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Abstract: Although acupuncture therapy is increasingly used to treat diverse symptoms 

and disorders in humans, its underlying mechanism is not known well. Only recently have 

experimental studies begun to provide insights into how acupuncture stimulation generates 

and relates to pathophysiological responsiveness. Acupuncture intervention is frequently used 

to control pathologic symptoms in several visceral organs, and a growing number of studies 

using experimental animal models suggest that acupuncture stimulation may be involved in 

inducing anti-inflammatory responses. The vagus nerve, a principal parasympathetic nerve 

connecting neurons in the central nervous system to cardiovascular systems and a majority of 

visceral organs, is known to modulate neuroimmune communication and anti-inflammatory 

responses in target organs. Here, we review a broad range of experimental studies demonstrating 

anti-inflammatory effects of electroacupuncture in pathologic animal models of cardiovascular 

and visceral organs and also ischemic brains. Then, we provide recent progress on the role of 

autonomic nerve activity in anti-inflammation mediated by electroacupuncture. We also discuss 

a perspective on the role of sensory signals generated by acupuncture stimulation, which may 

induce a neural code unique to acupuncture in the central nervous system.

Keywords: electroacupuncture, anti-inflammation, vagus nerve, animal model, acupuncture 

mechanism

Introduction
Acupuncture has been used as a traditional medical treatment in East Asia for over 

2,000 years,1 and is becoming a popular therapy worldwide for treating various dis-

eases.2,3 Acupuncture is a medical intervention in which fine needles are applied to 

specific parts of the body, called acupuncture points (or acupoints) and penetrated 

through the muscular or other subcutaneous layers. According to traditional medical 

theory, acupuncture stimulation facilitates the flow of qi, a life force that is suppos-

edly circulating through the channels called meridians.4,5 Acupoints are presumed 

to be pathophysiologically associated with and possibly reflect the status of visceral 

organs and systemic conditions, and thus the stimulation of specific acupoints may 

evoke the responsiveness that controls the unbalanced internal milieu and improves 

body symptoms. Acupuncture stimulation is given right on the acupoint or a nearby 

affected area (“ashi point”) for the treatment of local symptoms, such as knee pain or 

muscle rigidity, whereas distal acupuncture stimulation is applied to treat diseases in 

the internal organs and systemic abnormalities.
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There are two main types of acupuncture stimula-

tion: manual acupuncture (MA) and electroacupuncture 

(EA). In MA, an acupuncturist penetrates the skin with 

a metallic needle and manipulates it by rotating in one or 

both directions or lifting and thrusting.6 It is known that 

during acupuncture practice, acupuncturists experience a 

special touch sensation perceived as heaviness, tenseness, 

or terseness, and patients perceive feelings of numbness, 

heaviness, soreness, and distention around the site of needle 

stimulation. These are called deqi sensations. Clinical data 

further indicate that patients frequently feel deqi sensations 

spreading to other parts of the body,7–9 which is considered 

a useful criterion to evaluate the therapeutic efficacy of 

acupuncture.7,10–12 In EA, a small electric current is applied 

to pairs of acupuncture needles, and studies have indicated 

that the therapeutic efficacy of EA can be modulated by 

varying the frequency, intensity, and duration of electrical 

stimulation.6,13 For instance, EA at low and high frequencies 

of electrical stimulation can activate different types of opioid 

receptors and different analgesic effects.14,15 To maximize 

therapeutic effects, acupuncture is usually practiced first 

by applying MA to evoke deqi sensation and followed by 

electrical stimulation for 15–20 minutes.7

A growing number of recent reports have indicated 

that acupuncture may be effective in treating many types 

of diseases by regulating inflammatory responses. In this 

review, we highlight important findings that demonstrate 

how acupuncture stimulation, particularly EA, can improve 

inflammatory responses in pathological animal models. First, 

we discuss recent advances in understanding of neuroimmune 

communication, and then address how it has contributed 

to establishing experimental approaches to investigate a 

mechanistic basis of EA. In the last part of the review, we 

briefly discuss a perspective on the role of a neural code that 

may transmit sensory information unique to acupuncture in 

regulating inflammation.

Neuroimmune communication
When an organism is exposed to external pathogens, host-

defense response begins with innate immunity, which is 

critical to induce inflammation as a defense mechanism 

against pathogenic infections. Pathogen-associated molecu-

lar patterns trigger inflammatory reactions in the host via 

interaction with membranous or cytoplasmic molecules, 

such as Toll-like receptors (TLRs), NOD-like receptors 

(NLRs), Retinoic acid-inducible gene 1-like receptors 

(RLRs), and C-type lectin receptors (CLRs), collectively 

termed “pattern-recognition receptors”.16 Activation of 

these receptors in target cells induces downstream-signaling 

pathways, including activation of the MAPK pathway and 

NFκB transcription factor, and induces the expression of 

inflammatory cytokines, including TNFα and several types 

of interleukins and chemokines. Chemokines recruit leuko-

cytes into the inflammation area, and interleukins and IFNγ 

activate lymphocytes and macrophages.

Cholinergic anti-inflammatory reflex
In the early 2000s, Borovikova et al reported on their seminal 

work on the regulation of inflammatory responses by vagus 

nerve activity. They found that the electrical stimulation of 

the vagus nerve in vivo decreased the production of TNFα in 

the spleen of lipopolysaccharide (LPS)-injected animals, and 

treatment with acetylcholine of cultured macrophages attenu-

ated levels of inflammatory cytokines as well.17 They further 

demonstrated that the suppression of TNFα production by 

acetylcholine treatment was mediated by the activation of 

α
7
-nicotinic acetylcholine receptors, which subsequently 

inhibited NFκB activation while stimulating the STAT3 

pathway.18–20 The vagus nerve is known to account for 70% 

of the parasympathetic, visceral regulation of internal organs, 

thus acting as a functional bridge connecting the brain to 

internal organs. Inflammatory cytokines produced from 

peripheral organs can activate an afferent part of the vagus 

nerve, stimulate vagal efferent nerves through the synaptic 

transmission from the solitary nucleus to the dorsal vagal 

nucleus in the brain stem, and downregulate the production of 

inflammatory cytokines, thereby completing the cholinergic 

anti-inflammatory reflex.21 Rosas-Ballina et al reported that 

the vagal efferent nerves are connected to adrenergic post-

ganglionic neurons in the celiac ganglion, which primarily 

receive splanchnic preganglionic sympathetic inputs from the 

spinal cord,22 and further showed that norepinephrine released 

from celiac ganglion neurons stimulated the secretion of ace-

tylcholine from choline acetyltransferase-expressing T cells 

in the spleen that binds to nicotinic acetylcholine receptors in 

macrophages.23 Similar experimental strategies investigating 

the effects of vagus nerve activity on the pathologic regula-

tion of several conditions, such as arthritis, obesity, and head 

trauma, have been considered for clinical application, and the 

anti-inflammatory reflex is becoming accepted as a concept 

explaining neuroimmunogenic control of diseases.24 

Neuroimmunogenic regulation of inflammation further 

provides insights into studies on how brain activity modulates 

pathological responsiveness in major internal organs. For 
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instance, mental activities, such as stress, biofeedback therapy, 

and meditation, have been reported to be positively related to 

increased vagus nerve activity.23 It has also been reported that 

impaired vagal activity increased the vulnerability of inflam-

matory bowel disease in an animal model of depression.25

It should however be noted that the connectivity between 

the terminals of autonomic fiber and the target immune cells 

has not been clearly demonstrated in several organs. While 

increasing numbers of publications have reported on the 

role of vagal activity in hepatic hypertension and inflamma-

tion based on the concept of cholinergic anti-inflammatory 

reflex,17,26,27 hepatic target cells of vagal efferent fibers have 

not been identified.28,29 Similarly, autonomic connections to 

the spleen are unclear and controversial. In this regard, it is 

worthwhile to note one recent report showing that the elec-

trophysiological and histological identification of serotonin-

secreting enterochromaffin cells in the intestine that modulate 

synaptically connected afferent nerve fibers can fulfill the 

minimal requirement of brain–gut communication.30

Functional intervention of sympathetic 
activity
While the vagus nerve has been a primary target mediating 

neuroimmune reaction in many studies, a potential role of 

sympathetic nerve activity has also been proposed. Martelli 

et al claimed that neurons from celiac ganglia that are pri-

marily innervated by sympathetic splanchnic nerves were 

responsible for anti-inflammatory reflexes.31,32 Adrenergic 

inputs activated hepatic invariant natural killer T (iNKT) cells 

and elevated the production of anti-inflammatory cytokines 

from T-helper 2 cells, rendering the organ more susceptible to 

infection via immunosuppression.33 Possible connections of 

sympathetic nerve activity to immune cells in target organs, 

such as liver and spleen, for the regulation of inflammatory 

reactions are depicted in Figure 1.

Experimental studies on EA using 
pathologic animal models
As a modified version of traditional MA, EA is manipulated 

at the same acupuncture points as MA, but electric current 

is additionally applied. Needle rotation, which is performed 

routinely during MA, can result in mechanical deformation 

of dermal tissue and may activate special types of mechano-

sensory receptors (eg, Ruffini corpuscles). Previous studies 

have suggested that acupuncture-specific responses, such as 

the production of mechanical torque and induction of specific 

types of integrin proteins, are related to needle rotation.34,35 

In contrast, electric current, which is applied in EA, would 

spread to a nearby area and affect the peripheral nerve pulses 

(ie, action potential) more intensely, which may act as a pos-

sible reason to explain a certain level of therapeutic effects 

caused by sham EA, as reported in human subjects,36 yet in 

other studies, sham EA stimulation (EAS) was less effective 

than a combined manipulation of MA and EA.37,38

It has been reported that MA can attenuate inflammatory 

responses by regulating the production of IL10 in macro-

phages, hypothalamic expression of IL1β and IL6 mRNA, 

and serum TNFα production in LPS-injected animals.39–41 

However, edema response by capsaicin injection is reduced 

by EA, but not by MA.42 Since the vast majority of studies 

on the regulation of inflammation have been conducted using 

EA, here we focus primarily on EA studies unless otherwise 

indicated.

Anti-inflammatory effects of EA in animal 
models
A study using animals given radiant heat on the tail identi-

fied gene groups (neurotransmitter-related genes vs proin-

flammatory cytokine-related genes) showing differential 

regulation of expression in the spinal dorsal horn after 

T cell

T cellNE

NECeliac ganglion

Vagal efferent nerves
Spinal cord

Increased
sympathetic activity

Splanchnic nerve

ACh
Macrophage

iNKT
cell

Increased anti-inflammatory
cytokines (eg IL10)
(immunosuppression/infection)

Decreased
inflammatory cytokines
(eg TNFα)

Figure 1 Sympathetic connection to immune cells in target organs.
Notes: Splanchnic nerve activity transmitted to the celiac ganglion may increase the release of norepinephrine (NE) of adrenergic postganglionic neurons. This in turn 
would activate immune-cell responses in target organs, such as macrophages in the spleen and TH2 cells in the liver, and these cells regulate the production of pro- and anti-
inflammatory cytokines. Vagal input, which has not been clearly identified, may have similar effects on the regulation of inflammation as sympathetic activity.
Abbreviations: TH, T helper; ACh, acetylcholine; iNKT, invariant natural killer T.
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EA,43 suggesting that EA may be involved in the regula-

tion of inflammation at gene-expression level. In order to 

investigate the effects of EA on the regulation of inflamma-

tion, injury models of complete Freund’s adjuvant (CFA)-

induced inflammation, collagen-induced inflammation, 

cerebral ischemia, reperfusion injury, and others have been 

used. The CFA-inflammatory model is frequently used to 

investigate inflammation-related pain and is thus useful to 

investigate pain regulation by EA. EA manipulation effi-

ciently suppresses glial cell-marker proteins and TRPV1 

and attenuates pain responses.44,45 EA also suppresses edema 

in CFA-inflammation animals by activating corticotropin-

releasing hormone-producing neurons in the hypothalamus 

and increasing levels of adrenocorticotropic hormone.46 In 

an animal model of collagen-induced arthritis, EA attenu-

ated inflammatory pain via the mediation of cholinergic 

and serotonergic receptors and also attenuated the produc-

tion of inflammatory cytokines, such as IL1β, -6, and -8, 

TNFα, and NFκB in synovial tissue.47,48 Moreover, EA was 

effective in regulating the levels of TNFα, IL1β, IL6, and 

myeloperoxidase in animal models of ulcerative colitis and 

zymosan-induced acute arthritis,13,49,50 increased superoxide 

dismutase, while reducing death-related proteins, such as 

caspase 3, and phosphorylation of p38 and JNK in animals 

with cardiopulmonary bypass-induced lung injury,6 and sup-

pressed NFκB in a rat-tissue chamber model of inflamma-

tion.51 In an acute alcoholic liver-injury model, EA improved 

hepatic circulation and adjusted ALT and AST levels.52 

Finally, systemic inflammatory response and survival rate 

are significantly improved by EA in animals injected with 

a lethal dose of LPS.53 Major studies on the regulation of 

inflammation by EA are summarized in Table 1.

Table 1 Summary of electroacupuncture (EA) studies on the regulation of inflammation in experimental animals

Animal model Acupoints Major EA effects Reference(s)

Intestinal ischemia–
reperfusion injury

ST36, ST36 
plus stem-cell 
transplantation

Increased crypt-cell-proliferation index and mucosal mRNA expression of 
SDF1, CXCR4, EGF, and EGFR
Decreased mucosal NFκB, p65 and serum inflammation factor (TNFα, IL6)

97

Spinal cord ischemia–
reperfusion injury

GV6, GV9, EX-B2 Decreased TNFα, IL1β, and MMP9
Neuroprotective effects of EA suppressed by autophagic inhibitor 
(3-methyladenine)

98

TNBS-induced colitis ST36, ST36 plus VNS Decreased TNFα, IL1β, IL6, and MPO
Increased vagal activity and decreased sympathetic activity

13

PC3 and PC6 Decreased IL1β and NFκB 99
CPB-induced lung injury PC6 and LI4 Decreased pp38, pJNK, and caspase 3

Increased SOD activity
6

Thermal injury-induced 
remote acute lung injury

ST36 Decreased IL1β, IL6, and HMGB1 100

CFA-induced inflammation ST36–ST37 Decreased TRPV1, pERK, pp38, pJNK, pAkt, pCREB, Nav1.7, and Nav1.8 in 
DRG and Schwann cells

44, 45

ST36 Decreased GFAP, IBA1, S100β, RAGE, and TRPV1, in the DRG and spinal 
cord dorsal horn
Blocking opioid and adenosine A1 receptors reversed the effects of EA

45

ST36 and GB34 Increased apelin, APJ protein, and mRNA expression in the spinal cord 101
ST36 and BL60 Decreased mRNA and protein levels of TLR4, MYD88, and NFκB in ankle-

bone tissue
102

GB30 Increased plasma ACTH levels
Increased phosphorylation of NR1 in CRH-containing neurons in the PVN

46

Electrical stimulation-
induced migraine

GB20 and TE5 Decreased serum CGRP and PGE2
Decreased IL1β and COX2 expression in the trigeminal ganglion
Decreased plasma protein extravasation
CB1-receptor antagonism reversed the effects of EA

103

Septic brain injury GV20, ST36 Decreased TNFα, IL6, and MDA
Increased SOD and catalase activities in the serum and hippocampus
Decreased TLR4, NFκB and IBA1 expression

104

MPTP-induced Parkinson’s 
disease

ST36 and SP6 Increased human placental alkaline phosphatase
Decreased microglia activation in the striatum and midbrain

87

(Continued)
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Animal model Acupoints Major EA effects Reference(s)

Obesity CV12 and CV4 Decreased serum TNFα 105
ST36 Decreased adipose tissue inflammation

Decreased HIFα, hypoxia-related genes (VEGFA, SLC2AL, and GPX1), and 
inflammation-related genes (TNFA, IL6, and MCP1)
Decreased macrophage recruitment and infiltration
Decreased NFκB and increased IκBα

106

Collagen-induced 
rheumatoid arthritis

ST36, GB39, BL23 Decreased levels of NFκB (p65), TNFα, IL1β, IL6, and IL8 48
GB39, ST36 Increased mRNA expression of VPAC1

Elevated CD4+FOXP3+ Treg-cell frequency and reduced CD4+IL17+ TH17-cell 
frequency

107

ST36 Analgesic effect of EA was mediated by mAChR, 5HT1A, and 5HT3 
receptors, but not by 5HT2 receptor

47

Ligature-induced 
periodontitis

LI4, LI11, ST36, ST44 Decreased TRAP-positive multinucleated cells
Decreased expression of IL1β and MMP8 mRNAs
Increased expression of IL6 mRNA

108

Cerebral ischemia–
reperfusion injury

GV20 and ST36 Decreased ACTH and HSP70 2
GV20 and GV14 Increased rCBF and IL6 expression

Decreased IL1β and JAK2
109

GV20 and GV14 Decreased mRNA level of ChAT, five subtypes of muscarinic receptors and 
α7nAChR

92

GV20 and GV14 Decreased Bax, TNFα, IL6, and IL1β
Decreased excitotoxicity by NMDA
Increased antioxidant systems (Bcl2, Nrf2, GCSh, GCSl, Gsh)

110

LI11 and ST36 Decreased microglia activation of IBA1 and ED1 in cortex
Decreased serum TNFα, IL1β, and IL6
Decreased cortical p38 MAPK and MyD88
Decreased cortical NFκB, TNFα, and IL1β

78, 111

GV20 and ST36 Inhibited neuronal apoptosis, microglial activation of IBA1, and oxidative 
stress in the hippocampus
Decreased hippocampal and serum IL6 and TNFα levels

79

LI11 and ST36 Decreased TLR4/NFκB signaling and levels of TNFα, IL1β, and IL6 112

Abbreviations: HT, hydroxytryptamine; ACTH, adrenocorticotrophic hormone; APJ, apelin receptor; CFA, complete Freund’s adjuvant; CGRP, calcitonin gene-related 
peptide; CPB, cardiopulmonary bypass; CRH, corticotrophin-releasing hormone; DRG, dorsal root ganglion; Gsh, glutathione; MDA, malondialdehyde; MPTP, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine; NMDA, N-Methyl-d-aspartic acid; PGE2, prostaglandin E2; PVN, paraventricular nucleus; rCBF, regional cerebral blood flow; TG, trigeminal 
ganglion; TNBS, 2,4,6-trinitrobenzenesulfonic acid.

Table 1 (Continued)

EA-related signaling events in the nervous 
system
While an increasing number of reports strongly indicate that 

EA can regulate inflammation and associated pathologic 

symptoms, underlying mechanisms remain largely elu-

sive. Considering that acupuncture and meridian networks 

encompass the whole body, as does the neural network, it is 

not surprising that the nervous system has been a primary 

concern for mechanistic studies on acupuncture. Indeed, a 

growing number of studies have supported this notion. Cuta-

neous acupuncture at the zusanli acupoint has been reported 

to elevate levels of focal adenosine and its A
1
 receptor for 

antinociceptive actions54 and upregulate the expression of 

purinergic receptors in the dorsal root ganglion,35,55 sug-

gesting acupuncture-mediated induction of afferent signals. 

It has been further reported that acupuncture stimulation 

induced c-Fos expression in neurons in the dorsal vagal 

complex area, including both nucleus tractus solitarii (NTS) 

and dorsal motor nucleus, rostral ventromedial medulla, and 

raphe nucleus, implying that the ascending neuronal signals 

generated from the cutaneous acupoints relay synaptic inputs 

into the vagal neural circuits and possibly further up to the 

cerebral neural circuits.39,56–58

Evidence demonstrating the involvement of autonomic 

nerve activity in acupuncture action largely comes from 

physiological studies analyzing cardiovascular responses and 

gastrointestinal (GI) motility in experimental animals and 

humans. Physiological assessment of GI activity is useful 

to investigate acupuncture effects on autonomic function, 

because the regulation of GI disorders is one of the major 

realms of traditional acupuncture medicine.59,60 One study 

reported that the manipulation of EA in dogs improved 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

232

Park and Namgung

gastric emptying and increased vagal activity assessed by 

spectral analysis of heart-rate variability while suppressing 

sympathetic activity.61 Acupuncture effects on regulation of 

heart-rate variability were similarly demonstrated in a rodent 

model of inflammatory bowel disease and human subjects.13,62 

Longhurst and Tjen-A-Looi reported that acupuncture stimu-

lation regulated cardiovascular function (blood pressure), 

whereby neurotransmitter release and neuromodulation in 

the hypothalamus and several cardiovascular nuclei in the 

brain stem mediated acupuncture effects.63

In addition to nuclei in the vagal complex, EA was 

reported to induce neuronal activation in the cerebrum. 

Functional magnetic resonance-imaging studies using human 

subjects revealed that analgesic effects caused by low-fre-

quency EA (2 Hz) were positively correlated with activation 

in the contralateral primary motor area, supplementary motor 

area, and ipsilateral superior temporal gyrus, but negatively 

correlated in the bilateral hippocampus.64 However, anal-

gesic effects induced by high-frequency EA (100 Hz) were 

positively correlated with activation in other areas, such as 

the contralateral inferior parietal lobule, ipsilateral anterior 

cingulate cortex, nucleus accumbens, and pons. In another 

functional magnetic resonance-imaging study, EA activated 

neurons in the cingulate cortex and modulated the activation 

pattern of limbic-system networks.65

Acupuncture mechanism on anti-
inflammation: potential role of 
vagus nerve activity
Based on the preceding discussion, it is likely that EA gener-

ates neuronal signals at the acupuncture point, sends these 

to the spinal cord and brain, and may trigger autonomic 

regulation of inflammatory responses in target organs. How 

would EA-induced sympathetic and parasympathetic nerve 

activities modulate pathological responsiveness in internal 

organs? Here, we discuss the role of vagus nerve activity 

as a principal parasympathetic nerve and then sympathetic 

nerve activity.

As discussed in the previous section, vagus nerve stimu-

lation (VNS) activates nicotinic acetylcholine receptors in 

target cells to attenuate inflammatory responses. Here, one 

intriguing issue is whether the vagus nerve activity induced 

by EAS is functionally comparable to the VNS. It should be 

noted that since the VNS acts on both afferent and efferent 

parts of the nerve, afferent signals transmitted to the brain 

could indirectly affect inflammatory responses. Likewise, EA 

signals, if any, would be transmitted directly to the vagal effer-

ent nerves or indirectly by way of brain pathways, and thus 

the vagal activity caused by EAS and VNS may share some 

common neural code in acting on a target organ (Figure 2). 

Previous studies have shown that EA given at several different 

acupoints activates neurons in the NTS, a brain-stem location 

receiving somatic nerve activity and afferent vagal inputs, 

as demonstrated by c-Fos immunostaining and electrophysi-

ological recordings.57,66,67 EAS-induced neuronal activity in 

the NTS would send out signals to vagal efferent nerves or 

ascending neural paths to upper-brain neurons, and combined 

efferent activity may mediate anti-inflammatory effects 

(Figure 2). In this respect, one previous study demonstrating 

the involvement of brain muscarinic receptor-mediated net-

works in anti-inflammatory regulation of EA in LPS-induced 

endotoxemia53 supports the notion that EAS-induced efferent 

vagal activity may carry the descending brain activity as 

acupuncture-specific neuronal signals.

Torres-Rosas et al demonstrated that sciatic nerve activa-

tion by EA at the zusanli acupoint inhibited the production 

of major inflammatory cytokines in an animal model of 

polymicrobial peritonitis, and further showed that vagal 

activity transmitted to the adrenal gland increased dopamine 

NA
Anti-
inflammation

Spinal
cord

Upper
brain
nuclei

NTS

DMV

Vagal activity

Sympathetic activity

AS

Figure 2 Possible neural pathways that transmit cutaneous ASs ultimately to internal visceral organs and induce anti-inflammatory responses in target organs.
Abbreviations: AS, acupuncture signal; NTS, nucleus tractus solitarius; DMV, dorsal motor nucleus of vagus nerve; NA, nucleus ambiguus.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

233

Inflammation regulation by electroacupuncture

production and downregulated cytokine production.68 How-

ever, in another study using LPS-induced systemic inflam-

mation animals, EA at the zusanli acupoint activated the 

vagal pathway connected to the spleen and attenuated the 

production of TNFα in the spleen.39 In an animal-sepsis 

model with a lethal dose of LPS, vagotomy abrogated the 

effects of EAS (at the hegu acupoint) on anti-inflammation 

and animal survival,53 suggesting the activation of vagal effer-

ent by EAS. However, EAS (at the zusanli acupoint) activated 

NTS neurons and improved the pathologic parameters of 

postoperative ileus, but did not regulate the production of 

inflammatory cytokines.66 In ischemia–reperfusion animals, 

vagotomy or administration of nicotinic receptor antagonist 

reversed EA inhibition on the release of HMGB1 and myo-

cardial protection.69 Finally, in a TNBS-induced colitis model, 

when given together with VNS, EAS effectively decreased 

the production of inflammatory cytokines and pathogenesis 

in the colon, but EAS alone did not increase vagal activity 

above VNS,13 implying some augmentation effects of EAS 

on VNS-mediated anti-inflammation. It seems evident that 

vagal activity is a principal modulating factor for regulation 

of inflammation by EA; however, further studies are essential 

to verify vagal modulation of EA in different disease models 

using various EAS manipulations.

Anti-inflammatory regulation of EA 
via sympathetic nerve pathway
Possible involvement of sympathetic nerve activity in neu-

roimmune regulation has been implicated by adrenergic 

neuronal activity inducing iNKT cells, whose inhibition 

attenuated immunosuppression and bacterial infection 

(Figure 1).33 Can a concept of anti-inflammatory regulation 

via the suppression of sympathetic activity be applied to 

acupuncture-mediated anti-inflammation? Previous reports 

have suggested that in a physiological state, EA may either 

increase or decrease sympathetic nerve activity in several 

organ systems. For instance, EAS improves rectal motility 

by inhibiting sympathetic nerve activity, but suppresses 

gastric motility by increasing sympathetic activity.70,71 EA 

increases cellular uptake of glucose by increasing sympa-

thetic nerve activity.72 It has further been reported that EA was 

involved in cardiovascular baroreceptor reflex by modulating 

hypothalamic inputs to rostroventrolateral medulla, an area 

relaying signals to preganglionic sympathetic neurons in the 

spinal cord.73 In relation to inflammatory responses under 

a pathological state, EA attenuates inflammatory reaction 

by activating postganglionic sympathetic nerve activity 

in carrageenan- and zymosan-induced animal models.74,75 

However, in LPS-induced endotoxemia animals, EA inhibits 

peripheral sympathetic activity and increases vagal activity 

to regulate systemic inflammatory responses.53 This suggests 

that (possibly reflecting differential experimental systems) 

either increased or decreased sympathetic nerve activities 

are involved in mediating anti-inflammatory effects of EA.

Martelli et al claimed that instead of vagus nerve activity, 

sympathetic activity, which is evoked by electrical stimulation 

of splanchnic nerve connected to celiac ganglia, might be 

responsible for regulating anti-inflammatory response in the 

spleen.31,32 Therefore, it is tempting to explore the possibility 

that anti-inflammation by EAS is modulated by splanchnic 

nerve activity transmitted to celiac ganglia. Immune cells, 

such as iNKT cells, and a subpopulation of CD4+ T cells are 

known to receive adrenergic inputs from sympathetic nerve 

terminals and mediate immunosuppression and inflamma-

tion (Figure 1).23,33 Therefore, one experimental approach to 

explore the mechanistic basis of the regulation of sympathetic 

nerve activity by EA would be to investigate whether EAS 

activates preganglionic neurons in the spinal cord and sub-

sequent celiac ganglia neurons, and analyze the activation 

of immune cells in pathologic target organs, such as spleen 

and liver, in association with sympathetic nerve connectivity.

Regulation of ischemic brain 
injury by EA
EA has been widely used for the treatment of stroke and 

cerebral ischemia.76 To understand the biological basis for its 

efficacy, rodent models of cerebral ischemia–reperfusion and 

middle cerebral artery occlusion are used widely. Histological 

and behavioral examinations demonstrated that EA manipula-

tion protected neural tissue from injury and improved motor 

impairment and cognitive function.77–81 Studies at cellular 

and molecular levels showed that EAS regulated the expres-

sion of apoptosis-related genes, such as BCL2 and BAX,77,82 

inhibited the production of HMGB1 production,83,84 known 

to induce inflammation by activating TLR4 and RAGE,85 and 

downregulated mRNA and protein levels of MMP2, Aqp4, 

and Aqp9.86,87 EAS also activates several signaling molecules 

and related pathways, including stimulation of STAT388 and 

PI3K,89 and upregulates levels of glutamate receptor GluR2 

for neuroprotection.90 Finally, EA affects the activation of 

microglial cells and astrocytes and the production of astroglial 

lactate transporter (MCT1), implying that EA may exert its 

protective function by acting on glial cells and neurons in 

the central nervous system.78,80,81,91

Despite numerous reports on pathologic responses by 

EA, mechanistic studies underlying acupuncture efficacy on 
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cerebral ischemia have been limited. Chavez et al described76 

on a mechanistic basis a list of possible beneficial effectors of 

acupuncture (both EA and MA) in brain areas after ischemic 

stroke. In an experimental stroke model, EAS has been shown 

to attenuate cerebral ischemia by activating α
7
-nicotinic 

acetylcholine receptors in penumbra and also vagal motor 

neurons.92 However, it is unclear how EA-modulated vagal 

activity is linked to cholinergic nerve activity in ischemic 

cerebral tissue and leads to pathological responsiveness in 

target tissue. Further studies demonstrating the protective 

effects of EAS on brain and spinal tissue from ischemic dam-

age are critical to gain insights into the mechanistic basis of 

anti-inflammatory mechanisms of EA.

Perspectives: neural coding of 
acupuncture signals
All sensory information in humans and animals is received 

by specific receptors, and the nerve signals generated are 

transmitted to and perceived by the brain. Modality, loca-

tion, intensity, and duration are basic features of sensory 

stimulation at the periphery, and act as basic elements to 

transduce unique signals to sensory neurons in the brain.93 

Here, the initial stimulation requires the process of neural 

coding so that the sensory signals can be interpreted through 

brain circuitry.94

Would cutaneous acupuncture stimulation generate its 

own specific neural responses? Neuroimaging studies on 

acupuncture indicate the possible existence of neural corre-

lates of acupuncture.95 Receptive fields of sensory neurons, 

important to determine perception sensitivity to a stimulus, 

are affected by receptor density at the stimulation area. We 

have recently found that α
6
/β

1
 integrin receptors are highly 

expressed at the zusanli acupoint after acupuncture stimu-

lation.35 Since integrin activity plays an important role in 

mediating intercellular signaling,96 it will be interesting to 

explore the distribution and activation of specific types of 

integrin receptors responding after stimulation at other acu-

points. Moreover, it will be of great importance to investigate 

whether EA manipulation at the acupoint can generate a 

unique sensory modality, eg, deqi is interpreted as a special 

sensation distinct from typical somatosensation, which is 

shared between acupuncturist and patient. EAS induces affer-

ent signals, and may directly affect visceral autonomic nerve 

activity. Alternatively, it is transmitted to the cerebrum and 

generates brain acupuncture signals (Figure 2). We speculate 

that acupuncture stimulation may trigger the responsiveness 

of sensory receptors and generate neural activity in its own 

specific way, which may be encoded in the cerebral cortex and 

autonomic neuronal center and exert its effects on regulat-

ing inflammation. Future investigations to explore whether 

acupuncture-specific vagal activity exists and acts on cells 

in target organs will be of great importance to gain insights 

into the mechanistic basis of acupuncture.
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