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Abstract: Since its discovery in 1958, Burkitt lymphoma (BL) has been extensively studied 

and has become a model for tumorigenesis, but its pathogenesis has not been completely 

explained and understood yet. The aim of this review was to summarize the current knowledge 

about BL and, in particular, to discuss the role of miRNAs in its pathogenesis and their pos-

sible use as diagnostic and prognostic indicators. The impact of viral-encoded miRNAs is also 

discussed, with the Epstein–Barr infection being almost invariably detected in the endemic 

variant of this tumor.
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Introduction
Discovery of Burkitt lymphoma (BL)
BL was first described by Denis Burkitt in 19581 during a field trip to sub-Saharan 

Africa and was subsequently named after him. The British surgeon observed that this 

particular tumor had a very high incidence in this geographic region, referred to as the 

“lymphoma belt” of Africa, in which other infectious diseases are also very common, 

such as malaria and arboviral infections.2,3 Nevertheless, even though ~60 years have 

passed since the first description, it is not clear yet what impact, if any, these infectious 

diseases may have in driving BL in endemic areas.4

BL has been referred to as the “Rosetta stone” of cancer because it is the first 

tumor for which a viral association has been described (with the Epstein–Barr virus 

[EBV]),5 the first tumor in which a specific chromosomal translocation has been iden-

tified (involving the MYC proto-oncogene)6,7 and the first tumor successfully treated 

by chemotherapy.8 For this reason, BL has a very important “historic” role, as it has 

improved our understanding of the molecular mechanisms happening in cancer, and 

it is still considered a model for tumorigenesis.

The EBV was isolated by Sir Anthony Epstein in 1964 from a BL-derived cell 

line,5 and now clear evidence highlight that this virus is not simply a bystander, but it 

actively promotes transformation through its encoded genome products.9

Classification of BL
According to the World Health Organization classification, BL can be defined as a “sin-

gle morphological and clinical entity, with variations in clinical presentation”.10 Three 

subtypes of this tumor have been described, namely, the endemic (eBL), the sporadic 

(sBL) and the immunodeficiency-associated form (ID-BL or human immunodeficiency 
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virus [HIV]-BL) that differ in geographic distribution and  

the extent of association with viruses, with EBV being the 

most relevant.10 Despite this distinction, these variants can 

still be considered the same entity as they all share the same 

clinical presentation and the same molecular profile,11,12 with 

some differences in their miRNA profile.13 The hallmark of 

BL is the constitutive activation of the MYC proto-oncogene, 

which leads to deregulated and increased expression of the 

Myc protein. In the vast majority of cases, this imbalance is 

achieved through a chromosomal translocation, which puts  

the MYC gene, mapping on chromosome 8, under the tran-

scriptional control of immunoglobulin (Ig) gene promoters.  

When these promoters are very active, following a transloca-

tion, there is a strong and sustained expression of the MYC 

gene, with a resulting upregulation of its protein product.6,7 

Three different translocations have been described involving 

different Ig loci (t[8;14], t[8;2] and t[8;22]), of which the 

t(8;14) is the most frequently observed in BL (~80% of BL 

cases).6,7 However, in the past 2 decades, it has been observed 

that BL cases overexpressing Myc, but lacking an identifiable 

translocation do exist.14 These cases are indistinguishable 

from translocated BLs with respect to clinical presenta-

tion and share the same gene expression profile,11 though 

they present with differences in their miRNA signature, as 

explained later in this review.15 This suggests that alternative 

pathogenetic mechanisms responsible for increased levels of 

the Myc protein exist, besides the chromosomal translocation. 

Interestingly, no differences regarding the presence of MYC 

translocation are observed among the different clinical vari-

ants of BL. BL immunophenotype shows the expression of 

B-cell-associated antigens (eg, CD19, CD20 and CD22) and 

additional proteins such as CD10, BCL6, CD38, CD77 and 

CD43, which suggests its derivation from late germinal center 

(GC) cells.10 However, it has been postulated that sBL and 

eBL derive from GC cells at different stages of differentia-

tion, as they show a different pattern of Ig hypermutation and 

signs of antigen selection.16 Based on this observation, it is 

possible that sBL derives from early GC cells (centroblasts), 

whereas eBL derives from late GC cells (centrocytes), as the 

latter show a higher number of somatic hypermutations in 

the Ig genes.16

Clinical variants of BL: endemic, sporadic 
and immunodeficiency associated
Despite BL showing a very homogeneous molecular pro-

file,11,12 differences can be pinpointed regarding the geo-

graphic distribution of this tumor and association with EBV. 

The endemic form has a very high incidence in Equatorial 

Africa, where other climatic conditions and infectious agents 

may possibly act as cofactors, though it is still debated at 

which extent and through which mechanisms.4 The endemic 

form of BL is preferentially observed in young children 

(especially males), with a peak incidence of 4–7 years. It 

most commonly presents in extranodal sites, with the jaw 

and other facial bones being very frequently affected. Most 

importantly, the degree of association of this clinical vari-

ant with EBV is extremely high, the virus being detected in 

~100% of eBL cases.10 Such a strong association suggests 

an active involvement of EBV in Burkitt pathogenesis, and 

recent literature proves an important role for its encoded 

products,9 although there is still a lot to uncover. Based 

on the simple association with EBV, 90–95% of the world 

population test positive for EBV, but BL incidence is much 

lower. This suggests that other factors may be required for 

BL pathogenesis.

The sporadic form occurs anywhere in the world and 

is histologically identical to eBL. It is still a pediatric dis-

ease, accounting for ~30% of childhood lymphomas (and 

1%–2% of all lymphomas), and yet has a higher incidence 

in males, though with a higher median age of incidence (12 

years). Another difference is that, despite sBL also showing 

an extranodal presentation, jaw tumors are less frequent, 

with the gastrointestinal tract being the most common site 

of involvement. Very interestingly, EBV is less commonly 

associated with sBL, being detected only in ~20%–30% 

of cases.10

As far as the immunodeficiency-related form is con-

cerned, this clinical variant is particularly frequent in 

HIV-positive individuals, accounting for one-third of HIV-

associated lymphomas, and it is therefore also referred to as 

HIV-related BL. This tumor is mostly observed in adults; it 

mainly shows a nodal presentation, with a generalized lymph 

node involvement and the bone marrow and central nervous 

system involvement also being common. Extranodal disease 

is possible, but it is much less frequent than in endemic 

and sporadic forms. The immunodeficiency-related variant 

shows a variable extent of association with EBV, ranging 

from 30% to 90% of all cases.10 Noteworthy, this form is 

not only observed in HIV-infected patients but also in other 

types of immunodeficiency (ie, posttransplant), although 

BL may be the first disease to manifest in HIV-infected 

individuals, as it occurs in patients with a still high CD4+ 

count and not having overt acquired immunodeficiency 

syndrome yet. This evidence suggests that, despite its role 

as an oncogenic virus still being debated, HIV may actively 

contribute to BL pathogenesis either indirectly, through a 
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continuous antigenic stimulation, or directly, through its 

encoded genome products.17

MYC deregulation in BL
The MYC proto-oncogene is a powerful transcription factor 

and plays very important physiological functions, being 

involved in the control of proliferation, cell growth, metabo-

lism, apoptosis and differentiation.18 It belongs to the Myc 

family of transcription factors (comprising MYC, MYCN 

and MYCL), of which MYC is the best characterized. It was 

originally identified because of its homology with v-MYC, 

the transforming gene of the MC29 avian leukemia virus,19 

and subsequently, its deregulation has been reported in a 

wide range of human tumors, though its activation may 

be achieved through different pathogenetic mechanisms.20 

MYC may either induce or repress transcriptional activa-

tion, thus regulating the expression of many downstream 

targets and consequent biological pathways.21 To carry out 

transcriptional control, the Myc protein binds to other tran-

scriptional regulators such as Max or Mnt, Mxd1-4 (Mad1, 

Mxi1, Mad3 and Mad4) and Mga, which influence Myc 

transcriptional regulation pushing toward either activation 

or repression of downstream targets. Proliferative stimuli 

induce the expression of MYC and lead to the formation of 

Myc:Max heterodimers and concomitant activation of target 

gene expression, thus resulting in transcriptional activa-

tion.21 Other transcription factors may compete with Max 

for binding to Myc (Mnt, Mxd1-4 and Mga), thus resulting 

in transcriptional repression.22 In addition, Myc can bind 

to transcription factors Sp1 and Miz1 and may interfere 

with their transcriptional activator capability. The complex 

Myc–Miz1 recruits DNA methyl transferase 3a and histone 

deacetylase 3 to gene promoters, leading to DNA cytosine 

methylation and histone deacetylation, therefore causing gene 

expression silencing. The Myc–Miz1 complex can, therefore, 

induce the formation of heterochromatin on its target sites and 

function as a transcriptional repressor complex.22 Due to its 

key involvement in transcription regulation, Myc expression 

and function must be tightly controlled.

Pathological activation of MYC associated with gain-of-

function mutations has been commonly described in cancer. 

It can be due to chromosomal translocations leading to pro-

moter rearrangements (as observed in most BL cases), gene 

amplifications (commonly reported in breast cancer), virus-

mediated insertional mutagenesis (less commonly observed, 

due to random insertions of viruses within the genome) and 

Myc protein stabilization, mainly due to genetic mutations.21 

Though all these mechanisms are possible in BL, the most 

commonly observed cause of Myc deregulation is usually the 

presence of a balanced translocation involving chromosome 

8, where MYC maps, and different partners. Mutations of 

the MYC coding sequence have also been described in BL, 

as well as variations in its copy number, but they occur in a 

minority of cases23 and do not seem to account for the main 

reason of MYC upregulation. Nevertheless, in the last few 

years, a few cases of BL in which none of the abovementioned 

mechanisms could possibly explain Myc hyperexpression 

have been described, and alternative pathogenetic mecha-

nisms were investigated. No matter what is leading to MYC 

deregulation, the consequence is an increased expression 

of its protein product which is invariably associated with 

genomic instability, uncontrolled cell proliferation, escape 

from immune surveillance and malignant transformation.20

Additional genetic lesions in BL
Despite MYC deregulation being absolutely crucial for BL 

pathogenesis, MYC imbalance is not the only genetic lesion 

identified in BL and other recurrent or sporadic lesions have 

also been described. Several genes have been reported to 

be mutated in BL, such as the tumor suppressors ID324,25 or 

TCF3,26 whose mutations seem to be quite common in BL, 

especially in its sporadic variant. Additional mutations have 

been detected in genes belonging to the PI3K pathway,27 in the 

SWI/SNF family members and in ARID1A and SMARCA4A 

among others, which suggest functional alterations of the 

nucleosome remodeling complex.28 In addition, genes whose 

mutations have already been described in other B-cell lym-

phomas, such as MYC itself, DDX3X, CCND3 and FBXO11, 

among others, have also been reported to be mutated in BL.25,26 

Recently, mutations of particular genes have been reported to 

occur at a different frequency in eBL and sBL, and a correla-

tion between a distinct mutation pattern and the existence of 

some viral infections has been suggested.29 This observation 

may indicate that different pathogenetic mechanisms may 

exist in eBL and sBL and again suggests that viruses may 

play an active role in contributing to BL development.

Genetic lesions other than point mutations have also 

been described in BL. In particular, copy number altera-

tions including gains of 1q, 9q, 12q, 13q, 20q, 22q and Xq 

and losses of 4q, 13q and 17p have been reported.25,30–34 

Additionally, trisomy 1q31 and tetrasomy 1q have also been 

described.32 Interestingly, gains of 11q have been frequently 

reported in a subset of tumors resembling BL but lacking 

MYC translocation,35 although it is debated whether such 

cases should be diagnosed as BLs or rather as different 

aggressive B-cell tumors with a Burkitt-like presentation.35 
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In addition, uniparental disomy, whose role has been recently 

highlighted in cancer,36 does not seem to play a major role in 

the pathogenesis of BL.37

Myc upregulation due to impairment of 
post-transcriptional regulation: the role 
of miRNAs
Regulation of gene expression must be finely tuned and may 

be controlled at different levels. Transcriptional regulation 

can be achieved by epigenetic changes, which regulate the 

accessibility of specific DNA sequences through methylation 

of histones and DNA, thus determining a conformational 

change in the chromatin and preventing the expression of 

genes when their function is not required. Regulation of gene 

expression is further controlled at the post-transcriptional 

level, when a certain mRNA has already been transcribed, 

but translation into the correspondent protein product is 

impaired. Post-transcriptional regulation is achieved by small 

non-coding RNAs, of which miRNAs have been intensively 

studied in the last few years.

miRNAs were isolated for the first time from Caenorhab-

ditis elegans in 1998,38 and since the first observation, they 

have been described in a wide range of organisms, includ-

ing humans. They are small sequences of non-coding RNA 

that, in their mature form, have sizes of 18–24 bp, though 

they are processed from longer precursors during a matura-

tion process that also shuttles them from the nucleus to the 

cytoplasm.38 After maturation, the miRNAs bind to comple-

mentary mRNA sequences and prevent their translation into 

the corresponding proteins. Depending on their degree of 

complementarity with the target mRNAs, they can either 

lead to mRNA degradation, when there is a perfect pairing, 

or simply to translation impairment, if there are mismatches 

in the pairing. However, no matter whether the mRNA is 

degraded or not, the consequence of miRNA–mRNA bind-

ing is that production of the protein coded by that particular 

mRNA is prevented. This further level of regulation allows 

shutting down the expression of specific genes even when 

their transcription into an mRNA has already taken place. 

More importantly, it is worth mentioning that a single miRNA 

can target hundreds of mRNAs based on a short sequence 

complementarity. Deregulation of a single miRNA may, 

therefore, result in deregulated expression of many genes, 

thus affecting several distinct pathways and biological func-

tions within the cell. With the function of miRNA being so 

delicate in tuning the gene expression, their function must be 

strictly controlled as its imbalance might lead to disturbance 

of gene expression. Deregulation of miRNA expression and 

function has, therefore, been reported in a plethora of human 

diseases, including cancer.39

MYC and miRNAs control each other’s 
expression: the existence of a feedback 
regulatory loop
We have already mentioned the importance of MYC as a 

transcription regulator. With its capability to bind to target 

sequences on DNA, Myc can control the expression of coding 

as well as non-coding regions in the DNA, including genes 

and miRNAs. Myc is known to regulate the expression of 

~60 miRNAs,40,41 either positively or negatively influencing 

their expression (Figure 1). As a transcriptional activator, 

Myc can induce the expression of selected miRNAs, of 

which the miR-17-92 cluster is the prototypical example,42 

thus influencing the expression of miRNA downstream tar-

get genes and eventually influencing the related biological 

processes (Figure 2A). Induction of miR-17-92 by MYC has 

been previously reported not only in BL and other B-cell 

tumors42 but also in various different tumors including 

breast, lung, colon, stomach and prostate (for a review, see 

Bui and Mendell43). Inhibition of downstream target genes 

of the miR-17-92 cluster enhances tumorigenicity by boost-

ing cell proliferation, tumor cell survival and angiogenesis, 

along with metabolic reprogramming.43 Very interestingly, 

among the downstream targets of this cluster, there are tumor 

suppressors such as PTEN and BIM, the first gene being an 

antagonist of PI3K activity and the latter having a proapop-

totic function.43–46 Overexpression of miR-17-92 induced 

by Myc, therefore, results in loss of regulatory control on 

cell growth mediated by these tumor suppressors. A recent 

study investigated the expression of each member of this 

cluster in BL and analyzed whether there was a correlation 

between their expression and prognosis of BL.47 The results 

of this study indicated that miR-17 and miR-20a were highly 

expressed in BL and determined lack of expression of the 

Bim protein.47 In addition, a significant correlation between 

high levels of miR-17 and poor overall survival was also 

recorded, thus indicating the influence of miRNA expression 

as a prognostic value in BL.47

At the same time, Myc can also repress the expression 

of specific miRNAs (ie, the miR-29 family), thus leading to 

increased expression of miRNA target genes and imbalance 

of cellular pathways (Figure 2A). However, MYC itself is a 

gene and, therefore, its expression is also controlled at the 

post-transcriptional level by miRNAs, of which probably the 

best studied is the let-7 family.48 MYC expression, both at the 

transcriptional and post-transcriptional levels, is therefore 
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controlled through different mechanisms to ensure that this 

protein will be produced only when its function in the cell 

is needed. Thus, miRNAs–MYC form a feedback regulatory 

loop controlling each other’s expression in an inverse and 

reciprocal manner (Figure 1). When this miRNAs–MYC 

autoregulation fails, the expression of MYC and miRNAs is 

no longer regulated and may result in diseases and cancer.

A recent study reported the upregulation of the YY1 gene, 

which is an oncogenic transcription factor able to induce MYC 

expression, in BL as a consequence of downregulation of 

specific miRNAs.49 This transcription factor was previously 

found to be upregulated in other non-Hodgkin’s lymphomas 

(NHLs)50,51 and plays a role in resistance to chemotherapy 

and immunotherapy in NHL cell lines.52 YY1 can also act 

as a transcriptional repressor of tumor suppressors such as 

p16, p27, p73 and p53.53–55 In particular, its inhibitory effect 

on p53 is related to evasion from apoptosis,56 which may be 

crucial for transformed cells, pointing at YY1 as an indicator 

of aggressiveness in NHLs. Very interestingly, upregulation 

of YY1 reported in this study is a consequence of repression 

of specific miRNAs, some of which, such as has-miR-363 and 

hsa-miR-200a, are among the top 20 miRNAs repressed in BL, 

thus reinforcing its functional role in the pathogenesis of BL.49

Exploring the MYC–miRNA interaction in 
BL: sustaining Myc hyperexpression in the 
absence of a translocation
Approximately 10% of BL cases lack an identifiable MYC 

translocation, but do express the Myc protein at a level com-

parable to MYC-translocated BL cases.57 This observation 

prompted many scientists worldwide to explore alternative 

pathogenetic mechanisms that could explain a higher expres-

sion of Myc in the absence of genetic lesions, either trans-

location or copy number alterations. Given the functional 

relationship between MYC and miRNAs, one possible scenario 

to explore was to investigate whether there was an imbalance 

in MYC-regulating miRNA expression that could eventu-

ally explain increased Myc protein levels. A pioneer study 

published in 2008 compared the expression of six miRNAs 

predicted to target MYC (hsa-miR-155, has-miR-30a-3p, hsa-

miR-34b, hsa-let-7c, hsa-let-7a and hsa-miR-98) between BL 

cases carrying or not an MYC translocation.57 The results of 

Figure 1 An overview of MYC–miRNA regulatory loop and related pathways. 
Note: miRNAs upregulated by Myc are indicated by the red arrow and the downregulated miRNAs are indicated by the blue arrow.
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this study highlighted a diminished expression of two of them 

(hsa-let-7a and hsa-miR-34b), thus suggesting that increased 

expression of Myc may be a consequence of downregulation 

of specific miRNAs.57 However, of even greater interest was 

the observation that hsa-miR-34b was downregulated only in 

BL cases lacking the translocation, whereas reduced expres-

sion of hsa-let-7a was observed in all BL cases, irrespective 

of the translocation status. This observation suggested the 

alteration of hsa-miR-34b as potentially responsible for Myc 

hyperexpression in the absence of any genetic lesions.57 A later 

study of the same group identified hsa-miR-9* as a second 

miRNA specifically downregulated only in BL cases lacking 

MYC translocation.58 This observation was of particular inter-

est because hsa-miR-9* does not directly target MYC, but may 

indirectly regulate its expression through E2F1, whose expres-

sion is induced by Myc,59,60 and that in turn activates MYC 

expression through a feedback autoregulatory loop that also 

involves the miR-17-92 cluster.61–63 Hsa-miR-9* downregula-

tion observed in BL cases lacking MYC translocation could 

determine the upregulation of E2F1, which then increases and 

sustains MYC expression. The complete miRNA expression 

profile was then investigated in BL cases with or without MYC 

translocation and differential expression of four miRNAs 

(hsa-miR-29a, hsa-miR-29b, hsa-miR-513a-5p and hsa-miR-

628-3p) was identified.15 A single miRNA is able to control the 

expression of many target genes. Therefore, we investigated 

the impact of the 4 dysregulated miRNAs so-identified on the 

global gene expression and identified 64 putative target genes 

Figure 2 An overview of the pathways affected by Myc-regulated miRNAs.
Notes: (A) Myc-induced miRNAs and their regulated pathways. EBV-encoded miRNAs may compete with the miR-17-92 cluster for regulation of the same target genes. (B) 
Myc-repressed miRNAs and their regulated pathways. EBV-encoded BARTs may compete with cellular miR-29 family members.
Abbreviation: EBV, Epstein–Barr virus.
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of such miRNAs were identified by bioinformatics.15 The 64 

predicted target genes are involved in important biological 

processes such as gene expression regulation, proliferation 

and DNA modification. Very interestingly, among differen-

tially expressed genes, some, such as MYCN and the DNMT 

family of proteins, were of particular interest, with MYCN 

being a homologue of MYC and the DNMT proteins being 

reported to be altered in cancer very frequently.64 DNMTs were 

reported to be specifically upregulated in BL cases lacking the 

translocation, suggesting that an aberrant epigenetic control 

occurs in this set of BL cases. As discussed earlier, interaction 

of Myc with DNMT family members can influence chromatin 

conformation and subsequent accessibility to RNA polymerase 

for transcription.22 Deregulation of DNMTs by the miR-29 

family has also been recently described in another study, which 

highlights the importance of epigenetic regulation in BL.65 In 

particular, this study shows hypermethylation of p16 following 

overexpression of DNMTs, which might favor cell prolifera-

tion due to lack of control on cell cycle.65 Of great interest is the 

finding that MYCN overexpression occurs only in cases lacking 

MYC translocation. MYCN expression is usually not detected 

in BL cases, but its deregulation is frequently observed in 

other cancers, such as neuroblastoma, where there is a different 

genetic mechanism (amplification of the MYC gene) which 

is responsible for over-expression of the Myc protein.66 High 

expression of MYCN in cases lacking MYC translocation may 

indicate the existence of an alternative cooperative mechanism 

ensuring high expression of members of the MYC family in the 

absence of genetic lesions involving MYC. Very interestingly, 

deregulation of two of the differentially expressed miRNAs 

(miR-513a-5p and miR-628-3p) has been recently described 

in human neuroblastoma,67,68 with the miR-628-3p expression 

correlating with the prognosis of this tumor.69

MYC pathway in BL: downregulated 
miRNAs target genes belonging to the 
MYC pathway
Several genes are transcriptionally controlled by Myc, and the 

existence of an MYC pathway has been identified in cells. As 

Myc is highly expressed in BL, it was investigated to what 

extent the Myc-regulated pathway was affected in BL and 

through which mechanisms. Results from a previous research 

study report that MYC target genes are upregulated in BL or 

gamma-irradiated mice tumors.70 In this study, 41 miRNAs 

were found to be downregulated in gamma-irradiated mice 

lymphomas and 17 miRNAs in BL, resulting in upregulation 

of miRNA target genes. Interestingly, an enrichment of the 

MYC pathway was observed among upregulated genes, thus 

suggesting that upregulation of MYC pathway may be a con-

sequence of transcriptional repression of specific miRNAs.70

miRNA expression profile: a BL signature 
for differential diagnosis
BL is a very homogeneous entity in terms of gene expression 

and has a distinctive, unique pattern, which distinguishes it 

from any other B-cell lymphomas.11,12 This observation is 

extremely useful for diagnostic purposes, as we can classify 

borderline cases or cases with a histologic “Burkitt-like” 

presentation based on their distinctive molecular profile.11,12 

Despite showing some subtle differences in their miRNA 

profile, only a few differences can be identified at the gene 

expression level in cases with or without MYC translocation 

after enrichment, yet indicating a very high homogeneity of 

these tumors. The three clinical forms of BL share the same 

molecular signature, although differences in gene expression 

can be observed between EBV+ and EBV− BL cases.71 How-

ever, such variations may be attributed to the presence of the 

virus rather than to differences between clinical variants.71 

The miRNA profile of BL was analyzed and compared to that 

of diffuse large B-cell lymphoma (DLBCL); a signature of 38 

miRNAs was identified, which comprises MYC-regulated and 

nuclear factor-kB-associated miRNAs.13 The same study also 

reported that only six miRNAs were differentially expressed 

between eBL and sBL, thus reinforcing the notion that BL is a 

very homogeneous entity and its molecular uniqueness can be 

used for differential diagnosis with other B-cell lymphomas.13

More recently, additional studies have confirmed the 

efficacy of miRNA profile for differential diagnosis and have 

proved that its reliability can be comparable to gene expres-

sion profile results, so far considered the “gold standard” for 

molecular analyses. A recent study identified a 27-miRNA sig-

nature able to distinguish BL from DLBCL, which could also 

be validated in formalin-fixed paraffin-embedded cases, thus 

even reinforcing its possible diagnostic application.72 Another 

research identified by deep sequencing the existence of a 

22-miRNA signature, which could be used to discriminate BL 

from DLBCL and follicular lymphomas, again highlighting the 

importance of molecular profiles for differential diagnosis.73

Noteworthy, low or no expression of hsa-miR-155 (or its 

precursor BIC) was detected in BL, as reported by several 

studies,74–76 despite this miRNA being one of the most com-

monly upregulated in B-cell lymphomas.77–79 It has been 

recently demonstrated that low levels of this miRNA deter-

mine an increased expression of AICDA, which increases 

the frequency of MYC translocation.80 Intriguingly, a study 

shows that higher expression of miR-155 can be found in a 
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subset of EBV-positive BL cell lines expressing a viral latency 

III program, which is usually not detected in primary BLs, 

whereas low or no expression of this miRNA was detected 

in EBV-positive BL cases expressing a latency I program, 

which represent the vast majority of BLs.75 It has sometimes 

been speculated that EBV infection may promote MYC 

translocation in BL. This observation may suggest a possible 

mechanism leading to MYC translocation in EBV-positive 

cases by maintaining low miR-155 and consequently induc-

ing AICDA expression. Interestingly, downregulation of this 

miRNA can also be used for differential diagnosis,81 as high 

expression of miR-155 is normally reported in other B-cell 

tumors, where it seems to have a clinical significance as it is 

associated with chemotherapy failure in DLBCL.72

Tables 1 and 2 list the miRNAs whose expression has 

been reported to be unbalanced in BL.

Virus-encoded miRNAs and deregulation 
of host cell gene expression: contribution 
of EBV
EBV is very often associated with BL, especially in its 

endemic form. Despite an extensive discussion about this 

virus, with its latency programs and pathogenetic mecha-

nisms being beyond the aim of this review, it is worth men-

tioning that EBV may contribute to the pathogenesis of BL 

through its encoded proteins (genes and viral miRNAs). 

In BL cells, EBV expresses a latency I program, in which 

EBNA1 is the only viral protein expressed. Previous studies 

have demonstrated the role of this protein in the pathogenesis 

of BL.82,83 EBV also encodes for 44 mature viral miRNAs 

(viRNAs) belonging to two families (BART and BHRF).84 

Expression of these viral-encoded miRNAs is also latency 

regulated, and only a few viRNAs belonging to the BART 

family are detected in BL.85 It has also been demonstrated 

that three members of the BART family (BART-1-3p, BART-

5-5p and BART-22-3p) exhibit high similarity with cellular 

miRNAs, including the miR-29 family (Figure 2B).86–91 

The expression of viRNAs should be carefully monitored 

as they compete with cellular miRNAs for the same target 

genes in the host cell. An interesting study has shown that 

in a BL-derived cell line expressing a latency III program, 

EBV-encoded miRNAs target the same genes as the miR-

17-92 cluster (Figure 2A).92 Despite the BL primary tumors 

mostly expressing a latency I program, this observation is of 

Table 1 List of miRNAs reported to be downregulated in BL

Downregulated miRNAs References

hsa-miR-221, hsa-miR-155, hsa-miR-146a, hsa-miR-146b-5p, hsa-miR-26b, hsa-miR-23a, hsa-miR-30d, hsa-miR-107, hsa-
miR-103, hsa-miR-222, hsa-miR-26a, hsa-miR-30a, hsa-miR-142-5p, hsa-miR-23b, hsa-miR-342-3p, hsa-miR-29b, hsa-miR-34b

13

hsa-let-7a, hsa-miR-34b 57
hsa-miR-9* 58
hsa-miR-29a, hsa-miR-29b 15
hsa-155, hsa-196b, hsa-885-5p, hsa-222, hsa-135b, hsa-21, hsa-31, hsa-708, hsa-23a, hsa-455-5p, hsa-455-3p, hsa-29b, hsa-29c, 
hsa-342-5p, hsa-146a, hsa-150

72

hsa-513, hsa-18b, hsa-15b, hsa-454-3p, hsa-148a, let-7f, hsa-98, hsa-363, hsa-582, hsa-146, hsa-155, let-7d, hsa-26b, hsa-29b, 
hsa-142-3p, hsa-16, hsa-15a, hsa-590, hsa-32, hsa-331, hsa-138, hsa-28

70

hsa-miR-664-3p, hsa-miR-664-5p, hsa-miR-150-3p, hsa-miR-150-5p, hsa-miR-155-5p, hsa-miR-184, hsa-miR-196b-5p, hsa-miR-
151b, hsa-miR-211-5p, hsa-miR-221-3p, hsa-miR-29c-5p

73

hsa-miR-155 74–76

Abbreviation: BL, Burkitt lymphoma.

Table 2 List of miRNAs reported to be upregulated in BL

Upregulated miRNAs References

hsa-miR-371-5p, hsa-miR-185, hsa-miR-93*, hsa-miR-326, hsa-miR-497, hsa-miR-26b*, hsa-miR-339-5p, hsa-miR-485-3p, 
hsa-miR-9, hsa-miR-193a-5p, hsa-miR-448, hsa-miR-202*, hsa-miR-483-3p, hsa-miR-26a-1*, hsa-miR-328, hsa-miR-192, hsa-
miR-429, hsa-miR-324-5p, hsa-miR-340, hsa-miR-105*, hsa-miR-124*

13

hsa-miR-17-92 42
hsa-miR-513a-5p, hsa-miR-628-3p 15
hsa-296-5p, hsa-296-3p, hsa-130b, hsa-18a, hsa-18b, hsa-19a, hsa-19b, hsa-20a, hsa-20b, hsa-17, hsa-106 72
hsa-202, hsa-92, hsa-19a, hsa-19b, hsa-296, hsa-663, hsa-22, hsa-320, hsa-181b, hsa-422b, hsa-484 70
hsa-miR-17-3p, hsa-miR-18a-3p, hsa-miR-19a-3p, hsa-miR-20a-3p, hsa-miR-25-5p, hsa-miR-93-3p, hsa-miR-106b-3p, hsa-miR-
106b-5p, hsa-miR-130b-3p, hsa-miR-296-3p, hsa-miR-335-3p, hsa-miR-339-5p, hsa-miR-573, hsa-miR-4521

73

hsa-miR-21, hsa-miR-23a 100

Abbreviation: BL, Burkitt lymphoma.
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interest as it highlights how EBV infection may contribute 

to deregulate key cellular pathways such as transcription, 

apoptosis and cell cycle.92 Expression of viRNAs could, 

therefore, result in an aberrant post-transcriptional regula-

tion in infected cells. The presence of EBV can impact on 

cellular miRNA signature in BL85,93 and on cellular gene 

expression profile.93 An important role for EBV-Bart6 has 

been suggested, as this miRNA is capable of regulating the 

expression of PTEN and interleukin-6 receptor complex in 

infected cells, thus influencing survival and interleukin-6 

downstream pathways.85 A later study confirmed this finding 

and highlighted the existence of a synergistic effect between 

Bart-6 and miR-142, which was previously reported to be 

upregulated in BL,85 to repress PTEN.94 This latter observa-

tion is of interest as it highlights the active role of EBV in BL 

pathogenesis and its interplay with the cellular machinery. 

It has also been demonstrated that BARTs target Casp3 in 

BL and may therefore result in an antiapoptotic effect, thus 

resulting in a growth advantage for the infected cells.95

It is worth mentioning that EBV infection contributes 

to lymphomagenesis also through mechanisms other than 

miRNA regulation. We had previously mentioned that a dif-

ferent mutational profile can be observed between eBL and 

sBL, with endemic cases showing a lower mutation rate.29 

With the degree of association with EBV being the main 

difference between the endemic and sporadic variants, it is 

reasonable to postulate that such difference may be due to 

the existence of additional pathogenetic mechanisms in EBV-

positive cases.29 In a recent research paper, the methylome 

of EBV-positive vs EBV-negative BL-derived cell lines was 

compared, and the results of this study demonstrated that 

the presence of the virus is associated with a specific pattern 

of DNA methylation, suggesting that EBV may contribute 

to BL pathogenesis through an epigenetic mechanism.96 

In particular, this paper has demonstrated a higher level 

of methylation in EBV-positive samples involving, among 

others, key genes such as ID3 and TCF3 which are usually 

mutated in sBL, but whose mutation rate is lower in eBL.29 

Diminished expression of these genes in eBL may, therefore, 

be a consequence of epigenetic regulation rather than deriv-

ing from genetic lesions. This finding suggests that BLs have 

similar gene expression patterns, but underlying mechanisms 

may be different and may depend on the presence of EBV.96

Although an extensive discussion of other parasites 

that might act as cofactors in Burkitt lymphomagenesis is 

beyond the scope of this review, it is worth making a brief 

comment on another parasite, the protozoon Plasmodium 

falciparum that causes malaria, as there is a striking overlap 

in the geographic incidence of eBL and this disease. Even 

though not much is known about the mechanisms that 

the parasite uses to contribute to tumor formation, recent 

literature shows that P. falciparum infection drives EBV-

infected cells through GC, and it is capable of deregulating 

the expression of the AICDA gene (also referred to as AID), 

which would lead to chromosomal translocations, as we 

mentioned earlier.97–99 Translocations would mainly occur 

in EBV-infected cells within the GC that more likely would 

tolerate it. This observation reinforces the speculation that 

other cofactors are required for the occurrence of BL in 

endemic areas and that these parasites play an active role in 

Burkitt lymphomagenesis.

miRNAs as prognostic indicators of BL
Given the clear involvement of miRNA deregulation in the 

pathogenesis of BL, their diagnostic and prognostic value has 

been evaluated. A recent study reports that the identification 

of three circulating miRNAs (miRNA-21, miRNA-23a and 

miRNA-125b) in the plasma of BL patients may be used as 

a diagnostic indicator and could be related to clinicopatho-

logic parameters.100 Increased expression was observed for 

miR-21 and miR-23, and it was also correlated with some 

clinicopathologic parameters (tumor staging, increased 

white blood cells, increased serum lactate dehydrogenase 

level, CD10 expression and size of the tumor >6 cm).100 

Very interestingly, the expression level of these miRNAs 

decreased significantly following chemotherapy, suggesting 

that these miRNAs could be used to monitor therapy effi-

cacy.100 Also, an inverse correlation between the level of these 

miRNAs and patients’ outcome was established, indicating 

these miRNAs act as prognostic indicators as well.100 Very 

recently, the expression of another miRNA (hsa-miR-10a-5p) 

has been linked to the prognosis of BL patients, with this 

being downregulated in non-survivors.101 Interestingly, genes 

targeted by this miRNA are involved in control of apoptosis 

and their overexpression could favor cell growth. Addition-

ally, high expression of CD59 as a result of hsa-miR-10a-5p 

imbalance may determine reduced sensitivity to chemo- and 

immunotherapy and explain treatment failure and reduced 

overall survival in BL.101

miRNAs as potential targets in novel 
treatments for BL
BL is classically treated by a combination of chemotherapy 

and immunotherapy.102 Nevertheless, due to the aggressive-

ness of this tumor, it is imperative to explore more effective 

therapeutic alternatives. One such possibility would be to 
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target miRNAs to either suppress or induce the expression of 

target genes, which might be relevant for a better prognostic 

outcome. Recent literature is providing useful information 

about new drugs or possible new therapeutic targets, includ-

ing miRNAs. An obvious target for BL treatment would be 

MYC and its related network. A recent study reports that 

the use of INZ(c), a second generation of Inauhzin, is able 

to suppress Myc expression and it results in inhibition of 

cell growth in lymphoma cells.103 Suppression of MYC is 

achieved through the miRNA pathway, as the expression of 

MYC-targeting miRNAs, such as miR-24 and miR-34a, is 

induced upon treatment to reduce Myc levels.103 Noteworthy, 

this small molecule does not have considerable side effects 

and could be used in combination with doxorubicin to reduce 

Myc expression, allowing the administration of a lower dose 

of doxorubicin with consequent reduction of side effects.103 

However, due to the pleiotropic activities regulated by MYC, 

it is very difficult to design therapeutic approaches to inhibit 

its expression in human tumors without interfering with its 

physiological functions, and other potential targets should 

be explored.

Treatment with the combination of histone deacetylase 

inhibitor and chemotherapy results in induction of apoptosis 

in BL cells through the proapoptotic BCL2-related family 

member Bim protein.104 A recent study of the same group 

describes that the use of combination of histone deacetylase 

inhibitor and chemotherapy could prevent cell growth in 

BL by regulating PI3K/Akt, suggesting that other targets, 

such as the PI3K/Akt signaling network, in addition to MYC 

should be further explored.105 The combination of demethyl-

ating agents and chemotherapy could be used to revert the 

expression of aberrantly silenced genes and miRNAs, such 

as p16 and miR-101, miR-143 and miR-145, in BL tumor 

models.105 Of these, miR-145 directly targets MYC and is 

expressed through the PI3K pathway, which is deregulated 

in BL.106 Re-expression of miR-145 by this combinatorial 

approach may, therefore, result in reduction of MYC expres-

sion levels.105

Regulation of cell proliferation and induction of a more 

differentiated phenotype could be another possible approach 

as BL is the fastest growing tumor. It has been recently 

reported that the re-expression of miR-150 could be used as 

a possible promising therapeutic target because of its capabil-

ity of reducing cell proliferation by targeting B-Myb.107,108 

In addition, this would result in the acquisition of a more 

differentiated phenotype as BL results from an impairment 

during differentiation toward plasma cells.109,110

Conclusion
MYC overexpression is the hallmark of BL and it can be 

consequent to several pathogenetic mechanisms. Recent lit-

erature highlights the key role of miRNAs in the pathogenesis 

of BL that can imbalance Myc and its associated pathways. 

Detection of miRNA expression can be used for diagnostic 

and therapeutic purposes. Re-expression of endogenous 

miRNAs through the administration of demethylating drugs 

to revert their silencing, or ectopic introduction of exogenous 

small RNAs that target deregulated genes could represent an 

exciting alternative to current therapies to improve the overall 

survival and reduce the side effects in BL patients. However, 

despite encouraging results, there is still much to uncover 

before such innovative therapeutic approaches may enter 

daily practice, and research in the field should be pursued to 

better clarify their role in the pathogenesis of BL.
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