hypertension may be in part driven by 

increased renal oxygen free radical formation.

HS diet is known to increase renal cortical reactive 

oxygen production,27,28 as well as cortical nitric oxide 

synthesis.29 We and others have previously reported7,28 an 

important interaction between nitric oxide and superoxide 

in maintaining both renal blood flow and sodium excretion 

in normotensive rats. Nitric oxide is known to be an impor-

tant natriuretic factor in the proximal tubule.30 We have also 

reported7 that HS intake dobles the NO
2
/NO

3
 excretion (as a 

marker of renal NO production), presumably because of its 

natriuretic properties,30 but in the presence of 20% fructose 

this response is significantly attenuated. This suggests that 

the fructose intake either directly or indirectly diminishes 

nitric oxide bioavailability.

It is well established that renal production of reactive 

oxygen species, primarily by NADPH oxidase in the kid-

ney, is an important factor in regulating renal function,27 

and excesses in its activity could lead to renal dysfunction 

and hypertension. As little as 10% fructose in the drinking 

water of rats leads to systemic oxidative stress and related 

pro-inflammatory conditions.31

Tempol is a cell-permeable SOD mimetic which scav-

enges free radicals and attenuates superoxide anion and 

peroxynitrite-induced inflammation.32 It is water soluble and 

can be easily administered in the drinking water.33 Tempol is 

a redox-cycling nitroxide which metabolizes many  reactive 

Figure 3 Protocol 2: PRA at the end of the experimental protocol.
Note: p-value vs similar diet without tempol treatment.
Abbreviations: Ang I, angiotensin I; HS, high salt; PRA, plasma renin activity.
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oxygen species.34 Thus, it does not have selectivity so that 

the specific reactive oxygen species generated cannot be 

determined from these results. Tempol has been reported 

to have antihypertensive properties in various rat models of 

hypertension.27 In the spontaneously hypertensive rat, Yanes 

et al33 found that 2 weeks of tempol treatment reduced oxida-

tive stress and reduced mean arterial pressure. This response 

was found to be nitric oxide dependent but independent 

of the renin–angiotensin system. In 2K1C renovascular 

 hypertension,35 3 weeks after clipping the blood pressure, 

PRA and urinary 8-isoprostane were all elevated. Acute 

tempol administration reduced blood pressure and increased 

renal perfusion suggesting a significant role for superoxide 

in regulating renal hemodynamics in this model of renal 

hypertension. About 20 weeks of 20% high fructose and 8% 

high sodium has been reported to elevate oxidative stress 

and induce hypertension.36 Cowley et al27 have elegantly 

reviewed how increased reactive oxygen species or reduced 

scavenging of reactive oxygen species results in reduced 

renal medullary blood flow and retarded sodium excretion 

resulting in hypertension. Nishimoto et al37 found that high 

dietary fructose diminished renal medullary endothelial 

nitric oxide synthase in salt-sensitive rats. While we do not 

have urinary NO
2
/NO

3
 measurements in the current data, 

the combination of elevated reactive oxygen species and our 

previously reported7 diminished NO bioavailability should 

lead to increased renal vascular resistance35 and decreased 

natriuresis,7,20 both of which could contribute to the hyperten-

sion. Tempol treatment should reverse this trend, and thereby 

explain the antihypertensive response we observed in our 

fructose plus HS rats.

Renin, the rate-limiting enzymatic step in the formation 

of Ang II, is inhibited by high renal perfusion pressure and 

by HS intake.8,9 The bioactive molecule of this system is 

Ang II, which has intrinsic vasoconstrictor properties, is a 

potent pressor factor8 and has been found to have a sensitive 

interaction with the vasodilator and natriuretic nitric oxide 

in the regulation of renal perfusion.38,39 Ang II is one of the 

most potent endogenous stimuli for oxygen-free radical 

formation.40–42 High fructose and HS intake has been shown 

to induce renin–angiotensin-stimulated renal reactive oxy-

gen species.43 In addition, it has been reported that reactive 

oxygen species can stimulate the secretion of renin21 directly 

from renin-synthesizing juxtaglomerular cells. We have 

found previously7 as well as in the current study that 20% 

fructose intake reverses the inhibition of renin by HS and high 

renal perfusion pressure such that it remains  inappropriately 

 normal. We have also seen (unpublished observations) that 

after 4 weeks of HS, a further 80% suppression of renin, and 

this is also reversed and elevated by coincident salt plus 20% 

fructose intake. This increase is not seen with 20% fructose 

and normal salt.7 Several reports have found that pharma-

cologic suppression of the renin angiotensin system blunts 

or reverses fructose-induced hypertension,14,15,44 suggesting 

that the inappropriate maintenance of PRA may contribute 

to this hypertension. Note that our results are from only the 

first 2 weeks of 20% fructose administration and may be quite 

different by 8–12 weeks of 20% fructose when the model is 

complicated by the development of metabolic syndrome.4 

Thus, one might envision a vicious positive feedback cycle 

in which fructose-induced free radical formation directly 

stimulates renin secretion, elevates Ang II, which in turn 

increases blood pressure, and further stimulates reactive 

oxygen species formation. These all would diminish nitric 

oxide bioavailability and amplify the pro-hypertensive fac-

tors, all of which are consistent with our current and previous 

results.6,7 Scavenging reactive oxygen species with tempol 

should reverse all of this, and we found that it did reverse the 

hypertension and restored the appropriate renin response to 

HS intake. We did not see any effect of tempol treatment on 

PRA in the HS + T group. Since HS had already suppressed 

PRA, it would be difficult to further determine whether tem-

pol exerted any additional effect in this group.

Conclusion
We hypothesized that at least part of the pathway leading 

to fructose-induced salt sensitive hypertension could be 

due to fructose-induced reactive oxygen species formation 

and inappropriate stimulation of renin secretion that would 

be reversed by the SOD mimetic tempol. We found that 

tempol treatment completely reversed the fructose-induced 

salt-sensitive hypertension, diminished the excretion of 

8-isoprostane, and restored the appropriate HS suppression 

of renin secretion. Thus, we conclude that much of the effect 

of fructose-induced salt-sensitive hypertension is driven by 

renal formation of reactive oxygen species.
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