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Abstract: The rapid emergence of antibiotic resistance in pathogenic microbes is becoming 

an imminent global public health problem. Local application of antibiotics might be a solu-

tion. In local application, materials need to act as the drug delivery system. The drug delivery 

system should be biodegradable and prolonged antibacterial effect should be provided to 

satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. 

Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a 

synthesized polymer, which turns into gel according to the change in different signals such as 

temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, 

unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one 

of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies 

from the past 5 years were reviewed, and several types of antimicrobial hydrogels according 

to different ingredients, different preparations, different antimicrobial mechanisms, different 

antimicrobial agents they contained and different applications, were summarized. The hydrogels 

loaded with metal nanoparticles as a potential method to solve antibiotic resistance were high-

lighted. Finally, future prospects of development and application of antimicrobial hydrogels 

are suggested.
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Introduction
Nowadays, with the rapid development of biomaterials and medical devices, health 

care-associated infections (HAIs) have posed severe problems on clinicians. For 

example, in the US, the annual costs associated with HAIs are estimated to be up to 

$33 billion.1 The rapid emergence of antibiotic resistance in pathogenic microbes 

is becoming an imminent global public health problem.2 According to a report in 

Lancet, most acute sequelae and global mortality were caused predominantly by 

infectious diseases.3 Medical devices may bring HAIs to patients in hospital. These 

biomaterials and medical devices including joint implants, wound dressings, catheters, 

cardiac pacemakers and contact lenses bring implant-associated infection, calling for 

an urgent need of inherent antimicrobial biomaterials and medical devices. Among all 

antimicrobial materials, heavy metals and natural extracts have been used for a long 

time since first discovered. However, these materials still have inherent disadvantages 

that restrict their application and efficacy. They fight against microbes as well as nor-

mal cells which cause damage to normal organs and tissues of patients.4 Antibiotics 

emerged in antimicrobial history 80 years ago when penicillin was discovered by Sir 

Alexander Fleming.2 For all these decades, antibiotics have brought us consolation until 

the existence of drug-resistant bacterium was discovered. At the beginning of antibiotic 

resistance development, conventional antibiotics such as penicillin and methicillin were 
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noneffective to resistant strains. Now, vancomycin-resistant 

and linezolid-resistant strains have emerged. This has led to 

ceaseless demands for novel antibiotics, putting clinicians 

in a dilemma whether to test a novel multi-resistant strain 

with another antibiotic.5 Synthetic antimicrobial agents such 

as salicylate, chlorhexidine, isothiazolinones, thiosemicar-

bazones, octenidine and even quaternary ammonium com-

pounds also faced progressive threats with the development 

of drug resistance.6 According to the Darwinian view of 

the role of antibiotics, it is widely accepted that antibiotics 

and antibiotic-resistant genes act as weapons and shields in 

shaping the structures of microbial communities.7 Nowadays, 

antibiotic resistance is considered as bacteria’s specific 

response to an injury caused by antibiotics, which means it 

cannot be totally avoided even if we create a new antibiotic 

agent.8 Increasing rates of antibiotic resistance, drug allergies 

and antibiotic shortages further complicate the choice of anti-

bacterial agents.9 Problems that the traditional antimicrobial 

agents faced include drug resistance, overdose and cytotox-

icity. These problems urgently call for an efficient and safe 

delivery system of drug release, which can delay the release 

of toxic antimicrobial agents and reduce the risk of bacterial 

drug resistance. Apart from antibiotics, other antimicrobial 

materials also have their own problems in clinical application. 

In recent years, antimicrobial peptides (AMPs) have been 

reported to have antimicrobial properties (especially short 

sequences) because of their ionic structure; so, it is difficult 

to induce resistance of bacterium or formation of biofilm.10–13 

However, AMPs are also hemolytic, toxic and easy to lose 

efficacy and hence, AMPs need an effective drug delivery 

system to avoid these side effects.12,14 Besides, antimicrobial 

amylolytic polymers, antimicrobial polysaccharides and 

other antimicrobial components have also been reported, 

which can be frameworks of biomedical polymers.15,16 

Yet, how to make these biomaterials play the greatest role 

in fighting against HAIs remains a problem.

In these cases, a novel drug delivery system with absorb-

ability and delayed release performance is needed. The 

nanocarrier system or nano-drug delivery systems (DDS) 

can carry the antibiotic as well as protect it. Nanomaterials 

with inherent antimicrobial activity or nanomaterials that 

can improve the efficacy and safety of antimicrobial drugs 

are called nanoantimicrobials (NAMs). They could be an 

effective alternative to conventional antibiotics by the provi-

sion of improved bioavailability, protection, mucoadhesion, 

absorption, controlled release and target delivery for the 

encapsulated or surface-adsorbed drugs.17 A set of organic, 

inorganic and hybrid materials can be identified in the 

NAM family.18 Among all the NAMs, hydrogel is a three-

dimensional cross-linked polymeric network that can swell 

dramatically in an aqueous medium such as body fluids, while 

maintaining its structure and controlling drug release.19,20 

Hydrogels can also be triggered by stimulations such as 

changes in pH, temperature, enzyme catalysis, ultraviolet 

gamma irradiation and even inflammation.21 Hydrogel can be 

coated on urinary catheters, central venous catheters,22 con-

tact lenses, joint and dental implants23,24 and local injection 

for drug release and wound healing.25 Moreover, some types 

of hydrogels also have inherent antimicrobial properties.26,27 

Combined with nanomaterials such as hydrogel, the anti-

bacterial agent may be used at a lower dose than when 

administered systemically, thus overcoming the problem of 

resistance and diminishing other undesirable side effects to 

some extent.28 These characteristics have drawn remarkable 

attention in the pharmaceutical and medical fields espe-

cially for antimicrobial application (Figure 1). According 

Figure 1 The different applications of hydrogels.
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to the development of antimicrobial agents, the progresses 

of antimicrobial hydrogels in recent years are shown in the 

following section.

Hydrogel loaded with metal 
nanoparticles
Heavy metals have been used to fight against microbes for a 

long time. Silver, gold, copper and zinc were all reported to be 

used in this area. Among these metals, silver is most widely 

used due to its good antibacterial property and relatively low 

toxicity. However, other metals, such as gold, copper and zinc, 

have their own advantages and antibacterial spectrums.

Sliver nanoparticles (Ag NPs)
Silver have been regarded as an antimicrobial agent for 

thousands of years, before people knew about the word 

“microorganisms”. Silver bowls, water vessels, spoons 

and other containers were used to preserve water, food 

and wine in their condition.4,29 Silver powder was applied 

in wound healing and treatment of ulcers, which was first 

documented in medical history by Hippocrates.4 Silver still 

plays an important role in biomedical areas such as wound 

dressings, textiles, bone implants etc.30 Thanks to the devel-

opment of nanoscience and technology, nowadays silver is 

mainly applied in the form of nanoparticles.31,32 Ag NPs have 

antimicrobial activity against a wide spectrum of microbes 

(probably due to their multiple mechanisms of antimicrobial 

action), including activity against drug-resistant bacteria, 

fungi (such as Candida albicans) and viruses.33–36 Ag NPs are 

emerging as efficient antimicrobial agents because of their 

different mechanisms of sterilization,32,37,38 although no final 

conclusion about mechanisms has been made. Recent studies 

suggest that the primary mechanism of the antibacterial action 

of Ag NPs is to release silver ion (Ag+). Particle-specific 

activity of Ag NPs cannot be ignored, which indicates that the 

mechanism of antibacterial action differs between Ag+ and 

AgNPs.39 The most universally accepted hypothesis is that the 

Ag+ released from Ag NPs interact with cysteine in certain 

regions of proteins on bacterial membranes, causing K+ loss 

from inside and the disruption of cellular transport systems, 

which finally leads to bacterial cell death (Figure 2).40,41 Other 

studies show that Ag+ interact with proteins of the cell wall 

and plasma membrane of bacteria.31 Combination of Ag+ with 

negatively charged membrane perforates the membrane, thus 

allowing cytoplasmic contents to flow out of the cell, dissi-

pating the H+ gradient across the membrane and sometimes 

causing cell death.42 If the bacteria have not been killed yet, 

these contacts allow Ag+ to move through the cell wall and 

the plasma membrane. Finally, Ag+ functions as an extra 

antimicrobial agent in the cytoplasm of the bacterial cell.34 

Despite widespread use of Ag+, bacterial resistance to Ag+ has 

been found rare and developed slowly, especially compared 

to resistance to antibiotics, which makes it a potential anti-

microbial agent to solve the problem of antibiotic resistance. 

Again, this is presumably due to the multiple mechanisms of 

antimicrobial action of Ag described earlier, whereas antibi-

otics usually have only one mechanism of action.34,36,42 As is 

known to all, Ag NP-based hydrogels have so many merits 

that they performed better on Gram-negative bacteria than 

Gram-positive bacteria because Gram-negative bacteria have 

low resistance of the cellular membranes compared with the 

peptidoglycan cellular walls of Gram-positive bacteria.40 But, 

it has also been argued that Gram-negative bacteria are less 

sensitive than Gram-positive bacteria to Ag+, because Ag+ 

binds to the negatively charged lipopolysaccharide (LPS) of 

the outer membrane of Gram-negative bacteria more strongly 

than to the peptidoglycan layer of Gram-positive bacteria. 

By this argument, Ag+ is trapped in the LPS and is less likely 

to enter a Gram-negative cell than a Gram-positive cell.31,34

In this review, we concentrate on the hydrogels that 

are loaded with Ag NPs. There are mainly two types of 

hydrogel matrices: one is the natural polymer (including 

modified natural polymer) and the other is the synthetic 

polymer. The most common natural polymers are polysac-

charides. Polysaccharides mainly include alginate, chitin, 

chitosan (CS) and carboxymethyl cellulose (CMC). Alg-

inate is a natural derivative linear copolymer that can form 

Figure 2 Transmission electron microscope image of Escherichia coli cells treated 
with silver nanoparticles in liquid Luria-Bertani medium: (A) membrane of E. coli; (B) 
nanoparticles accumulated in the membrane and penetrated the cell (arrows).
Note: Reprinted from Adv Drug Deliv Rev. 65(13–14). Pelgrift RY, Friedman AJ, 
Nanotechnology as a therapeutic tool to combat microbial resistance1803–1815, 
Copyright (2013), with permission from elsevier.31
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hydrogel via methods such as Ca2+ ionic interaction. Ag 

NPs were incorporated into alginate microbeads through 

electrochemical synthesis by Stojkovska et al,43,44 which 

showed antibacterial activity against Staphylococcus aureus 

and Escherichia coli. Although alginate has been already 

commercially in use for wound dressings, Ag NPs on alginate 

have high tendency to aggregate. Obradovic et al45 optimized 

the technique for the production of Ag/alginate microbeads 

by freezing–thawing based on alginate, poly(vinyl alcohol) 

(PVA) and poly(N-vinylpyrrolidone) (PVP) to reduce the 

aggregation. Ghasemzadeh et al46 also attempted to use alg-

inate/PVA as a hydrogel matrix with sodium borohydride 

as a reducing agent. Madhusudana Rao et al47 went one step 

further by fabricating sodium alginate-based semi-inter-

penetrating polymer network (IPN) hydrogels for delivery 

of Ag NPs, and the hydrogel exhibited good antibacterial 

activity. The degree of cross-linking and nature of semi-IPN 

polymer chains are key factors in regulating the size, shape 

and release of nanoparticles.48 Neibert et al49 described a 

method to enhance mechanical strength of alginate hydrogel 

loaded with Ag NPs by chemical cross-linking, which is 

more favorable for epidermal regeneration while maintain-

ing antibacterial properties.50 Many animal experiments on 

alginate hydrogel loaded with Ag NPs have been conducted, 

which means this kind of antimicrobial hydrogel has been 

studied thoroughly.

Other important polysaccharides used as antimicrobial 

hydrogels are chitin and CS. It is notable that both chitin and 

CS have antimicrobial and metal-binding properties. Chitin- 

or CS-based hydrogels such as CS/2-glycerophosphate/

nanosilver hydrogel and silver molybdate nanoparticle/chitin 

matrix (Ag
2
Mo

2
O

7
/chitin) hydrogel also provide green syn-

thetic process and excellent antibacterial performance against 

E. coli.51,52 The other polysaccharide hydrogels include 

iota-carrageenan-based Ag NP hydrogel and Ag NP-loaded 

PVA/gum acacia (GA) hydrogel,53,54 both iota-carrageenan 

and GA are well-known polysaccharides with rich produc-

tion in nature. Both the hydrogels showed good antibacterial 

activity against Gram-negative bacterium E. coli. Sodium 

CMC is another kind of biocompatible and biodegradable 

polysaccharide polymer which can effectively work as both 

reducing and stabilizing agents. It has been reported that 

CMC can be cross-linked by epichlorohydrin as an antimi-

crobial hydrogel matrix, and it can also be added into CMC 

and starch-composed hydrogel network as a component,55,56 

both systems work well as antimicrobial hydrogels. Ranga 

Reddy et al57 demonstrated that the natural polysaccharide 

gelatin has contributed an excellent property for anchoring 

and stabilizing the Ag NPs and formulating poly (gelatin–

acrylamide) silver nanocomposite hydrogels for inactivation 

of bacteria. The natural hydrogels have weak antimicrobial 

properties, but they can be good carriers for Ag NPs, and 

other antibiotic agents. Moreover, they can be extracted from 

natural materials easily.

As for a synthetic matrix for Ag NP hydrogels, there is a 

large diversity, but most of them are poly(acrylamide) (PAM), 

acrylic acid, poly(ethylene glycol) (PEG), PVA, pyrrolidone 

and their derivatives. The main advantage of using this tem-

plate is that the morphology and size of the nanoparticles can 

be easily controlled by changing the amount of cross-linker and 

monomer of the hydrogel network.48,58,59 For example, PAM/

PVA hydrogel–Ag NPs fabricated by Varaprasad et al60 can 

obtain Ag NPs of 2–3 nm size in gel networks, which exhibit 

higher antibacterial activity on E. coli compared with Ag NPs 

alone and Ag+-bonded hydrogels. Styrene sulfonic acid sodium 

salt was incorporated into hydrogels to form poly(acrylamide-

styrene sulfonic acid sodium salt) Ag NP hydrogel, and the 

most sensitive strain it can deal with was Bacillus subtilis.58 

PAM is also used to form semi-interpenetrating network 

hydrogels composed of pluronic and PAM by simultaneous 

free-radical cross-linking polymerization and served as nanore-

actors for the synthesis of Ag NPs.59 PAM mixed with itaconic 

acid (IA) or starch to form Ag NP-loaded hydrogels was also 

reported to have good antibacterial properties while providing 

a green process of synthesis.61,62 Poly(N-isopropylacrylamide) 

(PNIPAM) is the second commonly used matrix in Ag NP 

hydrogels. James et al,63 Manjula et al64 and Zafar et al65 used 

PNIPAM as a main component to synthesize Ag NP hydrogels. 

James et al63 synthesized PNIPAM-co-allylamine nanogels and 

grafted them onto non-woven polypropylene. Hydrogels made 

by Manjula et al64 were reduced with neem leaf (Azadirachta 

indica) extracts, providing another green process. During the 

fabrication, emphasis was placed on green techniques, in order 

to make it environmentally friendly. Zafar et al65 mixed Ag 

NPs with N-isopropylacrylamide-based nanogels which had a 

peak of lower critical solution temperature (LCST) that is close 

to the human body temperature. This increases the possibil-

ity in practical medical application. All these three hydrogels 

demonstrated conspicuous antibacterial properties. Hydrogels 

of 2-acrylamido-2-methylpropane sulfonic acid sodium salt 

containing Ag NPs have been proved to have no cytotoxicity 

while exhibiting better antimicrobial ability than commercial 

Acticoat™ (Smith & Nephew, London, UK) and PolyMem 

Silver® (Ferris Mfg. Corp., Fort Worth, TX, US),66,67 which 

can give us more confidence in exploitation of Ag NP hydro-

gels. However, some researchers would like to try some new 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2221

Hydrogels as antimicrobial biomaterials

ways, such as cross-linking fumaric acid (FA) and CMC. 

These hydrogel-based silver nanocomposites were coated 

on cotton fabric for antibacterial property, and the result was 

promising.68 Paladini et al69 used in situ photochemical reaction 

to coat Ag NPs on the fibers of hydrogel and demonstrated 

their antibacterial capabilities by any hydrogel blend on E. coli 

and S. aureus.

As for other Ag NP hydrogels, different matrices bring 

different characteristics and different processes of synthesis, 

all these creative points offered us a unique view on the way 

to more advanced antimicrobial biomaterials. Poly(acrylic 

acid co-poly(ethylene glycol)methyl ether acrylate)/Ag NP 

composite hydrogels were developed by Lee et al,70 offer-

ing a novel promising bioadhesive patch or wound dressing 

materials with their inherent good electrical conductivity. 

Thermoplastic PEG-polyhedral oligosilsesquioxane (POSS) 

hydrogels were synthesized from multiblock PEG-POSS 

polyurethanes by Wu et al,71 and their antimicrobial property 

lasts over 10 days. PVA/PVP-based hydrogels containing 

Ag NPs fabricated by Eid et al72 were reported to be high, 

uniformly distributed, and stable. Poly(methacrylic acid) 

(PMAA) hydrogel reduced with borohydride by Bajpai 

et al73 and poly(2-hydroxyethyl methacrylate/IA)/Ag NP 

hydrogels synthesized with gamma irradiation by Micic 

et al74 showed antimicrobial activity against E. coli. The pH-

sensitive poly(methyl methacrylate-methacrylic acid)/Ag NP 

hydrogels synthesized with free radical cross-linking by Wei 

et al75 can be potentially smart antimicrobial biomaterials. 

All the abovementioned hydrogels displayed enhanced anti-

microbial ability against E. coli, S. aureus, Pseudomonas 

aeruginosa and even B. subtilis. Some of them even acquired 

longer antimicrobial duration than antibiotics.76 The antimi-

crobial ability and cytotoxicity can be regulated by diverting 

the amount of components, which may turn out to be poten-

tially smart antimicrobial biomaterials.

A novel antibacterial coating made of poly(l-lysine)/

hyaluronic acid multilayer films and liposomes loaded with 

Ag+ was designed in 2008.77 The strong antibacterial effect 

was attributed to the diffusion of silver ions from the AgNO
3
 

coating, which resulted in a bactericidal concentration of 

silver ions aggregated around the membrane of the bacteria. 

Similarly, other small antimicrobial chemicals such as anti-

biotics can be loaded in liposomes in hydrogels to reach the 

aim of delayed drug delivery. Malcher et al opened a new 

route to modify surfaces with small chemicals which cannot 

permeate phospholipid membranes.77

The most interesting Ag NP hydrogels are hydrogels 

synthesized with water-soluble PEG polymers, which 

contain reactive catechol moieties. Synthesis of this hydrogel 

was inspired by mussel adhesive proteins. This biomimetic 

material has a strong potential for antibacterial tissue adhe-

sives and biomaterial coatings because of the material-

independent adhesive properties of catechols.78 Another new 

hydrogel with Ag NPs was called reduced graphene oxide 

(GO)-based Ag NP-containing hydrogel. This composite was 

fabricated in situ through the simultaneous reduction of GO 

and noble metal precursors within the GO gel matrix.79 This 

new kind of hydrogel has already been used in waste water 

cleansing due to its antimicrobial and antifouling properties 

inspiring the idea of clinical application. For example, this 

hydrogel can be used to deal with a polluted wound as a 

wound dressing.

However, serum albumin also reduces the antibacterial 

effects of Ag NP-embedded hydrogels.80 The gene toxicity of 

Ag NPs has also been reported, and balances between anti-

reactive oxygen species (ROS) response and DNA damage; 

and mitosis inhibition and chromosome instability, might 

play significant roles in silver-induced toxicity.81 There-

fore, the vital issues are: improvement of the antimicrobial 

ability against Gram-positive bacteria, minimization of gene 

toxicity, and reduction of serum albumin when designing 

Ag NP-based hydrogels. More non-toxic and environ-

mentally friendly synthetic processes such as the idea of 

size-controllable synthesis of Ag NPs with tobacco mosaic 

virus (TMV) as a biomediator without external reducing 

agents82 should be developed. In recent studies, more hydro-

gels loaded with Ag NPs have been discovered. Researchers 

have improved their properties, such as strong antimicrobial 

properties and prolonged release. All these developments 

and improvements ensure the clinical potential of the hydro-

gels. To provide clarity, all the hydrogels with Ag NPs are 

recorded in Table 1.

Gold nanoparticles (Au NPs)
Gold is universally considered as biologically inert but 

Au NPs have a diversity of biological functions.83 Au NPs 

can be designed into different sizes and be functionalized 

with desired polymers, thus they are realized as biocompat-

ible materials.84 Au NPs can be attached to the bacterial 

membrane, which leads to the leakage of bacterial contents 

or penetration of the outer membrane and the peptidoglycan 

layer, resulting in bacterial death.85 However, compared with 

Ag NPs, studies on antimicrobial Au NP hydrogels alone are 

rare. In a recent study by Brown et al,86 Au NPs lack antibac-

terial activity alone. However, Au NP with ampicillin bound 

to the surface (Au NP-AMP) killed multiple drug-resistant 
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bacteria, including methicillin-resistant S. aureus (MRSA), 

P. aeruginosa, Enterobacter aerogenes and E. coli K-12 

substrain DH5-alpha (pPCR-Script AMP SK+).86 Though N- 

isopropylacrylamide-based hydrogels containing Au NPs and 

pH-responsive PMAA hydrogel microcapsules carrying Au 

NPs had already been reported,87,88 their antimicrobial property 

had not been studied until Gao et al89 demonstrated that hydro-

gel containing Au NP-stabilized liposomes for antimicrobial 

application displayed excellent antibacterial properties on 

S. aureus without skin toxicity in a mouse model. In the research 

of Ribeiro et al,90 silk fibroin/nanohydroxyapatite hydrogel 

modified with in situ-synthesized Au NPs showed antimi-

crobial activity. Compared with Ag NPs, no toxicity against 

osteoblastic cells was found, which means Au NPs could be 

used for bone regeneration.90 Moreover, Jayaramudu et al91 

used acrylamide (AM) and wheat protein isolate (WPI) to 

develop biodegradable gold nanocomposite hydrogels. The 

results indicated that these biodegradable gold nanocomposite 

hydrogels can be used as potential candidates for antibac-

terial applications.91 Through combination of bimetallic 

(Ag, Au) hydrogel nanocomposites, Ranga Reddy et al92 

took it one step further to enhance their antimicrobial activity. 

Varaprasad et al93 even prepared dual-metallic (Ag0–Au0) 

nanoparticles via a green process with mint leaf extract, which 

exhibited significant antibacterial activity against Bacillus 

and E. coli (Figure 3). Although the antimicrobial ability 

of Au NPs is weaker than that of Ag NPs, the Au NPs have 

their own advantages. The antibacterial spectrum of Ag NPs 

is broad, including MRSA. Moreover, the hydrogels with 

Au NPs showed negligible interference to bone regenera-

tion. These properties of hydrogels with Au NPs make them 

promising materials in clinical orthopedic surgery.

Zinc oxide nanoparticles (ZnO NPs)
There are also many other metal nanoparticles with anti-

microbial activities besides silver and gold,94,95 but only a 

few are embedded into hydrogels. Among these, zinc is the 

most popular antimicrobial agent.96,97 ZnO NPs are used 

in many cosmetic materials because of their well-known 

antibacterial activity and non-cytotoxicity at an appropriate 

concentration.98 ZnO NPs combat microbes through multiple 

mechanisms. Resistance to ZnO NPs is rarely reported.31 

Some of the mechanisms are as follows: 1) ZnO NPs bind to 

bacterial cell membranes tightly and destroy both the lipids 

and proteins of the membrane causing increased membrane 

permeability and cell lysis; and31,33,95 2) ZnO NPs also cause 

the formation of Zn2+ ions and ROS, including hydrogen 

peroxide (H
2
O

2
), which damage the bacterial cell.33,35

Figure 3 Gao et al synthesized hydro gel containing Au NP-stabilized liposomes for antimicrobial application (A) illustrations of hydrogel containing nanoparticle-stabilized 
liposomes for topical antimicrobial delivery; (B) bacteria incubated with AuC–liposome hydrogel (PeGDMA 0.8 vol%) at pH = 4.5; (C) a zoomed-in image of (B).
Note: The scale bars in (B and C) represent 1 µm. Reproduced from Gao w, vecchio D, Li J, et al. Hydrogel containing nanoparticle-stabilized liposomes for topical 
antimicrobial delivery. ACS Nano. 2014;8(3):2900–2907.89

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2229

Hydrogels as antimicrobial biomaterials

ZnO NPs are effective against both Gram-positive and 

Gram-negative bacteria because of their antibacterial activity 

against high temperature-resistant and high pressure-resistant 

bacterial spores.99 Similar to Ag NPs, ZnO NPs were incor-

porated into PNIPAM as antimicrobial hydrogel coatings, 

which was demonstrated to be a promising candidate for 

novel biomedical device coatings.100,101 Yadollahi et al102 

synthesized CMC/ZnO nanocomposite hydrogel through the 

in situ formation of ZnO NPs within swollen CMC hydrogels 

which demonstrated their antibacterial effects against 

E. coli and S. aureus bacteria. Nanocomposite hydrogels 

with IPN structure based on PEG methyl ether methacrylate-

modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose 

(AG-N3) exhibited an increasing anti-adhesive property 

and bactericidal activity toward Gram-negative E. coli and 

Gram-positive S. aureus.103 Moreover, the ZnO hydrogels 

showed great potential in drug carrying and wound heal-

ing in some recent studies.103–105 CMC and CS hydrogels 

were also reported to be used as a hydrogel matrix for ZnO 

NPs.98,99,106 CMC hydrogels exhibited antibacterial activity 

against both Gram-positive and Gram-negative bacteria, 

and CS hydrogels were confirmed eligible wound dressing 

materials.103,107,108 Although the antibacterial ability of ZnO 

NPs is relatively weak, the low cytotoxicity still indicated 

that ZnO NPs have potential in clinical use. Moreover, ZnO 

NPs have a positive effect on bone regeneration,109 which 

means ZnO NPs are promising materials in orthopedic 

surgery.

Other metal nanoparticle-based 
antimicrobial hydrogels
There are many other metal nanoparticles combined 

with hydrogels, which have been studied in recent years. 

Their antibacterial mechanisms are shown in Figure 4.31 

Apart from these commonly used metal nanoparticles, 

cytocompatible nickel nanoparticle-loaded chitin hydro-

gels were developed against S. aureus,110 and antibacterial 

cobalt-exchanged natural zeolite/PVA hydrogel was proved 

to have antibacterial activity against E. coli.111 Although 

copper-containing NPs (Cu NPs/CuO NPs) have weaker 

antibacterial effects than Ag NPs, they have a greater 

range of microbicidal activities against both fungi, espe-

cially Saccharomyces cerevisiae, and bacteria, including 

E. coli, S. aureus and Listeria monocytogenes.112–114 CMC/

CuO nanocomposite hydrogels and CS hydrogel loaded 

with copper particles demonstrated excellent antibacterial 

effects against E. coli and S. aureus without causing any 

toxicity in recent studies.115,116 It was reported recently 

that magnesium-containing nanoparticles, including 

magnesium halogen-containing nanoparticles (MgX
2
 NPs) 

and magnesium oxide-containing nanoparticles (MgO NPs), 

also combat microbes through multiple mechanisms.117–119 

Hezaveh and Muhamad120 loaded MgO NPs to hydrogels 

prepared from hydroxyalkyl κ-carrageenan derivatives, 

thus controlling the drug delivery in gastrointestinal tract 

studies. This may enlighten us with the idea that we can load 

hydrogels with metal nanoparticles or other ingredients to 

adjust the release of other drugs in the same system. Dif-

ferent from Ag NPs and Au NPs, other metal nanoparticles 

might need further exploitation as many of these kinds of 

metals or their alloys appear more in designing and fabricat-

ing modern medical biomaterials. The hydrogels with other 

metal nanoparticles are recorded in Table 2.

Hydrogel with metal nanoparticles might be a way to 

solve antibiotic resistance. There are several advantages of 

these antimicrobial materials. First, metal nanoparticles could 

be good substitutes for antibiotics. Despite widespread use 

of metal nanoparticles, bacterial resistance has been rarely 

reported. This is presumably due to the multiple mechanisms 

of antimicrobial action (Table 3), while antibiotics usually 

have only one mechanism of action. Second, the small size 

of particles allows them to pass through peptidoglycan cell 

walls and cell membranes, getting into the cytoplasm of 

bacterial cells easily. Third, metal nanoparticles are stable in 

quality, which means they could go on to kill other microbial 

cells after being released from dead cells. Metal nanopar-

ticles could bring sustainable antimicrobial effect in this 

way. Finally, hydrogels can offer delivery system for local 

application. Antibacterial property improves with increasing 

concentration of nanoparticles. The concentration of metal 

nanoparticles could be high at the infection zone. All the 

abovementioned advantages indicate that hydrogels with 

nanoparticles can help to solve the present-day challenges 

of antimicrobial medicine.

Hydrogel loaded with 
micromolecular drugs
Micromolecular drugs include various antibiotic agents, such 

as antibiotics, biological extracts and synthetic antimicrobial 

drugs. All these drugs have been used for their great antimi-

crobial properties clinically. Usually, they are systematically 

used in the hospital. Once carried by hydrogels, they can be 

used locally around the focus, and are a good way to reduce 

the dosage and the appearance of resistance.

Antibiotics
Though antibiotics were discovered later than metal antimi-

crobial agents in human history, they are undoubtedly the most 
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commonly used, and the most effective antimicrobial agents 

until now.121 The drug-resistant effect of antibiotics becomes 

the biggest obstacle on the development and application 

of antibiotics. In recent years, there have been several 

new antibiotic approvals as well as renewed interest in 

second- and third-line antibiotics because of the concerns 

mentioned earlier.9 Almost all recent antibiotic resistance 

appeared in the year when the resistant bacterium were 

discovered (Figure 5). In recent studies, only one antibi-

otic, teixobactin, has no resistant bacteria strains.122 It is 

very effective to Gram-positive bacteria. However, the 

antibacterial spectrum of teixobactin does not include 

Gram-negative bacteria.123 Moreover, the lack of selection 

of resistance to teixobactin in vitro should be viewed with 

great caution before large scale of clinical use.124 Although 

the Governments of US and European Union tried to 

make it attractive, most pharmaceutical companies have 

stopped, or severely limited, investments to discover or 

develop new antibiotics to treat the increasing prevalence 

of infections caused by multidrug-resistant bacteria.125 The 

Figure 4 Multiple mechanisms of antimicrobial action of Ag NPs, ZnO NPs, copper-containing nanoparticles and Mg NPs are separately exhibited.
Note: Reprinted from Adv Colloid Interface Sci. 166(1–2). Dallas P, Sharma VK, Zboril R, Silver polymeric nanocomposites as advanced antimicrobial agents: classification, 
synthetic paths, appli cations, and perspectives, 119–135, Copyright 2011, with permission from elsevier.37

Abbreviations: Ag NPs, silver nanoparticles; Mg NPs, magnesium-containing nanoparticles; NP, nanoparticle; ROS, reactive oxygen species; Uv, ultraviolet; ZnO NPs, zinc 
oxide nanoparticles.
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reason is that return on investment has been mostly negligible 

for antibiotics with US Food and Drug Administration (FDA) 

certification in the last few decades.126 There are two main 

ways to overcome antibiotic resistance, one is manufacture 

of novel antibiotics, and the other is minimizing the dosage to 

decrease antibiotic resistance.127 To achieve the second aim, 

local antibiotic administration has drawn increasing attention 

in recent years to improve the treatment effects. Antibiotic-

loaded systems can deliver an adequate local bactericidal 

dose directly to the infected site, without significantly over-

taking the systemic toxicity level.128 Hydrogels, as a kind 

of local administration matrix, offer high surface area to 

volume ratio and the capacity to design their physical proper-

ties such as porosity to match natural tissue. Recent studies 

have shown that a combination of synthetic antimicrobial 

polymers and antibiotics could potentially evade problems 

of drug resistance by taking advantages of the polymer’s 

membrane-lytic mechanism. Meanwhile, polymer toxicity is 

mitigated as the co-usage of antibiotics allows for a smaller 

amount of polymer in use.2 So, it is easy for hydrogels to 

selectively load drug molecules with controlled release at the 

desirable site and to offer accurate prolonged release.31,129–131 

The antibiotics in common use for antimicrobial hydrogels 

are as follows.

Ciprofloxacin
Ciprofloxacin is a fluoroquinolone antibacterial agent, which 

is active against a broad spectrum of Gram-positive and 

Gram-negative bacteria.136 It is the gold standard for various 

topical applications, such as eye and skin infections.137 

Ciprofloxacin is also a recommended treatment for Shigella 

infections. However, ciprofloxacin-resistant Shigella 

sonnei are being increasingly isolated in Asia and sporadi-

cally reported on other continents.138,139 The mechanism of 

ciprofloxacin depends upon blockage of bacterial DNA 

duplication by binding itself to DNA gyrase, thereby causing 

double-stranded ruptures in the bacterial chromosomes, so 

resistance to this drug develops slowly.140 Minimal toxicity 

of ciprofloxacin is related to dosage, and excessive doses can 

cause damages to tissues, whereas hydrogels can solve this 

problem as a local delivery system.

Ciprofloxacin can be self-assembled with a tripeptide into 

an antimicrobial nanostructured hydrogel to enable abundant 

drug to be carried along with prolonged release.129,137 Modified 

hydrogel coatings were reported to prevent titanium implant-

associated infections.128 A hydrogel generated by polymer-

izing aminophenyl boronic acid in PVA with ciprofloxacin 

was reported to treat wound healing in diabetes patients.141 

It has been reported that diseases associated with the colon 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2235

Hydrogels as antimicrobial biomaterials

Table 3 Antimicrobial mechanism of nanoparticles

Nanoparticles Antimicrobial mechanisms References

Ag NPs 1. Ag+ dissolved from Ag NPs interact with sulfur-containing and phosphorus-containing groups of proteins of 
the cell wall and plasma membrane of bacteria. Binding to negatively charged parts of the membrane creates 
holes in the membrane, allowing plasma contents (including K+) to flow out of the cell, dissipating the H+ 
gradient across the membrane.

2. Inside the microbial cell, Ag NPs exert several antimicrobial effects: 1) inhibiting cytochromes of the electron 
transport chain of microbes; 2) causing damage to DNA and RNA of microbes; 3) inducing formation of 
ROS, which are also toxic to host cells; and 4) inhibiting cell wall synthesis in Gram-positive bacteria.

3. After the Ag NPs are leaked from the dead microbes, Ag NPs could go on to kill other microbial cells.

34, 36, 39–42

Au NPs Au NPs can be attached to bacterial membrane, which leads to leakage of bacterial contents or penetration of 
the outer membrane and peptidoglycan layer, resulting in bacterial death.

85

Au NP-Amp First, the presence of multiple Amp molecules on the surface of Au NP allows the Au NP-Amp to overwhelm 
high concentrations of beta-lactamase expressed by these bacteria. Second, Au NP-Amp inhibits the 
transmembrane pump that catalyzes drug efflux from the bacterial cell. 

86

ZnO NPs 1. ZnO NPs bind to bacterial cell membranes and destroy the lipids and proteins on them.
2. ZnO NPs could cause formation of Zn2+ ions and ROS, which damage the bacterial cell.
3. when coated with PvA, ZnO NPs increase membrane permeability and enter the cytoplasm of the bacterial cell.

31, 33, 35, 
95, 98

CuO/Cu NPs 1. Cu interacts with amine and carboxyl groups on the surfaces of microbial cells. Therefore, microbes with 
higher density of the two groups have higher sensitivity to CuO/Cu NPs.

2. Cu++ ions induce formation of ROS.

112–114

MgO/MgX2 NPs 1. MgO/MgX2 NPs inhibit certain enzymes of microbial cells.
2. MgX2 NPs may induce formation of ROS.
3. MgX2 NPs inhibit growth and biofilm formation.
4. Unlike any other metal, the antimicrobial activity of MgO works by adsorbing halogen molecules onto the 

surface of the MgO.

117–120

Abbreviations: Ag NPs, silver nanoparticles; Amp, ampicillin; Au NPs, gold nanoparticles; CuO/Cu NPs, copper-containing NPs; MgO NPs, magnesium oxide-containing 
nanoparticles; MgX2 NPs, magnesium halogen-containing nanoparticles; PvA, polyvinyl alcohol; ROS, reactive oxygen species; ZnO NPs, zinc oxide nanoparticles.

such as constipation may be treated with hydrogels containing 

laxative psyllium and ciprofloxacin.142 Hosny136 demonstrated 

that a liposomal hydrogel containing ciprofloxacin improved 

maximum ocular availability through albino rabbit cornea. 

Figure 5 Development of antibiotics and appearance of drug resistance are summarized chronologically referring to Huh and Kwon,35 Andersson and Hughes,132 Rodriguez-
Rojas et al,133 van Hoek et al,134 Molton et al.135

Abbreviations: E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae; MRSA, methicillin resistant S. aureus; S. aureus, Staphylococcus aureus; vISA, vancomycin intermedicate 
resistant S. auereus; vRe, vancomycin-resistant enterococcus; vRSA, vancomycin-resistant S. aureus.

In the research of Zhou et al,143 porous scaffolds of PVA were 

prepared by quenching in liquid nitrogen and the freeze drying 

method, from different concentration aqueous solutions loaded 

with ciprofloxacin were fabricated. Complete inhibition of 
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microorganism growth revealed the sustaining release of 

ciprofloxacin. Other researchers used dextrin and poly-based 

hydrogel as a carrier for ciprofloxacin, and the results suggest 

that hydrogel was a promising candidate for controlled release 

of ciprofloxacin.144,145 These studies indicate that the hydro-

gels loaded with ciprofloxacin have great potential of clinical 

administration, especially for infectious diseases due to their 

excellent antimicrobial properties and prolonged effect.

Gentamicin
Gentamicin is a traditional broad spectrum antibiotic used 

for the treatment of skin and soft tissue infections. However, 

systemic toxicity, especially for kidney, and low plasma 

concentration hinder its application.146 To avoid the side 

effects, gentamicin is often used locally nowadays.147,148 Local 

administration of functional gentamicin hydrogels offers an 

efficient solution. Gentamicin-loaded PVA and PVA-AAm 

hydrogels cross-linked by sterculia have many biomedical 

properties such as blood compatibility, tensile strength, burst 

strength, water vapor permeability and oxygen diffusion. 

It can be a kind of potent antimicrobial wound dressings.149,150 

Superabsorbent polysaccharide gentamicin hydrogels based 

on pullulan derivatives also brought a broadened view about 

antimicrobial hydrogels. It may become one of the impor-

tant applications in the future with the ability to expand to 

4,000% of its volume.151 Phospholipid-modified solid lipid 

microparticles encapsulating gentamicin were loaded into 

three polymeric hydrogels. Poloxamer 407 microgels were 

proved to have the most desirable properties in terms of fast 

antibacterial activity, in vitro diffusion-dependent permeation, 

spread ability, pH and viscosity.152 This implied that the same 

drug can reach different diffusion speeds on hydrogels of 

different matrices. Hydrogel based on the copolymer poly(N-

isopropylacrylamide-co-dimethyl-γ-butyrolactoneacrylate-

co-Jeffamine® M-1000 acryl amide) (PNDJ) with delivery 

in .6 weeks was loaded with gentamicin. This hydrogel might 

decrease treatment failure for orthopedic infection.153 Inspir-

ingly, Wu et al154 found that gentamicin sulfate (GS)-loaded 

carboxymethyl-chitosan (CMCh) hydrogel cross-linked by 

genipin was an effective and simple approach to achieve 

combined antibacterial efficacy and excellent osteoblastic 

cell responses, which has great potential in orthopedic appli-

cations. In open orthopedic surgeries, gentamicin-loaded 

thermosetting composite hydrogels, which were prepared 

combining CS with bovine bone substitutes (Orthoss® 

granules, Orange, CA, USA), beta-glycerophosphate as a 

cross-linker and lyophilized to obtain moldable composite 

scaffolds (moldable composite scaffold loaded with gentami-

cin [mCSG]), were considered to reduce the infection risks.155 

The hydrogels have broken the limit of gentamicin application 

since the effective dosage can be decreased. Other antibiotics 

with serious side effects can also be used with hydrogels.

vancomycin
Vancomycin, a macromolecular glycopeptide antibiotic, is 

considered as the last defense of infection clinically, especially 

for methicillin-resistant Staphylococcus.156,157 But now even 

vancomycin-resistant Enterococcus (VRE) has been found 

in different regions.158–160 As mentioned earlier, hydrogels as 

a delivery system are able to protect and enhance the validity 

of vancomycin. Syringeable pluronic-α-cyclodextrin (CD) 

supramolecular gels,161 hydrogel of thiolated CS cross-linked 

with maleic acid-grafted dextrin,162 thermosensitive hydrogel 

of CS/gelatin/β-glycerol phosphate,163 hydrogel of oligo(PEG 

fumarate)/sodium methacrylate (OPF/SMA) charged copo-

lymers as biocompatible matrices,164 poly(β-amino ester) 

(PBAE) hydrogels mixed with PEG (MW = 400) diacrylate 

(PEGDA) and diethylene glycol diacrylate (DEGDA)165 and 

hydrogels achieved by photo cross-linking of methacrylated 

dextran and poly(l-glutamic acid)-g-hydroxyethyl methacry-

late are all studied, and they exhibited excellent antimicrobial 

properties and desirable release capacity.166 The most com-

mon pathogen of osteomyelitis is S. aureus, especially 

MRSA. Vancomycin is always used in the treatment of osteo-

myelitis because it is the most effective antibiotic against 

MRSA. The combination of hydrogels and vancomycin is a 

good material, which can prevent osteomyelitis clinically.

Synthetic antimicrobial drugs
Here, synthetic antimicrobial drugs refer to the nitroimida-

zoles, sulfanilamide groups and other frequently used antibi-

otics through de novo synthesis, not including semi-synthetic 

antibiotics or biological extract. Synthetic drugs have many 

advantages because of their special chemical structures, but 

they bring risks and damage to normal tissue for the same 

reason too. So, stable and safe delivery systems become 

necessary.167 Nitroimidazoles can have an effect on anaerobic 

bacteria and amoeba, so they are often used for the digestive 

system.168 Ornidazole has been loaded on hydrogels com-

posed of CMCh for colon-targeted delivery, and its release 

can be controlled by a change in pH.163,169 Das et al130,144,170 

used dextrin and poly-based hydrogel as a carrier for ornida-

zole, and the result suggests that the hydrogel was a promising 

vehicle. Hydrogels based on dextrin grafted with poly(2-

hydroxyethyl methacrylate) by embedding N,N-methylene 

bisacrylamide as a cross-linker can also be a good candidate 

for an orally administered drug delivery system for the colon 

region.130 Metronidazole (MTZ) containing PMAA nanogel 
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as an oral dosage form for gastrointestinal infection171 and 

tinidazole containing hydrogels based on CS have also been 

studied.172 Moreover, floating pH-sensitive CS hydrogels 

containing MTZ were more effective against Helicobacter 

pylori than the commercially available oral MTZ tablets.173 

CS/gelatin/β-glycerol phosphate hydrogels could maintain 

sustained release of MTZ in concentrations that are effec-

tive for eliminating pathogenic bacteria over time.163 Chlor-

hexidine is considered a promising antimicrobial agent and 

possesses a broad spectrum of activity against bacteria.174 

Chlorhexidine thermosensitive hydrogel175 and chlorhexidine 

diacetate containing thermoresponsive hydrogel copolymers 

exhibit novel application of this traditional sterilization 

agent.176 In recent research studies, the micrometer-sized 

β-CD-based hydrogel (bCD-Jef-MPs) system also achieved 

sustained release of chlorhexidine digluconate, thus treating 

periodontitis lesions became effective.177 The prolonged 

release has made it possible to decrease its dosage. Therefore, 

its side effects were reduced. Octenidine, as an external appli-

cation, has become active wound dressings with minimized 

side effects after being loaded on bacterial nanocellulose.178 

Thiosemicarbazone, an antimicrobial drug used in ophthalmic 

diseases, was loaded on poly(2-hydroxyethyl methacrylate)-

conjugated beta-CD or directly cross-linked hydroxypropyl-

beta-CD to explore novel materials for fabrication of soft 

contact lenses.179 In the study by Sittiwong et al,180 the drug 

release rate of sulfanilamide-loaded PVA hydrogels could be 

controlled through the drug size, matrix pore size, electrode 

polarity and applied electric field. As for wound therapy, 

immobilization of cetylpyridinium chloride to PVA hydro-

gels offers suppressed release;181 chloramine-T and sulfadi-

azine sodium salt-loaded hydrogels composed of PVA, PVP 

and glycerin showed an excellent swelling capacity;182 a novel 

polyvinyl–pyrrolidone–iodine hydrogel in wound therapy 

was found to be able to enhance epithelialization and reduce 

loss of skin grafts;183 poly(N-hydroxyethyl acrylamide)/

salicylate hydrogels provide both antimicrobial and antifoul-

ing functions;184 and isothiazolinones delivered in alginate 

hydrogel sphere achieved long-term antibacterial activity by 

improvement of the alkali and heat resistances.185 All these 

evidence showed that novel applications of synthetic drugs 

and hydrogels can avoid risks and side effects. The combina-

tion of synthetic drugs and hydrogels offers us a an effective 

clinical antimicrobial method.

Other antibiotics
Besides the aforementioned most commonly used antibiotics, 

there are many other antibiotics loaded in hydrogels, such as 

amoxicillin, ampicillin, cephalosporin etc. Each of them has 

its own antibacterial spectrum and advantages. Amoxicillin 

trihydrate, a common treatment for peptic or gastric ulcers 

caused by H. pylori infection,186 loaded in κ-carrageenan 

hydrogels containing CaCO
3
 and NaHCO

3
 or CS/poly-

gamma-glutamic acid nanoparticle pH-sensitive hydrogels 

was well protected from the gastric juice, thus facilitating 

drug effects specifically at the site of infection.187,188 The 

similar results of in vivo studies by Moogooee et al189 

showed that the amoxicillin-loaded hydrogels enhance drug 

concentration at the topical site than powder amoxicillin, 

meaning that therapeutic concentration can be achieved at 

a much lower dose which may reduce the adverse effects of 

amoxicillin in high doses. Ampicillin sodium-loaded PVA–

alginate physically cross-linked hydrogel exhibited both 

Gram-positive and Gram-negative antimicrobial properties 

and improved hemolysis.190 Cephalosporin belongs to beta-

lactamase, and it is a widely used β-lactamase-resistant and 

broad spectrum antibiotic.191 Cefixime (CFX)-loaded CS/

PEG hydrogel exhibited controlled release of drug and anti-

bacterial activity against Gram-negative bacteria (E. coli) 

and Gram-positive bacteria (S. aureus).192 Cefditoren pivoxil 

hydrogels with gastroretentive effect were achieved,193 and 

cefazolin containing methoxy PEG-co-poly(lactic acid-

co-aromatic anhydride) hydrogels offered a stable release 

without initial burst.194 Levofloxacin-loaded hyaluronic acid 

hydrogels were reported to be able to chase bacteria within 

the cells for both S. aureus and P. aeruginosa strains.127 

In order to eradicate bacterial biofilm and avoid possible 

intestinal obstructions, Islan et al195 reported a smart auto-

degradable hydrogel containing alginate lyase (AL) and 

levofloxacin, which induced the reduction of drug toxicity 

and enhancement of drug bioavailability. A hydrogel based 

on (−)-menthol, which is a traditional cooling compound 

tailed by an amino acid derivate through an alkyl chain, can 

provide innoxious environment to living cells and deliver 

lincomycin to the local infection site.196 O-Carboxymethyl 

CS (O-CMCS) hydrogels synthesized from CS and mono-

chloroacetic acid were reported as a promising carrier for 

antibiotics, which showed significant antibacterial activities 

against E. coli and S. aureus while loaded with lincomycin.197 

Doxycycline was also loaded on an in situ thermally sensitive 

hydroxypropyl-β-CD hydrogel for ophthalmic delivery.198 

Controlled release of doxycycline from CS-gelatin hydro-

gels cross-linked with transglutaminase was observed in 

other research, indicating that it is a potential carrier for cell 

delivery.199 Mupirocin appears to be one of the promising 

antimicrobials, as it is well tolerated in topical administration 

with very few side effects. Liposomes-in-hydrogel delivery 

system for mupirocin solved the problem of controlled and 
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prolonged release of mupirocin, which offered an improved 

burn therapy, and substantial efforts have been devoted in the 

literature to prove its antibiofilm activity against S. aureus 

biofilms and non-toxicity against keratinocytes.200,201 The 

methoxypoly(ethylene glycol)-co-poly(lactic-co-glycolic 

acid) (mPEG-PLGA) hydrogel containing teicoplanin was 

reported effective for treating osteomyelitis in rabbits.202 

There are a plenty of reports about different antibiotics 

loaded in hydrogels, but the three mentioned earlier are the 

mostly used ones. However, other antibiotics and hydrogel 

offered us with more choices when facing different bacte-

rial infections. Meanwhile, it decreases the risk of antibiotic 

resistance. The controlled release of antibiotics is another 

advantage of hydrogels. The stable and continuous release 

without initial burst would ensure prolonged antimicrobial 

effect which can satisfy clinical demand. To offer an easier 

query, most of the hydrogels with antibiotics are recorded 

in this review (Table 4).

Biological extracts
Biological extracts include extracts from vegetations and 

animals, some of these extracts have a long history of appli-

cation, and others were discovered in recent years.203 For 

example, the therapeutic efficiency of herbal extracts and 

ingredients has been limited by various factors, including the 

lack of targeting capacity and poor bioavailability. Hydrogel 

is a promising carrier for the extracts of herbal medicine in 

recent studies.204 Following are reports of hydrogels loaded 

with various natural extracts. Seaweed extract-based hydro-

gel was reported as a novel antimicrobial wound dressing, 

and no seaweed-derived antimicrobials have been used in 

wound dressings ever before.205 Combinations of agar and 

carrageenan–PVA hydrogel wound dressing have been 

proved to be useful in treating burns, other external wounds 

and non-healing ulcers of diabetes.206 Hydrogels extracted 

and assembled from dermis samples containing basement 

membrane proteins vital to skin regeneration, including 

laminin β3, collagen IV and collagen VII, were applied 

as a barrier against bacteria in wound healing.207 Though 

according to some research studies alginate does not display 

antimicrobial properties, it can be an ideal wound dressing 

due to its morphology, fiber size, porosity, degradation and 

swelling ratio.205–208 Allicin–CS complexes were proved to 

have antibacterial activity against spoilage bacteria, and 

they may be used as an antimicrobial agent in foods.209 

CS-based hydrogel film loaded with ethyl acetate Salix 

alba leaves extract showed no cytotoxicity and excellent 

antibacterial ability against Salmonella typhi and Candida 

guilliermondii.210 Achyrocline satureioides is a medicinal 

plant widely used in South America, which exhibits a well-

documented antioxidant activity against Gram-positive and 

Gram-negative bacteria, as well as a set of yeast molds.211 

Curcumin is non-toxic and bioactive agent with multifunc-

tion; it is found in turmeric and has been applied for centuries 

as a remedy to various ailments.212 However, low aqueous 

solubility and poor bioavailability limit the application of 

curcumin, and thus curcumin nanoparticles and hydrogels 

were developed. Ag NPs–curcumin hydrogels for wound 

dressing were also reported, exhibiting good antibacterial 

properties and sustained release, which indicate enormous 

prolonged therapeutic value.213,214 A polysaccharide extracted 

from Aloe vera, Acemannan, has various medical properties, 

such as antibacterial property, and it can accelerate healing of 

lesions.215 Some studies demonstrated its antibacterial activity 

against both susceptible and resistant H. pylori strains.216 

Alginate hydrogels containing Aloe vera were applied in 

clinical wound care treatment due to their antimicrobial and 

anti-inflammation capacity.217 Essential oils, such as lavender, 

thyme oil, peppermint, tea tree, rosemary, cinnamon euca-

lyptus, lemongrass and others, have been found to possess 

particular antimicrobial properties, mainly in response to 

the overwhelming concern of consumers over the safety of 

synthetic food additives.218,219 Essential oils encapsulated in 

sodium alginate were reported to be qualified as disposable 

wound dressings.220 For those extracts from animals, honey 

was the most easily acquired; a Malaysian honey, Gelam 

honey, was incorporated into a hydrogel system to produce 

a functional wound dressing.221 Besides honey, bee propolis 

loaded into hydrogels has good antibacterial ability, making 

it a good wound dressing for skin wound healing.217 Another 

bee derivative is bee venom peptide, namely melittin, and 

its copolymer interactions on thermosensitive PLGA-PEG-

PLGA hydrogel can be used as delivery systems for peptide 

drugs.222 Lysozymes, derived from normal tears with their 

inherent antibacterial properties, were deposited on hydrogel 

contact lenses that exhibit marked activity.223 Vitamin E is 

also an important antioxidant, biodegradable hydrogel from 

vitamin E-functionalized polycarbonates for antimicrobial 

applications; it displayed excellent compatibility with 

human dermal fibroblast loaded with cationic polymers 

and/or fluconazole at minimum biocidal concentrations.224 

Lignins and lignin-derived compound model polymer, 

dehydrogenate polymer (DHP) in alginate hydrogel, have 

shown strong antimicrobial and wound healing activity.225 

These biological extracts are easier to get and more readily 

accepted. Excellent biocompatibility and good antibacterial 

properties also make them promising antimicrobial bio-

materials in the future. However, with the studies ongoing, 
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. we still need to test its properties once we find a new natural 

extract. We cannot evaluate it’s antimicrobial properties and 

it’s safety until we conduct some experiments about it as it 

is newly found.

Hydrogels with inherent 
antibacterial activity
Here, hydrogels with inherent antibacterial activity refer 

to polymers of these hydrogels that exhibit antimicrobial 

activity by themselves or those whose biocidal activity is 

conferred through their chemical modification, not including 

hydrogels that incorporate antimicrobial organic compounds 

or active inorganic systems.6,15,226 These hydrogels devel-

oped in recent years can be regarded as novel antimicrobial 

agents without traditional defects.7 The main types of these 

hydrogels are as follows.

Antimicrobial polymers
Antimicrobial polymers are non-stimulated or potential anti-

microbials. Some of the antimicrobial polymers can form 

hydrogels. For non-stimulated polymers, most commonly 

there are certain components in the chemical structures which 

can play a role in antimicrobial activity. These polymers could 

be prepared by several routes such as in situ synthesis within a 

hydrogel to obtain antimicrobial activities.227 Novel hydrogels 

composed of thermoresponsive PNIPAM and redox-respon-

sive poly(ferrocenylsilane) (PFS) macromolecules exhib-

ited strong antimicrobial activity while maintaining a high 

biocompatibility with cells.228 Jiang et al229 synthesized the 

quaternary ammonium salt of gelatin using 2,3-epoxypropyl 

trimethylammonium chloride (EPTAC) as the antimicro-

bial polymer ingredient of the hydrogel. pH-sensitive and 

temperature-sensitive hydrogels based on 2-hydroxyethyl 

methacrylate (HEMA) and IA copolymers were proved to 

have great potential for biomedical applications, especially 

for skin treatment and wound dressings with excellent results 

of microbe penetration test.230 Antimicrobial property of an 

antifouling hydrogel prepared by the photopolymerization of 

PEGDA and a monomer containing ammonium salt (RNH3Cl) 

in the presence of a photoinitiator was also demonstrated by 

a study employing E. coli.231 As for potential antimicrobial 

polymers, light is one of the most important factors. Photody-

namic porphyrin anionic hydrogel copolymers were reported 

and showed great promise to the prevention of intraocular 

lens-associated infectious endophthalmitis.232 Another pho-

todynamic pHEMA-based hydrogels exhibit light-induced 

bactericidal effect via release of NO.233 All mechanisms of 

these antimicrobial polymers provide not only novel antimi-

crobial materials but also novel delivery and release methods, 
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which can be a turn on–off switch. Although not all the ingre-

dients can be used as antibacterial agents, they provide us with 

the reference. In further research studies, we may design the 

antimicrobial hydrogels with some functional structures or 

ingredients that are able to function with bacteria. As for the 

other parts, we shall keep them for some other properties, 

such as anti-inflammation or antifouling.

Antimicrobial polypeptides
AMPs are an abundant and diverse group of molecules 

produced by multicellular organisms as a defense mecha-

nism against competing pathogenic microbes.234 They 

are recognized as a possible source of panacea for the 

treatment of antibiotic-resistant bacterial infections,13,235 

because AMPs have strong antimicrobial activity against a 

very broad spectrum of microorganisms, including Gram-

positive and Gram-negative bacteria, fungi and virus.5,236 

Although agreement about the specific mechanism of 

AMPs has not been reached until now, it is known that 

AMPs work with membranes and finally lead to bacteria 

killing (Figure 6).235 However, AMPs have their own 

disadvantages. They are not stable and easy to degrade. 

Moreover, antimicrobial properties of natural AMPs are not 

as good as antibiotics. To overcome all these disadvantages, 

researchers have designed some recombinant AMPs with 

short chains, which have improved antibacterial property. 

The hydrogels can also be good media for AMPs to prevent 

self-degradation.

At first, relatively simple AMPs were loaded on hydrogels, 

and then AMPs with certain structures or even self-assembled 

AMPs were developed. Mitra et al developed dipeptide-based 

amphiphile hydrogel with good antibacterial activities and 

greater cell specificities.14 Peptide-based hairpin hydrogels 

were reported, respectively, by Salick et al with MAX1 pep-

tides and Veiga et al with arginine-rich peptides; both of them 

are self-assembly peptides exhibiting potent antibacterial 

activity.237,238 A Gram-positive antibacterial activity possess-

ing peptide (KIGAKI)3-NH2 with hairpin and self-assembly 

structure was incorporated with hydrogels by Liu et al.239 

Highly active AMP CKRWWKWIRW-NH2 was immobi-

lized to the surface of poly(ethylene terephthalate) hydrogel, 

thus establishing bactericidal activity against S. aureus and 

S. epidermidis.240 Poly-lysine, a popular AMP that has been 

reported by Zhou et al, was applied in photopolymerized 

antimicrobial hydrogels, which can be promising coatings for 

medical devices and implants (Figure 7).241,242 In the research 

Figure 6 Mode of action for intracellular antimicrobial peptide activity. In this figure Escherichia coli was shown as the target microorganism from Brogden.
Note: Reprinted by permission from Springer Nature, Nat Rev Microbiol, Brogden KA, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? 2005;3(3): 
238–250, Copyright 2005.235

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2249

Hydrogels as antimicrobial biomaterials

Figure 7 Morphological observation of various microorganisms seeded on 
hydrogels by scanning electron microscope. Left columns (control), right columns 
(antimicrobial hydrogels).
Note: Reprinted from Biomaterials. 32(11). Zhou C, Li P, Qi X, et al, A 
photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine, 
2704–2712, Copyright 2011, with permission from elsevier.242

Abbreviations: C. albicans, Candida albicans; E. coli, Escherichia coli; F. solani, 
Fusarium solani; P. aeruginosa, Pseudomonas aeruginosa; S.aureus, Staphylococcus aureus; 
S. marcescens, Serratia marcescens.

studies conducted by Jiang et al,243 cationic multidomain 

peptides (MDPs) demonstrated a better antimicrobial activity 

in hydrogels than in solution. AMP maximin-4-loaded poly 

(2-hydroxyethyl methacrylate) hydrogels,244 l-cysteine- and 

silver nitrate-loaded hydrogels were proved to have qualified 

antibacterial activity.245

Although AMPs still have disadvantages, such as tissue 

toxicity and hemolysis,246,247 they also exhibited a higher 

antimicrobial biocompatibility index value compared with 

synthetic drugs with similar structures,248,249 and a lot of studies 

have attempted to improve the biocompatibility.234–236 A cell 

adhesive polypeptide and PEG hydrogel with inherent anti-

bacterial activity was developed by Song et al as a potential 

scaffold for cutaneous wound healing.250 Moreover, a protein 

anchor developed to immobilize functional protein to PEGDA 

microspheres by Buhrman et al demonstrated a novel method 

to maintain therapeutic efficacy without toxicity.251 In the study 

of Xie et al,252 in situ forming biodegradable hydrogel (iFBH) 

system conjugated and functionalized with AMPs offered 

excellent bacteria inhibition and promoted wound healing 

without cytotoxicity. Interestingly, nanostructured hydrogels 

with d-amino acids for peptide self-assembling demonstrated 

better antimicrobial activity without cytotoxicity.253 These 

studies have brought us the possibility of applying the AMPs 

as antibiotic agents in the hospital. However, there is still a 

long way to go due to the fact that AMPs are not stable and 

they degrade easily. Whether AMPs can be kept in the hydro-

gels for a long time still needs further studies.

Amphoteric ion hydrogels
Amphoteric ion hydrogels work in the similar way to 

AMPs. They are synthetic mimics (polymers) of AMPs; 

the feature of the mechanisms includes electrostatic inter-

actions that facilitate binding of polymers with anionic 

bacterial membrane. The resulting amphiphilic interac-

tions physically destroy the membrane structure, leading 

to cell death.254 This is also the mechanism of some types 

of drugs. However, we concentrate on novel amphoteric 

hydrogels functioning in the same way. A plethora of anti-

microbial synthetic cationic polymers have been reported, 

including poly(acrylate) and poly(norbornene) systems, 

poly(arylamide)s poly-β-lactams and polycarbonates.255–262 

Jiang and Cao263,264 are the frontrunners in this area and have 

published several works and reviews on zwitterionic polymers 

such as poly(carboxybetaine) (pCB) and poly(sulfobetaine) 

(pSB) in the construction of antimicrobial hydrogels. Mi and 

Jiang265 reported a new antimicrobial and non-fouling zwit-

terionic hydrogel through using the antibacterial salicylate 
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anion with the negative charge to initialize its zwitterionic 

state. Quaternary ammonium group was one of the most 

famous antimicrobial materials; an in situ antimicrobial and 

antifouling hydrogel was fabricated from polycarbonate 

and PEG through Michael addition by Liu et al.266 When 

combined with hydrogels, amphiphiles work as effectively 

as AMPs. Polyampholytic hydrogels with high antibacterial 

activity exhibited water absorbency, making them a good 

carrier for water-soluble agents.267 Potent antimicrobial 

hydrogels were formed with anti-inflammatory N-fluorenyl-9- 

methoxycarbonyl (Fmoc) amino acid/peptide-functionalized 

cationic amphiphiles and exhibited efficient antibacterial 

activity against both Gram-positive and Gram-negative 

bacteria.268 To achieve the bifunctional aim of antibacteria 

and antifouling, a zwitterionic hydrogel is conjugated with an 

antimicrobial agent salicylate. This hydrogel can reach one-

salicylate-per-monomer drug delivery while still maintaining 

non-fouling property at protein and bacteria levels.265 For 

amphiphiles, biocompatibilities may be an obstacle to over-

come. Dutta et al269 developed cholesterol-based amino acid 

containing hydrogels with the aim to improve the biocom-

patibility of these amphiphilic molecules. In their studies, 

Ag NPs were synthesized in situ. The amphiphile−Ag NP 

soft nanocomposite exhibited notable antimicrobial property. 

Apart from disinfection of normal Gram-positive and Gram-

negative bacteria, an antimycobacterial supramolecular 

hydrogel based on amphiphiles was developed by Bernet 

et al,270 which retains specific, chain length-dependent 

antimicrobial and antimycobacterial activity, while showing 

practically negligible antiproliferative cytotoxic effects. With 

good antibacterial properties and negligible cytotoxicity, the 

clinical application of amphoteric ion hydrogel still needs to 

be developed. These hydrogels may be a promising material 

to solve the problem of antibiotic resistance.

Antimicrobial polysaccharides
Antimicrobial polysaccharides are usually natural polymer or 

its derivatives such as starch and CS, which are being recently 

used for the preparation of hydrogels because of their non-

toxicity, biodegradability, biocompatibility and abundance 

in nature.271,272 Some of these polysaccharides have inherent 

antimicrobial activity, the most popular one is CS. CS has wide 

antibacterial spectrum of activity and high killing rate against 

Gram-positive and Gram-negative bacteria and low toxicity 

toward mammalian cells.16 As for bacteria, polysaccharide cap-

sule plays a key role in dampening the effects of environment 

on bacteria. In particular, the capsule protects bacteria from 

osmotic stress, ensuring the cells maintain viable cytoplasmic 

turgor.273 CS can be dissolved in weakly acidic solution and 

release NH
2
+, which could bind with negative charge to achieve 

bacteria stasis.274 As for the polymers composed mainly of 

CS, semi-interpenetrating CMCh/poly(acrylonitrile) hydro-

gels were reported to have clearly better antibacterial activity 

with more CMCh, and hydrogel coating by electrophoretic 

co-deposition of CS/alkynyl CS exhibited better antibacterial 

activities than pure CS hydrogel.19,275 In the study by Straccia 

et al,276 alginate hydrogels coated with CS hydrochloride 

showed intrinsic antimicrobial activity against E. coli. Quater-

nary ammonium CS/PVA/polyethylene oxide (PEO) hydro-

gels were reported to exhibit a pronounced inhibitory effect 

against S. aureus and E. coli.277 As for the polymers contain-

ing CS which is just an antibacterial modification, PNIPAM/

polyurethane copolymer hydrogel after CS modification 

exhibited good antibacterial activity.278 CS-grafted hydrogels 

containing mica nanocomposite produced a rougher surface 

while maintaining antibacterial activity.279 The CS hydrogels 

have already been used clinically as wound dressings due to 

their good antihemorrhagic properties. The antibacterial ability 

suggests that the clinical usage of CS hydrogels can be further 

developed in the future.

Peptide-based hydrogels
Several notable peptide-based antimicrobial hydrogels have 

also been reported in recent years. Different from hydrogels 

loaded with AMPs, peptide-based hydrogels refer to those 

hydrogels that were synthesized with amino acid or peptides 

as ingredients in their structure. For example, Salick et al237 

designed a β-hairpin hydrogel scaffold based on the self-as-

sembling 20-residue peptide for tissue regeneration purposes, 

whereby the hydrogel itself possessed intrinsic broad-spec-

trum antibacterial activity. Two years after the development 

of the β-hairpin hydrogel, the same group reported another 

injectable β-hairpin hydrogel based on a different 20-residue 

peptide, which is capable of killing MRSA on contact.280 

In the work of Schneider et al,238 the role of arginine in the 

structure of antibacterial peptide was highlighted which 

worked as instructions for the following research studies. 

Moreover, recently, Liu et al239 also designed a Gram-positive 

antibacterial peptide-containing hydrogel material which can 

self-assemble in response to external stimuli such as pH, 

ionic strength and heat. Debnath et al268 reported a class of 

Fmoc-protected peptide hydrogelators that contained termi-

nal pyridinium moieties, known as possessing antibacterial 

properties due to their propensity for penetrating cell mem-

branes. All of the peptide hydrogels tested were effective at 

killing both Gram-positive and Gram-negative bacteria.268 
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A related AMP hydrogel was designed by Hughes et al.281 

They exploited enzymatic hydrolysis mechanisms inside 

E. coli cells to trigger an intracellular molecular self-assembly 

of amphiphilic peptide hydrogelators.281 Song et al250 devel-

oped all-synthetic polypeptide hydrogels with antibacterial 

activity by cross-linking poly(Lys)x(Ala)y copolymers with 

six-armed N-hydroxysuccinimide (NHS)-terminated PEG. 

Zhou et al242 modified epsilon-poly-l-lysine (EPL), an AMP 

produced by Streptomyces albulus, with methacrylamide 

moieties, and it was then cross-linked with PEGDA to form 

antibacterial hydrogels. Besides their antibacterial applica-

tions, these peptide-based hydrogels have offered inspiration 

of hydrogel design for us in the future. We can design antimi-

crobial hydrogels according to the different active structures 

of antimicrobial drugs. Therefore, the hydrogels would have 

excellent antimicrobial capacity. The hydrogels with inherent 

antibacterial activity are in Table 5.

Hydrogels with synergistic effect
Hydrogels with synergistic effect refer to hydrogels contain-

ing two or more antimicrobial agents combined to reach more 

powerful antimicrobial effect. There are two main types of 

antimicrobial biomaterials that are commonly reported to be 

incorporated into hydrogels with synergistic effect: metal 

nanoparticles group and antibiotics group. Those containing 

both metal nanoparticles and antibiotics are assigned to the 

antibiotics group because antibiotics feature prominently in 

clinical practice.

Synergistic effective hydrogels containing 
metal nanoparticles
Metal nanoparticles in synergistic effective hydrogels were 

mainly Ag NPs. Ag NPs can be loaded on synthetic amphiphilic 

or amino acid-based hydrogels, and they can also be loaded 

with biological extracts.282 Reithofer et al283 synthesized size-

controlled, stable Ag NPs within ultrashort peptide hydrogels 

with great potential for applications in wound healing due 

to their low silver content, sustained Ag NP release and 

biocompatibility. Novel Ag NP composite systems are more 

suitable for biomedical applications because of their good 

biocompatibility with biological molecules, cells, tissues and 

so on.284 In situ-synthesized Ag NPs on amphiphilic hydro-

gels by Dutta et al285 exhibited improved biocompatibility 

and antimicrobial efficacy, which has promising applications 

in biomedicine and tissue engineering. The same laboratory 

also reported in situ-synthesized Ag NP in self-assemblies 

of amino acid-based amphiphilic hydrogel in the same 

year, exhibiting normal growth of mammalian cells on its 

surface while being lethal toward both Gram-positive and 

Gram-negative bacteria.286 Some researchers synthesized 

antimicrobial Ag NPs and impregnated them into antifouling 

zwitterionic hydrogels, thus getting mussel-inspired, antifoul-

ing, antibacterial hydrogels with great potential in wound 

healing applications (Figure 8).287 Both bactericidal hydrogels 

based on l-cysteine and silver nitrate and Ag(I)–glutathione 

hydrogel which exhibited improved cytocompatibility were 

reported in 2011,245,288 offering more possibilities on potential 

application in biomedical field such as burn wound dress-

ings. For other combinations, Ag NP–curcumin composite 

hydrogels demonstrated that incorporation of curcumin into 

these hydrogel nanocomposites would further enhance their 

antibacterial efficacy. The entrapped Ag NPs and curcumin 

molecules proved sustained release, which could be exerted 

in enormous prolonged therapeutic values.213 Anjum et al289 

reported a composite hydrogel for wound dressing contain-

ing nanosilver along with aloe vera and curcumin. It showed 

better antimicrobial nature, wound healing and infection 

control compared with the control group.289 Synergistic 

effective hydrogels containing metal nanoparticles show 

great antibacterial ability and large antibacterial spectrum. 

According to distinct antimicrobial pathways, it is impos-

sible to develop antimicrobial resistance. These materials 

are promising for hospital application in the future.

Synergetic effective hydrogels containing 
antibiotics
Hydrogels containing antibiotics exhibit more potent anti-

microbial properties and biocompatibility when combined with 

other antimicrobial materials. As for traditional gentamicin, 

a novel controlled release zinc oxide/gentamicin–CS composite 

gel with potential application in wounds care was reported. 

ZnO, gentamicin and CS are all antimicrobial agents, but the 

composite gel can significantly improve minimal inhibition 

concentrations (MICs) of Gram-positive and Gram-negative 

bacteria compared with only gentamicin (Figure 9).290 Bacte-

rial cellulose polymers functionalized by RGDC (R: arginine; 

G: glycine; D: aspartic acid; C: cysteine)-grafting groups and 

gentamicin offer a creative method for novel antimicrobial 

composite though it was not hydrogel.291 To cure keratitis, Par-

adiso et al292 added levofloxacin and chlorhexidine to vitamin 

E-loaded silicone hydrogel contact lenses and found that drug 

loaded in the lenses can be controlled to achieve a daily release 

in vivo. Ciprofloxacin is one of the most effective antibiotics 

used clinically, and it has become the gold standard for vari-

ous topical applications such as skin and eye infections. It was 

reported to be able to be combined with different materials 
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from metal nanoparticles to amphiphiles.137 Ciprofloxacin 

loaded into an antimicrobial nanostructured self-assembly 

tripeptide hydrogel was reported by Marchesan et al,129 which 

is meaningful to the design of cost-effective nanomaterials. 

Figure 8 A new strategy that uses catecholic chemistry to synthesize antimicrobial 
silver nanoparticles impregnated into antifouling zwitterionic hydrogels.
Notes: On the top is the schematic illustration of the combination of AgNPs and 
antifouling hydrogel. In the middle, Photographs show the changes in color of hydrogels 
by changing the pH because of reaction that converts the Ag+ into solid AgNPs. The 
bottom section shows the surface structure and the morphology of hydrogel via 
scanning electron microscopy. Reprinted with permission from GhavamiNejad A,  
Park CH, Kim CS. In situ synthesis of antimi crobial silver nanoparticles within 
antifouling zwitterionic hydro gels by catecholic redox chemistry for wound healing 
application. Biomacromolecules. 2016;17(3):1213–1223. Copyright (2016), American 
Chemical Society.287

Figure 9 Graphical representation of MICs obtained after growing S. aureus 
and P. aeruginosa in the presence of different concentrations of gentamicin and 
ZnO/gentamicin–chitosan.
Note: Reprinted from Int J Pharm. 463(2). vasile BS, Oprea O, voicu G, et al, 
Synthesis and characterization of a novel controlled release zinc oxide/gentamicin-
chitosan com posite with potential applications in wounds care, 161–169, Copyright 
2014, with permission from elsevier.290

Abbreviations: MICs, minimal inhibition concentrations; S. aureus, Staphylococcus 
aureus; P. aeruginosa, Pseudomonas aeruginosa.
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In their design, drug incorporation in the delivery could lead 

to prolonged release and novel antimicrobial formulations.129 

Release of ciprofloxacin loaded on PVA-based super paramag-

netic nanocomposites can be magnetically mediated, which 

provides novel approach of release though no hydrogel forma-

tion was studied in this article.140 In in vivo studies, dextrin 

polymer hydrogels impregnated with amikacin and clindamy-

cin were applied in dogs whose tibial plateau leveling osteot-

omy implants were removed due to suspected surgical site 

infection, and no signs of inflammation or infection in any dog 

were found at the 12th week.293 Quaternized gellan gum-based 

particles for controlled release of ciprofloxacin demonstrated 

another potential dermal application.294 Besides, tetracycline 

hydrochloride Ag NP composite hydrogels were developed 

to inhibit bacteria in simulated colon environment.295 All 

these synergetic effective composite hydrogels offer possible 

approaches for minimum of antibiotics dosage. Combination 

with other antibacterial ingredients can be a good way to 

solve the antibiotic resistance and side effects. Meanwhile, the 

antibacterial spectrum is enlarged, indicating that synergetic 

effective composite hydrogels have great potential clinically. 

However, synergistic effects occur when two or more drugs 

work together to form a stronger response than individually, 

known as 1+1.2 effect. In most of the abovementioned stud-

ies, researchers were more likely to describe additive effect. 

When the different antimicrobial ingredients were put together 

in hydrogel, the antibacterial spectrum was boarder and the 

antimicrobial effect became better compared with hydrogels 

loaded with one agent separately, whereas we could not tell if 

the overall effect was synergistic. We would like to see whether 

the two antimicrobial ingredients would exhibit synergistic 

effect or only additive effect in further study.

Summary and prospect
Recent advances in natural and synthetic hydrogels have 

either intrinsic antimicrobial properties or act as carriers for 

antibiotics. Hydrogels as antimicrobial biomaterials can be an 

alternative and amendable solution other than the traditional 

antibiotic treatment since too many drug-resistant bacteria 

were developed due to misuse of antibiotics and other anti-

microbial drugs. Controlled and prolonged release, local 

administration, stimulated switch on–off release, enhanced 

mechanical strength and improved biocompatibility are 

important advantages which a broad diversity of hydrogels 

can bring. Antimicrobial hydrogels can be applied to a broad 

spectrum such as wound dressings, urinary tract coatings, 

contact lens, treatment of osteomyelitis, catheter-associated 

infections, gastrointestinal infections and so on, finally 

conquer formidable problems in traditional therapy. Novel 

antimicrobial biomaterials, novel combination of these mate-

rials and novel approaches will bring us brand new prospects 

and promising further in anti-infection treatment.

For treating microbial infections, it is crucial that antimi-

crobial components can be released from gels to enter immune 

cells and kill the pathogenic microbes from inside. Hydrogels 

loaded with antibiotics, metal nanoparticles, antimicrobial 

polymers and peptides can release the antimicrobial agents 

in a sustained manner, which is important to treat infections 

effectively and prevent biofilm formation. Biodegradable 

antimicrobial polymer-loaded or peptide-loaded gels are more 

attractive than gels encapsulated with antibiotics or metal 

nanoparticles because antibiotics easily develop drug resis-

tance, and it is relatively more difficult to mitigate toxicity of 

metal nanoparticles due to their non-degradability.

Antimicrobial hydrogels could help to solve the present-

day challenges of antimicrobial medicine, including antibiotic 

resistance. The mechanisms are as follows: 1) the antimicro-

bial hydrogels could be used locally, which would avoid the 

side effect of systemic application; 2) the hydrogels, as a novel 

drug delivery system providing sustainable release of anti-

microbial drugs, could offer prolonged antimicrobial effect 

and avoid screening of resistant bacteria; 3) according to the 

multiple mechanisms of nanoparticles and other antibacterial 

ingredients, it is difficult for bacteria to develop resistance 

aiming at only one target; and 4) different ingredients might 

exhibit synergistic effect. This would bring broader antibacte-

rial spectrum and better antimicrobial effect.

Hydrogels have offered us a new way to fight against antibi-

otic resistance in clinical application. However, the controlled 

release of drugs cannot be accurate in the existing hydrogels. 

Some of the hydrogels degrade too fast to prolong the effect. 

Moreover, the antibacterial property of hydrogels is usually 

weak. Most of them cannot be used as antimicrobial materials 

alone. Some hydrogels would react with drugs they load, thus 

limiting their practical application. In the future, these prob-

lems still call for more research studies to be solved.

As for the antimicrobial spectrum of antimicrobial 

hydrogels, lots of them were determined by the antimicrobial 

ingredients they carried. Some of the materials were only 

tested with specific bacteria. Some of the hydrogels were 

examined with both Gram-positive (usually S. aureus) and 

Gram-negative bacteria (E. coli). The result indicated that 

the antimicrobial properties of the materials was different 

against various bacteria. Rarely, researchers have reported 

the entire antimicrobial spectrum of antibacterial hydrogels in 

their articles. We hope that researchers could carry out more 
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studies about the antibacterial properties of materials against 

different bacteria. This will help us to find out if activity 

against one particular bacterium is limited in scope or that 

nanomaterial might have broader utility.

For future clinical applications, it is critical to test anti-

microbial hydrogels against clinically isolated microbes, 

especially multidrug-resistant strains and evaluate the in vitro 

and in vivo biocompatibility of hydrogels and encapsulated 

cargo. With rational design, synthetic polymer chemistry 

and comprehensive in vitro and in vivo evaluation, hydrogel 

systems with broad-spectrum antimicrobial activity against 

multidrug-resistant microbes, high selectivity and negligible 

toxicity would find great potential in the prevention and 

treatment of infections.
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Alginate hydrogel microbeads incorporated with Ag nanoparticles 
obtained by electrochemical method. Mater Chem Phys. 2012;133(1): 
182–189.
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