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Background: Inflammation and oxidative stress are important factors associated with chronic 

disease such as essential hypertension (HTN) and type 2 diabetes mellitus (T2DM). However, 

the association of inflammation and oxidative stress in HTN with T2DM as a comorbidity is 

inconclusive due to the multifactorial nature of these cardiometabolic diseases. 

Methodology: The influence of pathophysiological factors include genetics, age of patient, and 

disease progression change throughout the lifespan and require further investigation. The study 

population included 256 participants attending a rural health screening program who were tested for 

markers of inflammation, oxidative stress, and coagulation/fibrinolysis. Demographic and clinical 

variables included, age, gender, systolic and diastolic blood pressures, blood glucose, hemoglobin 

A1c, estimated glomerular filtration rate, and cholesterol profile. Data were tested for normality, 

and nonparametric statistics were applied to analyze the sample with significance set at p<0.05. 

Results: Of the inflammatory markers, interleukin-1β (IL-1β) and IL-10 were significantly different 

between the control and hypertensive group (p<0.03) and between the HTN+T2DM compared to 

the HTN group (p<0.05). Significant results for oxidative stress were observed for urinary 8-iso-

PGF
2
α and insulin-like growth factor 1 (IGF-1) between the control and the HTN+T2DM group 

(p<0.01). Glutathione (GSH) was also significant between the HTN and HTN+T2DM group 

(p<0.05). Investigation of the progression of HTN also found significant changes in the inflammatory 

markers IGF-1, monocyte chemoattractant protein 1 (MCP-1), and (MCP-1/IGF-1)*IL-6 (p<0.05). 

Conclusion: This study demonstrated that 8-iso-PGF
2
α and erythrocyte GSH may be clinically 

useful for assessing HTN and HTN with T2DM as a comorbidity, while significant changes in 

the inflammatory profile were also observed with HTN progression. 

Keywords: hypertension, type 2 diabetes mellitus, inflammation, oxidative stress, biomarkers

Introduction
Hypertension (HTN) is a public health problem which affects over 1 billion people 

world-wide.1 HTN is often associated with type 2 diabetes mellitus (T2DM), approxi-

mately 75% of people with T2DM will develop HTN.2 These findings raise major 

health issues as long-term HTN increases the risk of coronary heart disease, stroke, 

heart failure, and peripheral vascular disease;3 and diabetes associated with HTN is 

known to increase cardiovascular disease (CVD) risk by up to threefold.4

Obesity, inflammation, oxidative stress, and insulin resistance are part of a common 

pathophysiological pathway for HTN and T2DM. Studies have confirmed that oxidative 

stress and increased inflammatory processes often co-exist, and are considered to be 

common causes and risk factors for T2DM and HTN. However, the link between oxi-

dative stress and inflammatory processes is inconclusive, requiring more mechanistic 
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studies that highlight the interaction between these processes 

and how they affect diabetes, HTN, and when HTN is found 

in the presence of T2DM.5,6

Hyperglycemia and arterial stiffness increase with age 

and affect endothelial function as part of HTN and T2DM 

pathophysiology.7 The autonomic nervous system also plays 

a role in HTN and T2DM, with sympathetic nervous system 

dysfunction linked to hyperinsulinemia and increased blood 

pressure (BP) by increasing cardiac output.8 Diabetes and HTN 

disease progression leads to changes in endothelial dysfunction 

and increased pro-inflammatory and oxidative stress markers 

and a decrease in antioxidant and anti-inflammatory biomark-

ers.9–12 These inflammatory and oxidative stress changes can 

lead to atherosclerosis, accelerated development of arterial 

thrombosis, and increased risk of death due to CVD.13,14 

Oxidative stress occurs due to an imbalance between ROS 

formation resulting in enhanced ROS generation and an imbal-

ance in the production of antioxidants.15 Optimum levels of 

the body’s antioxidant reserve are affected by hyperglycemia 

as found in diabetes and HTN.11,16 HTN has been proposed to 

be associated with an increase in oxidative stress.17 Diabetes 

and associated hyperglycemia affects the redox state and is 

reflected in decreased levels of reduced glutathione (GSH) and 

an increase in oxidized glutathione (GSSG).13 8-OHdG, an 

endothelial cell oxidative stress marker is a product of DNA 

base modification produced by the oxidation of deoxyguano-

sine. Increasing urinary 8-OHdG excretion has been observed 

in prediabetes and T2DM compared with healthy subjects and 

is considered to be a useful marker for the detection of early 

micro- and macrovascular complications in T2DM.18 In HTN 

patients with T2DM increased urinary 8-OHdG excretion has 

been demonstrated.19 Similarly, isoprostanes, which are stable 

products generated in vivo by peroxidation of arachidonic acid 

due to free radical activity, are useful markers for oxidative 

stress. Urinary excretion of 8-iso-PGF
2
α has been found to be 

higher in hypertensive and diabetic patients when compared 

to healthy controls.16,20 The increase in urinary 8-iso-PGF
2
α is 

associated with elevation of serum total cholesterol (TC) and 

reduction of high-density lipoprotein cholesterol (HDL-C) 

that can lead to atherosclerosis and coronary heart disease.20 

Hypertensive and normotensive diabetic patients have similar 

urinary 8-iso-PGF
2
α excretion, suggesting similar mecha-

nisms with respect to glycemic control, lipid peroxidation, 

and antioxidation mechanisms.21,22 Atherosclerosis is associ-

ated with HTN and is characterized by oxidative stress and 

pro-inflammatory activity that may be associated with the 

observed imbalance between coagulation and fibrinolysis.23 

Markers of coagulation and fibrinolysis include d-dimer and 

C5a. Previous studies have shown an increase in the plasma 

levels of C5a and d-dimer in prediabetic patients,11 and the 

increased coagulation may be due to increased inflammation 

but in turn can also enhance inflammation.24,25 

Increased coagulation and oxidative stress result 

in an increase in pro-inflammatory cytokines such as 

interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant 

protein 1 (MCP-1), and a decrease in insulin-like growth 

factor I (IGF-1) in the plasma of hypertensive and T2DM 

patients.12,26–28 Higher levels of IL-6 have been reported to 

be associated with obesity and insulin resistance and have 

been demonstrated in macrovascular complications in T2DM 

patients.12 The increased production of IL-1β in human 

pancreatic β-cells is induced by high glucose concentration 

affecting insulin secretion and decreases cell proliferation 

and apoptosis.29 However, the anti-inflammatory cytokine 

IL-10, plays a role in the regulation of the innate immune 

system and inhibits the production of pro-inflammatory 

cytokines in T2DM and limits BP in HTN.30,31 Some studies 

have recognized the benefits of increasing IGF-1 in HTN and 

diabetes. Higher plasma IGF-1 bioavailability may protect 

against the development of TD2M and vascular complications 

associated with HTN.32 However, the association between 

IGF-1 and HTN is complex, depending on the concentra-

tion of IGF-1 as it stimulates IL-10 production.33,34 Levels 

of the pro-inflammatory marker MCP-1 in turn depends on 

the levels of IGF-1 and IL-1. When IGF-1 is low or IL-1 is 

elevated, MCP-1 increases and is involved in the recruitment 

of monocytes and macrophages into the vasculature, as is 

the case in HTN and T2DM. Higher levels of MCP-1 are 

associated with increased CVD mortality.35,36 

This study therefore aimed to increase our understanding 

of the impact and interaction of inflammatory and oxidative 

stress biomarkers in contributing to the pathophysiology of 

HTN with and without T2DM within a clinical setting. This 

further understanding may assist in efforts to assist diagnosis, 

prevention, and treatment of HTN in the presence of diabetes. 

Methodology
The study was approved by the Charles Sturt University 

Ethics in the Human Research Committee (Ethics approval 

number: 2006/042) and followed the Helsinki protocol. All 

participants provided written informed consent to take part 

in this study. Data for this study were obtained from a total of 

256 participants (female:male, 157:99) attending the Charles 

Sturt University rural health screening clinic. Inclusion and 

exclusion criteria were kept to a minimum to reflect routine 

patient presentation to general practice in a rural population. 
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Exclusion criteria were CVD, kidney disease, any evidence 

of acute inflammation, and any evidence of depressive  illness. 

All participants were assessed for waist circumference (WC), 

BP, and body mass index (BMI). Fasting blood glucose (FBG), 

hemoglobin A1c (HbA1c), lipid profiles including TC, tri-

glycerides (TG), HDL-C, low-density lipoprotein cholesterol 

(LDL-C), TC/HDL-C ratio, and d-dimer were performed 

by the local National Association of Testing Authorities 

accredited pathology laboratory. Markers of oxidative stress 

and inflammation were also analyzed. A screening FBG was 

determined for each participant using the Accu-Chek® system 

(Hoffman-La Roche Ltd., Basel, Switzerland).

Participants were divided into three groups: a control group, 

a hypertensive group (HTN), and a hypertensive with diabetes 

group (HTN+T2DM). The participants were also divided into 

stage 1 and stage 2 HTN with and without the presence of 

T2DM. In accordance with the American Diabetes Associa-

tion, diabetes was determined as a blood glucose level of ≥7 

mmol/L.37 HTN was defined as a BP ≥140 mmHg (systolic 

blood pressure [SBP]) and/or ≥90 mmHg (diastolic blood pres-

sure [DBP]) according to the criteria of the Australian Heart 

Foundation.38 Stage 1 and stage 2 hypertensive participants were 

classified according to the American Hypertension Guidelines.39

BP was measured with participants in a supine position 

after a 5 min rest. Brachial artery BP was recorded using a 

Welsh-Allyn BP recorder (Welsh-Allyn, Sydney, Australia). 

Weight was measured in kg using portable scales, without 

footwear and with only light clothes. Height was measured 

in m with participants barefoot and standing with their feet 

together. WC was measured in cm. BMI was defined as 

weight in kg per height in m squared.40

The measurement of oxidative stress and DNA damage 

was assessed by measuring urinary 8-iso-PGF
2
α, 8OHdG. 

GSH/GSSG was assayed on erythrocyte lysates.

8-iso-PGF
2
α was assessed using the OxiSelectTM 8-iso-

Prostaglandin F2α ELISA Kits (Cell BioLabs, Inc, San 

Diego, CA, USA).This assay incorporates a competitive 

binding ELISA  strategy, allowing the 8-iso-PGF
2
α contained 

in samples and standards to compete with 8-iso-PGF
2
α-HRP 

conjugate for binding to an anti-8-iso-PGF
2
α antibody fixed 

to a goat anti-rabbit antibody pre-coated microplate. 8-OHdG 

was determined using the OxiSelectTM Oxidative DNA Dam-

age ELISA Kit 8-OHdG Quantitation (Cell BioLabs, INC). 

8-OHdG contained in samples and standards competes with 

an HRP conjugate secondary antibody for binding to an 

8-OHdG/BSA conjugate coated microplate. Erythrocyte 

reduced GSH and GSSG was determined using the CaymanTM 

Total Glutathione (GSSG/GSH) Assay Kit. Erythrocyte 

lysates were prepared by adding 4 × volume of ice-cold 5% 

metaphosphoric acid to washed red cells and centrifuged to 

obtain the red cell lysate. The assay procedure incorporated 

GSH reductase to reduce reducing GSSG to GSH in the 

presence of NADPH. GSSG was measured by subtraction 

after the addition of 2 vinyl pyridine.

Plasma IL-6, IL-1β, IL-10, MCP-1, and IGF-1 levels were 

determined using ELISA provided by Elisakit.comTM (Jomar 

Pty Ltd, Melbourne, Australia). All inflammatory markers uti-

lized the same analytical principle. Standards and samples are 

bound to the specific antibody pre-coated on a microplate. A 

biotin-conjugated anti-human biomarker antibody was added 

which binds to human biomarker captured by the antibody. 

After addition of streptavidin-HRP and substrate solution, 

color development was measured according to the assay 

protocol. Plasma C5a was determined using Human C5a 

Platinum ELISATM (eBioscience, Affymetrix, San Diego, CA, 

USA). All ELISA measurements conducted on the inflam-

matory, oxidative stress biomarkers were carried out with a 

Thermo Scientific Multiskan FCTM (Thermo Fisher Scientific, 

Waltham, MA, USA). Data analysis for the ELISA analysis 

utilized 4-parameter logistic curve fit software. 

Statistical analysis was performed with SPSS V20 (IBM 

Corporation, Armonk, NY, USA). To determine if there 

were significant differences in biomarker levels between 

the different groups for non-normally distributed data, the 

non-parametric Kruskal–Wallis test for multiple groups was 

applied followed by the Mann–Whitney U-test as a post 

hoc test. Anthropometric data were analyzed using ANOVA 

followed by the Fisher’s least significant difference post hoc 

test. A p-value ≤0.05 was considered significant. Results in 

Tables 1–3 are expressed as mean ± 1 SD. 

Results
Anthropometric and general biochemistry data are shown 

in Table 1. Participants were comparable for age and gender 

except for the control group, which presented with a lower 

age. Medication showed some differences between groups 

as expected, since the control group was medication free 

and the HTN only group were not on any diabetic medica-

tion. Of note is that a large proportion of the T2DM partici-

pants were using statins (75.9%) in addition to antidiabetic 

medication. The majority of HTN participants reported use 

of antihypertensive medication. Use of non-steroidal anti-

inflammatory drugs (NSAID) was lower in controls than 

HTN and HTN+T2DM groups.

No significant difference in FBG levels was observed 

between control and the HTN group. Blood glucose level 
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however was significantly increased in the HTN+T2DM 

group (p<0.05). A significant difference between the con-

trol and HTN group and the control and HTN+T2DM was 

observed in BMI, WC, HbA1c, SBP, DBP, and in antihy-

pertensive medication use (p<0.05). Blood glucose level, 

BMI, HbA1c, TC, HDL-C, LDL-C, TC/HDL-C ratio, and 

medication usage differed significantly between the HTN 

and HTN+T2DM group (p<0.05) (Table 1).

Findings for oxidative stress and inflammatory markers 

are shown in Figure 1 and Tables 2 and 3. A slight reduction 

in C5a levels in the HTN group compared to the control 

group was observed but the difference was not significant 

(p=0.06). Similarly d-dimer was trending upwards in the 

HTN and HTN+T2DM group but was also not significant 

(p=0.065) compared to control.

Of the oxidative stress markers, urinary 8-iso-PGF
2
α 

increased significantly from control levels to levels observed 

in the T2DM+HTN group (p=0.009). The increase observed 

for 8-iso- PGF
2
α

 
levels for the HTN group to the T2DM+HTN 

group approached significance with p=0.059. Reduced GSH 

was significantly lower in TD2M+HTN compared to control 

(p=0.091) and similarly significantly lower than the HTN 

group, p=0.032 (Figure 1).

Analysis of the plasma inflammation markers in the 

three groups revealed a significant decrease in IL-1β levels 

in the control compared to the HTN group (p=0.017), but 

returned to control levels in the HTN+T2DM group, which 

was also significantly different to control (p=0.044). The 

anti-inflammatory cytokine IL-10 decreased significantly 

from control to the HTN levels (p=0.03) and approached 

control levels in the HTN+T2DM group (Table 2). Plasma 

IGF-1 levels decreased from the control group to the HTN 

group but were only significant between control and the 

HTN+T2DM group (p=0.007). Several inflammatory 

ratios, which generally mirror physiological processes 

such as IL-6/IL-10 were also proposed and analyzed for 

significance between the three groups. The results, although 

not significant, did show a trend highlighting their potential 

usefulness in differentiating between control, HTN, and 

HTN+T2DM.

Hypertensive participants were further divided into HTN 

subgroups according to international guidelines as stage 1 

HTN with SBP between 140 and 159 mmHg and DBP ≤ 99 

mmHg, stage 2 HTN with SBP ≥ 160 mmHg and/or DBP ≥ 

100 mmHg with or without T2DM.41 Table 2 includes inflam-

matory biomarkers demonstrating significant differences 

between stages of HTN.

Plasma IGF-1 levels decreased significantly between the 

control group and stage 1 HTN+T2DM (p=0.002) as well as 

stage 1 HTN and HTN+T2DM (p=0.006). Stage 2 HTN had the 

lowest IGF-1 levels but was not significant compared to stage 

1 HTN. A significant increase in MCP-1 level was observed 

Table 1 Characteristics of the subjects included in this study

Category Control HTN HTN+T2DM

Group (N) 81 88 87
Gender (female) % 61.7 63.6 58.6
Age (years) 64.9±10.5a,b 69.9±9.0 70±10.5
Medication (%)

Dmeds 0b 0c 83.9
Antihypertensive 0a,b 68.2c 87.4
Statins 13.6b 21.6c 75.9
NSAID 25.9a,b 48.9 55.2

Glucose (mmol/L) 5.3±0.7b 5.3±0.6c 8.3±3.5
BMI (kg/m2) 25.7±4.1a,b 28.1±5.0c 30.3±6.1
WC (cm)

Female 88±10.1a,b 94.8±18.5c 99±14.3
Male 97.4±9.7b 102.2±10.7c 108.2±14.6

Systolic BP (mmHg) 119.7±11.2a,b 138.5±18.5 137.5±18.4
Diastolic BP (mmHg) 73.6±6.4a,b 78.9±7.6 77.4±9.6
HbA1c (%) 5.6±0.3b 5.7±0.3c 6.7±0.8
TC (mmol/L) 5.3±0.8b 5.6±1c 4.5±1.2
Triglyceride (mmol/L) 1.1±0.6b 1.3±0.6c 1.8±1.2
HDL-C (mmol/L) 1.7±0.4b 1.6±0.5c 1.4±0.6
LDL-C (mmol/L) 3.1±0.7b 3.3±1c 2.2±0.9
TC/HDL-C ratio 3.3±1a 3.7±1.1 3.5±1.4

Notes: aSignificant difference between control and HTN group (p<0.05); bsignificant difference between control and HTN+T2DM group (p<0.05); csignificant difference 
between HTN and HTN+T2DM group (p<0.05).
Abbreviations: BP, blood pressure; Dmeds, diabetes medication; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; HTN, hypertension; LDL-C, low-
density lipoprotein cholesterol; NSAID, non-steroidal anti-inflammatory drugs; T2DM, type 2 diabetes mellitus; TC, total cholesterol; WC, waist circumference.
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between stage 1 and control and between stage 1 and stage 2 

HTN groups (p<0.05). The ratio of (MCP-1/IGF-1)*IL-6 was 

significant when comparing the control and stage 2 HTN group 

(p<0.05), between stage 1 HTN and stage 2 HTN (p<0.05) and 

between stage 2 HTN and stage 2 HTN+T2DM (p<0.05).

Discussion
Essential HTN is often associated with T2DM due to com-

mon pathophysiological pathways that include oxidative 

stress and inflammation. These increase the risk of morbidity 

and mortality due to CVD and renal disease.42 Changes in 

individual oxidative stress and inflammatory biomarkers in 

HTN and T2DM have been previously studied,8,43–44 but how 

or whether oxidative stress and inflammatory biomarkers 

act together in HTN progression with and without presence 

of T2DM has not been fully elucidated. Inflammatory and 

oxidative stress biomarkers were analyzed with a focus on 

comparing a control group, an HTN and an HTN+T2DM 

Figure 1 Impact of hypertension and diabetes on biomarker levels. 
Notes: #p<0.1, *p<0.05, **p<0.03, ***p<0.01.
Abbreviations: HTN, hypertension; IGF 1, insulin-like growth factor; IL-1β, interleukin-1β; T2DM, type 2 diabetes mellitus.
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Table 2 Biomarker levels for control, hypertension, and hypertension with T2DM

Category Control HTN HTN+T2DM

C5A (ng/mL) 30.8 (24.9) n=66 20.8 (27.4) n=74 22.5 (33.9) n=67
d-DIMER (µg/mL) 0.39 (0.44) n=48 0.45 (0.35) n=53 0.39 (0.29) n=51
8-ISO-PGF-2α (ng/mL) 0.89 (1.93)b n=75 1.22 (1.70) n=84 1.74 (4.15) n=82
8-OHDG (ng/mL) 158.1 (135.8) n=62 157.3 (140.2) n=62 145.1 (161.3) n=54
GSH (µM/L) 1762 (1149) n=37 1705 (878)c n=40 1457 (600) n=27
GSSG (µM/L) 286 (152) n=37 384 (214) n=40 277 (250) n=27
GSH/GSSG 6.3 (6.2) n=37 6.1 (6.2) n=40 4.4 (4.6) n=27
IL-1β (pg/mL) 4.2 (9.8)a n=53 2.4 (3.0)c n=52 4.3 (12.0) n=66
IL-6 (pg/mL) 14.3 (15.3) n=78 16.8 (22.8) n=80 17.7 (30.7) n=72
IL-10 (pg/mL) 21.5 (39.1)a n=54 14.5 (15.9)c n=53 17.7 (65.5) n=66
IL-1B/IL-10 0.16 (0.21) n=53 0.18 (0.31) n=52 0.15 (0.53) n=66
IL-6/IL-10 0.41 (1.28) n=53 0.58 (1.32) n=53 0.42 (0.77) n=54
IGF-1 (pg/mL) 303 (533)b n=53 266 (454) n=54 169 (240) n=66
MCP-1 (pg/mL) 187 (80) n=54 193 (113) n=53 198 (137) n=66
(MCP-1/IGF-1)*IL-1B 3.9 (8.9) n=53 2.0 (4.4) n=52 2.8 (11.1) n=65
(MCP-1/IGF-1)*IL-6 7.3 (19.2) n=52 9.5 (45.4) n=53 11.1 (34.1) n=54

Notes: aSignificant difference between control group and HTN group (p<0.03); bsignificant difference between control group and T2DM with HTN group (p < 0.01); 
csignificant difference between HTN group and T2DM with HTN group (p<0.05).
Abbreviations: HTN, hypertension; IGF 1, insulin-like growth factor; IL-1β, interleukin-1β; MCP-1, monocyte chemoattractant protein 1; T2DM, type 2 diabetes mellitus.
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group. A further category of biomarker levels with respect 

to stages 1 and 2 HTN was also included.

A significant increase in urinary 8-iso-PGF
2
α levels in the 

HTN+T2DM participants indicated the presence of lipid per-

oxidation due to oxidative stress. The increase in 8-iso-PGF
2
α 

levels between control and HTN, and HTN to HTN+T2DM 

participants, although not significant, is an important finding 

within the clinical context and shows a consistent increase 

in oxidative stress when HTN and T2DM are co-presenting. 

Previous work has shown that erythrocyte GSH significantly 

increased in association with diabetes progression, suggest-

ing an increase in oxidative stress due to hyperglycemia, 

but in the current study a decrease in GSH occurred in the 

HTN+T2DM group when compared to the control and HTN 

groups.11 Our finding suggests that HTN in the presence of 

T2DM has compromised the de novo synthesis of GSH. 

Decreasing GSH and increasing 8-iso-PGF
2
α

 
support the 

hypothesis that oxidative stress increases considerably in 

HTN especially in combination with diabetes. Therefore, 

possible clinical effects of HTN may also be detected earlier 

especially in TD2M patients, by focusing on changes in these 

emerging biomarkers of oxidative stress using 8-iso-PGF
2
α

 

and erythrocyte GSH levels. 

No significant changes in urinary 8-OHdG levels were 

observed when control, HTN, and HTN+T2DM groups were 

compared. In previous studies 8-OHdG was observed to be 

higher in the prediabetic and hypertensive states in a homo-

geneous, non-medicated cohort.19,46 It should be noted that 

the current study aimed at investigating oxidative stress and 

inflammation in HTN when combined with diabetes as part 

of clinical practice, rather than elucidating pathophysiologi-

cal pathways in disease progression and hence patients were 

kept on their prescribed medications. This may have influ-

enced levels of 8-OHdG directly or as a consequence of TG, 

LDL-C, and blood glucose level not being at levels that lead 

to increases in 8-OHdG as has been suggested previously.10 

This study therefore provides information, in part, on the 

efficacy of pharmacotherapy in treatment of HTN and when 

HTN is present together with T2DM. Apart from 8-OHdG, 

a substantial number of oxidative stress and inflammatory 

markers showed significant differences between the groups 

and especially between stages of HTN reflecting known 

pathophysiological changes and the difficulty in treating 

disease progression with a complex etiology. 

The pro-inflammatory cytokines IL-1β and IL-6 in 

patients with HTN did not increase in contrast to previous 

studies.12,26,47 Moreover, HTN patients seemed to have a 

decreased pro-inflammatory IL-1β level, which may be either 

due to statin use in this cohort48 or IL-10 activity, which was 

lower in the HTN group.49 While NSAID medication may 

contribute to HTN,50 the control group was not on antihy-

pertensive medication. There was no significant difference in 

NSAID medication use between the HTN and HTN+T2DM 

groups, suggesting that the influence, if any, of NSAIDs is 

similar. Our study reflects the clinical findings associated with 

HTN in the presence of T2DM and suggests that T2DM does 

increase oxidative stress and inflammation in HTN patients 

when present, and requires careful monitoring to alleviate 

increased risk of further morbidity and mortality. In addi-

tion the T2DM group reported a significantly higher use of 

antihypertensives, which have antioxidative stress and anti-

inflammatory effects, yet there was a significant increase in 

oxidative stress and inflammation in the presence of T2DM. 

The significant difference between the control group and 

the HTN group for both IL-1β and IL-10 and for IL-1β and 

IL-10 in the HTN and the HTN+T2DM therefore indicate 

the potential use of these markers in clinical settings when 

investigating HTN and T2DM.

The decreased levels of IGF-1 present in the HTN+T2DM 

patients in our study cohort support previous findings of an 

Table 3 Biomarker levels with respect to HTN stages with and without T2DM

Category Control Stage 1 HTN Stage 2 HTN T2DM + 
stage 1 HTN

T2DM + 
stage 2 HTN

IGF-1 (pg/mL) 303 (533)b

n=53
289 (476)d

n=49
105 (188)
n=7

249 (220)
n=55

263 (571)
n=9

MCP-1 (pg/mL) 187 (80)a 
n=54

172 (106)c

n=48
280 (457)e,f

n=7
204 (134)
n=55

193 (158)
n=9

(MCP-1/IGF-1)*IL-6 7.3 (19.0a

n=52
7.2 (20.7)c,d

n=48
54.2 (96.4)f

n=6
16.3 (41.7)
n=42

7.1 (5.9)
n=8

Notes: aSignificant difference between control and stage 2 HTN group (p<0.05); bsignificant difference between control and T2DM with stage 1 HTN group (p<0.05); 
csignificant difference between stage 1 HTN and stage 2 HTN group (p<0.05); dsignificant difference between stage 1 HTN and T2DM with stage 1 HTN group (p<0.05); 
esignificant difference between stage 2 HTN and T2DM + stage 1 HTN group (p<0.05); fsignificant difference between stage 2 HTN and T2DM + stage 2 HTN group (p < 0.05).
Abbreviations: HTN, hypertension; IGF 1, insulin-like growth factor; IL-1β, interleukin-1β; MCP-1, monocyte chemoattractant protein 1; T2DM, type 2 diabetes mellitus.
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association with IGF-1 and a higher risk of HTN+T2DM,33,51 

suggesting IGF-1 may be a useful clinical marker. Only stage 

2 HTN patients showed a significant increase in MCP-1 levels 

and an associated significant decrease in IGF-1. Interactions 

between these two biomarkers have also been observed in 

a previous study.52 Both IGF-1 and MCP-1 are biomarkers 

which indicate aggravation of inflammation in hypertensive 

patients. In relation to our findings of increased levels of 

MCP-1 in the stage 2 HTN group, in a more recent study 

associating increased levels of MCP-1 and the expression 

of platelet CD40 in hypertensive patients have been dem-

onstrated53 and further expands our understanding of the 

immune responses’ contribution to the inflammatory and 

oxidative stress milieu when considering HTN and CVD. 

Medication controlling the levels of these biomarkers might 

be useful to prevent severe HTN from developing. The 

increased ratio of MCP-1 and IGF-1 with IL-6 in stage 2 

hypertensive participants further highlights the interactions 

that occur between these biomarkers with disease progres-

sion.54,55 The current study has demonstrated that a decrease 

in MCP-1 is induced by IGF-1, and that decreasing IGF-1 

is in turn induced by IL-6 associated with an increase in 

MCP-1. Indeed, IGF-1 is able to reduce inflammation by 

decreasing MCP-1 levels associated with lower recruitment 

of monocytes.54 However, pro-inflammatory cytokines such 

as IL-6 have an inhibitory effect on IGF-1 signaling pathways 

through blocking its receptor substrate.55

Both oxidative stress and inflammation have been shown to 

be affected by HTN and T2DM disease progression especially 

when consideration is taken of HTN stages. This suggests 

stricter medication control especially in the HTN groups, which 

showed higher than optimal BP regardless of medication use.
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