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Abstract: Colorectal cancer is one of the most common human malignant tumors. Recent research 

has shown that colorectal cancer is a dysbacteriosis-induced disease; however, the role of intestinal 

bacteria in colorectal cancer is unclear. This review explores the role of intestinal flora in colorectal 

cancer. In total, 57 articles were included after identification and screening. The pertinent literature 

on floral metabolites in colorectal cancer from three metabolic perspectives – including carbohydrate, 

lipid, and amino acid metabolism – was analyzed. An association network regarding the role of 

intestinal flora from a metabolic perspective was constructed by analyzing the previous literature 

to provide direction and insight for further research on intestinal flora in colorectal cancer.

Keywords: colorectal cancer, bacteria, microbiology, carbohydrate metabolism, lipid metabo-

lism, amino acids, inflammation

Introduction
Colorectal cancer is the third leading cancer in humans and the fourth most common 

cause of cancer-related death.1 The causes of the occurrence and development of 

colorectal cancer are unclear, but it is thought to result from a combination of genetic 

and environmental factors.2 Intestinal flora and their metabolites, as environmental 

factors, play important roles in colorectal cancer by regulating related genes.3

The main function of the colorectum is to store feces while under siege from 

complex intestinal flora. Several probiotics,4–6 including Lactobacillus acidophilus, 

Bifidobacterium, Lactobacillus rhamnosus, and Streptococcus thermophilus, as well 

as pathogenic bacteria,7–9 including Enterococcus faecalis, Enterotoxigenic bacteroides 

fragilis, Streptococcus bovis, Salmonella, Clostridia, and Fusobacterium nucleatum, 

comprise the diverse intestinal flora. This intestinal flora, mucosal epithelial cells, 

foodborne probiotic components, and small molecules – including hormones, enzymes, 

mucus, and bile salts – constitute a complex intestinal micro-ecosystem.10 Although 

individual substances vary, the intestinal micro-ecosystem is relatively stable under 

physiological conditions. Multiple diseases may result if changes occur beyond the 

ability of compensatory adjustment.11,12 Studies have shown that the micro-ecosystem 

equilibrium in patients with colorectal cancer is disrupted.13 Various intestinal flora 

and metabolites are closely related to colorectal cancer.14

With advanced developments in microbiome and microbial metabolomics, espe-

cially rapid advancements in high-throughput sequencing technology, increasing atten-

tion has been given to studying intestinal flora and intestinal microecology in recent 

years.15 Current research has focused on the relationship between intestinal flora and 
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colorectal cancer; however, the specific mechanism of the 

intestinal flora in causing colorectal cancer is unclear.16,17 

Microbial primary metabolites, including amino acids, nucle-

otides, polysaccharides, lipids, and vitamins, are necessary to 

sustain intestinal flora growth and reproduction.18 Microbial 

primary metabolites are similar in most microbial cells. The 

synthesis of primary metabolites is a constant process, and 

synthetic obstacles affect normal microbial activities.19,20 

Microbial secondary metabolites, including alkaloids, phe-

nols, antibiotics, and pigments, determine the specificity and 

function of the flora. Microbes are valuable in maintaining 

the balance of the intestinal microecology;21,22 however, the 

significance of microbial metabolites in colorectal cancer 

is unclear. Given that the metabolism of three substances, 

including carbohydrate, lipid, and amino acid metabolism, 

is the general metabolic mechanism among all creatures, we 

tried to build a link between the intestinal flora and colorectal 

cancer from this angle.

In this review, we comprehensively analyzed and clas-

sified the pertinent literature on microflora metabolites in 

colorectal cancer from three metabolic perspectives, includ-

ing carbohydrate, lipid, and amino acid metabolism. An 

association network of intestinal flora, their metabolites, and 

colorectal cancer was built that may provide direction and 

insight for further research on intestinal flora in colorectal 

cancer.

Methods
Literature search
We searched the “PubMed”, “Embase”, and “Cochrane” 

databases for literature published up to August 11, 2017. 

To achieve maximum sensitivity of the search strategy and 

identify all studies, the following terms were combined: 

(“colorectal or colon or rectal, large intestine or large bowel 

or intestinum crassum” and “neoplasms or tumor or carci-

noma or cancer” and “flora or microflora or microorganism 

or microbiome or microbiota or microbe or microbiology 

or germ or bacteria or bacterium or fungus”) and (“glucose 

or adenosine triphosphate or lactic acid or mitochondria or 

galactose or sucrase or amylase or hexokinase or glucokinase 

or pyruvate kinase or glucuronidase” OR “triglyceride or fat 

or aliphatic acid or lipoprotein or cholesterol or cholesterin or 

bile acid or lithocholic acid or vitamin d or dehydroxylase” 

OR “amino acid or ammonia or amine or urea or carbamide 

or ureophil or mucin or mucoprotein or nitrosamines or 

nitroguanidine or nitrosourea or aromatic amines or myco-

toxin or endotoxin or exotoxin or sulfuretted hydrogen or 

hydrogen sulfide or hydrothion”). All relevant abstracts were 

retrieved independently by two authors, and articles with 

available information for the present systematic review were 

fully reviewed. In total, 42 articles were included. To pres-

ent a more comprehensive role of flora in colorectal cancer, 

flora appearing in the 42 articles were used as the medical 

subject headings (MeSH) and the pertinent literature was 

retrieved. Finally, 15 articles were added after identifica-

tion and screening. Moreover, pertinent literature from the 

searched studies was analyzed. A detailed search strategy is 

presented in Figure 1.

Study selection
Studies catering to the following criteria were considered 

for inclusion: 1) studies that were published in English and 

2) studies that involved intestinal flora and intestinal flora 

metabolism in colorectal cancer, both in vivo and in vitro. 

Exclusion criteria were as follows: 1) letters, case reports, 

reviews, or conference reports; 2) predominant studies that 

were not on intestinal flora metabolism in colorectal cancer; 

and 3) correlation studies did not involve flora metabolism.

Role of flora metabolites in colorectal 
cancer
Intestinal flora and carbohydrate metabolism in 
colorectal cancer
Carbohydrate metabolism refers to a series of complex 

chemical reactions in vivo. The tricarboxylic acid cycle, 

as the principal pathway of carbohydrate metabolism, is 

the final metabolic pathway and metabolic hub of the three 

major nutrients, including carbohydrates, lipids, and amino 

acids.23,24 Carbohydrate metabolism is important for intestinal 

flora and colorectal cancer. First, oxygen plays a decisive 

role in choosing the carbohydrate metabolic pathway. Both 

anaerobic and aerobic bacteria coexist in the intestinal tract. 

Superoxide, oxygen radicals, and oxygen molecules are 

closely related to the development of colorectal cancer.25,26 

Second, carbon dioxide and water are the primary producers 

in carbohydrate metabolism.27 Various bacteria decompose 

glucose and lactose and produce acid.28 Intestinal micro- 

ecology is regulated by maintaining the acid–base balance 

and regulating osmotic pressure. Third, adenosine triphos-

phate (ATP) is produced during carbohydrate metabolism 

and is an important compound that supplies energy to all 

living cells. Phosphoribose produced during the metabolism 

of pentose phosphate is necessary to synthesize DNA and 

RNA, and they are especially important for rapidly reproduc-

ing bacteria and infinitely replicating cancer cells.29 Fourth, 

nicotinamide adenine dinucleotide phosphate (NADPH) is 
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the intermediate metabolite in carbohydrate metabolism, and 

it participates in phosphorylating proteins and genes. It may 

be involved in microbial variation and epigenetic regulation 

of colorectal cancer.30 Finally, mitochondria are the key 

location for carbohydrate metabolism, and mitochondrial 

dysfunction is one the most important features in colorectal 

cancer and intestinal flora imbalance.31,32

Intestinal flora and lipid metabolism in 
colorectal cancer
Lipids include triglycerides, phospholipids, cholesterol, and 

glycolipid. Triglycerides provide energy for living organisms 

by emulsifying bile acid salts and catalyzing lipase in the 

small intestine.33,34 Phospholipids and sugar esters maintain 

biomembrane structure and function.35 Cholesterol can trans-

form into vitamins, bile acid, or steroid hormones.36 Many 

studies indicate that a high-fat diet can induce colorectal 

cancer, and imply that intestinal flora play irreplaceable 

roles; however, their specific mechanisms remain unclear.37,38 

In this review, we searched for clues on tumorigenesis by 

summarizing the pertinent literature. High-fat diets can 

increase bile and bile acid secretion in the colorectum, and 

some clostridia can accelerate transformation of bile acid 

into secondary bile acid by participating in the synthesis of 

various enzymes during fatty acid metabolism.39,40 Secondary 

bile acid, as a carcinogenic substance, promotes colorectal 

cancer by multiple molecular mechanisms – synthesizing 

oxygen free radicals, fracturing DNA strands, making chro-

mosomes unstable, and forming cancer stem cells.41,42 Inter-

actions between fatty acids, bile acids, and intestinal flora 

can produce diacylglycerol, prostaglandin, and leukotriene, 

leading to tumorigenesis by activating immune or inflam-

matory responses.43–45

Intestinal flora and amino acid 
metabolism in colorectal cancer
Amino acid metabolism involves two parts. Amino acids 

can be used to synthesize proteins, peptides, and other 

Figure 1 Literature search strategy.
Notes: The databases “PubMed”, “embase”, and “Cochrane” were searched for literature published up to August 11, 2017. Forty-two articles were assessed for eligibility 
after identification and screening. To present a more comprehensive role of flora in colorectal cancer, the flora appearing in the 42 articles were used as the medical subject 
headings (MeSH) and the pertinent literature was retrieved. A further 15 articles were added after identification and screening.
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 nitrogenous substances and, moreover, they can be decom-

posed into α-ketonic acid, amines, and carbon dioxide 

through deamination, transamination, and decarboxylation. 

Many toxic substances such as sulfur, nitrates, hydrogen 

sulfide, ammonia, and amines are involved in the metabolic 

process, and these toxic substances can lead to colorectal 

cancer.46 Food residue with high protein content can stimu-

late sulfate-reducing bacterial growth. Hydrogen sulfide is a 

product of sulfate-reducing bacteria as well as an intermedi-

ate product of amino acid metabolism.47 Hydrogen sulfide 

elicits several pathogenic events, including cell proliferation, 

differentiation, apoptosis, and inflammation – ultimately 

leading to malignant enterocyte transformation.48,49 Nitrate 

is not toxic, but easily reduces to nitrite due to the intestinal 

flora. Nitrite combines with nitrogenous compounds such 

as amines, amino compounds, and methyl urea to form 

carcinogenic nitroso compounds.50,51 Furthermore, mucin 

as an intermediate product of amino acid metabolism is a 

mutagenic agent with cooperation from the intestinal flora.52 

Many enzymes, peptides, and other nitrogenous substances 

secreted by the intestinal flora are involved in activating and 

regulating important signal molecules and signaling pathways 

in tumorigenesis.53,54

Results and discussion
The intestinal flora and host maintain a dynamic balance 

under physiological conditions. When this balance is dis-

rupted, the entire micro-ecological system is significantly 

altered.55,56 The synergistic effect among intestinal flora, 

metabolites, and the host plays a pivotal role in the occur-

rence and development of colorectal cancer. First, microbes 

are the initial factors in colorectal cancer. Changes to the 

intestinal flora distribution and abundance contributes to 

inflammatory and immunological responses and induces 

malignant transformation of the intestinal mucosal cells.57 

Second, epidemiological surveys have indicated that the bal-

ance of intestinal flora in patients with precancerous lesions, 

including inflammatory bowel disease (IBD) and intestinal 

polyps, were altered significantly.58,59 Third, various metabolic 

products of the intestinal flora can, directly or indirectly, 

promote development and progression of colorectal cancer.60 

Fourth, micro-ecology helps to prevent tumorigenesis by 

reestablishing the intestinal micro-ecological balance.61,62 

In conclusion, colorectal cancer is a dysbacteriosis-induced 

disease, and the understanding of this disease has changed 

in the molecular age.

Researchers have increasingly focused on determining the 

specific bacteria or microbial community structural changes 

in colorectal cancer by sequencing 16S rRNA and bioinfor-

matics analysis in recent years. Many researchers support that 

Streptococcus bovis63 and Streptococcus gallolyticus64 are 

the specific bacteria involved in colorectal cancer; however, 

there are some lacunae in this research. Sequencing of the 

16s rRNA variable region only identifies the bacterial species, 

and the intra-individual variability of the bacteria was not 

considered. In addition, a better scientific method for study-

ing the intestinal flora in colorectal cancer is to explore its 

relationship with the intestinal micro-ecological system. The 

intestinal micro-ecological system is complex and integral, 

with individual differences. Establishing an association net-

work for the intestinal micro-ecological system in colorectal 

cancer may offer an approach to solving this dilemma. As 

shown in Figure 2, the association network for the intestinal 

flora and microbial metabolites in colorectal cancer, from 

a metabolic perspective, was constructed by analyzing the 

previous literature. Although we tried to search all pertinent 

literature, mistakes of omission inevitably occurred because 

of the complexity of microbial metabolism and the many 

compounds involved in it. Research on the relationship 

between microbial metabolites and colorectal cancer were 

relatively insufficient.

Future directions
There appears to be a complex relationship between colorec-

tal cancer and intestinal flora. Microbial metabolites may play 

vital roles in balancing the intestinal micro-ecology and in 

developing colorectal cancer. The intestinal flora is insuffi-

ciently understood, intestinal micro-ecology is complex, and 

intestinal flora show significant intra-individual variability; 

thus, evaluating all of these interactions is challenging. With 

the great progress of integrated systems, molecular biology, 

and bioinformatics, we urgently call for a synthesis of the 

existing research to establish a comprehensive database that 

focuses on individual relationships among the intestinal flora, 

microbial metabolites, and colorectal cancer.

It is plausible that the intestinal flora and microbial metab-

olites in colorectal cancer are related to the immune system 

and inflammatory abnormalities. Although much effort has 

been expended, many bottlenecks must be addressed before 

stepping from the imbalanced intestinal micro-ecological 

system to immune system and inflammatory abnormalities 

to genesis and development of colorectal cancer. The clinical 

correlation of the intestinal flora, microbial metabolites, and 

colorectal cancer remains unknown; thus, it is essential to 

conduct further functional assays on pathogenesis such as the 

microbiome, microbial metabolomics, and peptidome assays. 
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Multiple probiotics have been applied clinically for some 

time, and preclinical trials involving intestinal flora transfu-

sion are also underway. Prospective and retrospective studies 

on the incidence of colorectal cancer after clinical interven-

tions with microbial preparations should be scheduled.

Several avenues are available to pursue translational 

applications. First, microchip arrays or metabonomic tech-

nologies can assess the risk and monitor the curative effects 

of a bacterial species or specific microbial metabolite in 

colorectal cancer. Second, probiotics, microbial metabolites, 

and fecal microbial transfusions can all be used to recover 

the intestinal micro-ecological system to prevent colorectal 

cancer; however, this requires further clinical testing. Third, 

intestinal micro-ecology is influenced by many factors, 

including the endocrine system, diet, sleep, and stress.  Testing 

the intestinal flora and microbial metabolites in feces can 

guide the adjustment of dietary structure or living habits to 

prevent colorectal cancer.

Disclosure
The authors report no conflicts of interest in this work.
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